Section 16.5

Definition: If $\overrightarrow{F} = P \overrightarrow{i} + Q \overrightarrow{j} + R \overrightarrow{k}$ is a vector field on \mathbb{R}^3 and the partial derivatives of P, Q, and R all exist, then the curl of \overrightarrow{F} is the vector field on \mathbb{R}^3 defined by

 $\operatorname{curl} \overrightarrow{F} = \left(\begin{array}{c} \frac{\partial R}{\partial u} \ - \ \frac{\partial Q}{\partial z} \right) \overrightarrow{i} + \left(\begin{array}{c} \frac{\partial P}{\partial z} \ - \ \frac{\partial R}{\partial x} \right) \overrightarrow{j} + \left(\begin{array}{c} \frac{\partial Q}{\partial x} \ - \ \frac{\partial P}{\partial y} \right) \overrightarrow{k}.$

Mnemonic Device: curl $\overrightarrow{F} = \nabla X \overrightarrow{F}$

Exercise 1. If $\overrightarrow{F}(x,y,z) = xy^2 z^4 \overrightarrow{i} + (2x^2y+z)\overrightarrow{j} + y^3 z^2 \overrightarrow{k}$, find $\nabla X \overrightarrow{F}$. (Swok Sec 18.1 Ex

Theorem: If f is a function of three variables that has continuous second partial derivatives, then

$$\operatorname{curl}\left(\nabla f\right) = \overrightarrow{0}.$$

<u>**Theorem</u>**: If \overrightarrow{F} is a vector field defined on all of \mathbb{R}^3 whose component functions have continuous partial derivatives and curl $\overrightarrow{F} = \overrightarrow{0}$, then \overrightarrow{F} is a conservative vector field.</u>

Class Exercise 1. Determine whether or not the vector field is conservative. If it is conservative,

find a function f such that $\overrightarrow{F} = \nabla f$. (#14,16,18) (a) $\overrightarrow{F}(x,y,z) = xyz^2 \overrightarrow{i} + x^2yz^2 \overrightarrow{j} + x^2y^2z \overrightarrow{k}$ (b) $\overrightarrow{F}(x,y,z) = \overrightarrow{i} + \sin z \overrightarrow{j} + y \cos z \overrightarrow{k}$ (c) $\overrightarrow{F}(x,y,z) = e^x \sin yz \overrightarrow{i} + ze^x \cos yz \overrightarrow{j} + ye^x \cos yz \overrightarrow{k}$

<u>Definition</u>: If $\overrightarrow{F} = P \overrightarrow{i} + Q \overrightarrow{j} + R \overrightarrow{k}$ is a vector field on \mathbb{R}^3 and $\partial P / \partial x$, $\partial Q / \partial y$, and $\partial R / \partial z$ exist, then the **divergence of** \overrightarrow{F} is the function of three variables defined by

div
$$\overrightarrow{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

Mnemonic Device: div $\overrightarrow{F} = \nabla \cdot \overrightarrow{F}$

Exercise 2. Compute the divergence of the following vector fields. (Briggs Sec 14.5 Ex 1) (a) $\overrightarrow{F} = \langle x, y, z \rangle$ (b) $\overrightarrow{F} = \langle -y, x - z, y \rangle$ (c) $\overrightarrow{F} = \langle -y, x, z \rangle$

Exercise 3. Compute the divergence of the radial vector field

$$\overrightarrow{F} = rac{\overrightarrow{r}}{|\overrightarrow{r}|} = rac{\langle x,y,z \rangle}{\sqrt{x^2 + y^2 + z^2}}.$$

(Briggs Sec 14.5 Ex 2)

Exercise 4. Compute the curl of the rotational field $\overrightarrow{F} = \overrightarrow{a} x \overrightarrow{r}$, where $\overrightarrow{a} = \langle 1, -1, 1 \rangle$ and $\overrightarrow{r} = \langle x, y, z \rangle$. What is the direction and the magnitude of the curl? (Briggs Sec 14.5 Ex 4)

Class Exercise 2. Find (a) the curl and (b) the divergence of the vector field. (#2-8 even) (i) $\overrightarrow{F}(x, y, z) = xy^2 z^3 \overrightarrow{i} + x^3 yz^2 \overrightarrow{j} + x^2 y^3 z \overrightarrow{k}$ (ii) $\overrightarrow{F}(x, y, z) = \sin yz \overrightarrow{i} + \sin zx \overrightarrow{j} + \sin xy \overrightarrow{k}$ (iii) $\overrightarrow{F}(x, y, z) = e^{xy} \sin z \overrightarrow{j} + y \tan^{-1}(x/z) \overrightarrow{k}$ (iv) $\overrightarrow{F}(x, y, z) = \langle \frac{x}{y}, \frac{y}{z}, \frac{z}{x} \rangle$

<u>Theorem</u>: If $\overrightarrow{F} = P \overrightarrow{i} + Q \overrightarrow{j} + R \overrightarrow{k}$ is a vector field on \mathbb{R}^3 and P, Q, and R have continuous second-order partial derivatives, then

div curl
$$\overrightarrow{F} = 0$$
.

Class Exercise 3. Let f be a scalar field and \overrightarrow{F} a vector field. State whether each expression is meaningful. If not, explain why. If so, state whether it is a scalar field or a vector field. (#12)(a) curl f (b) grad f (c) div \overrightarrow{F} (d) curl(grad f) (e) grad \overrightarrow{F} (f) grad(div \overrightarrow{F}) (g) div(grad f) (h) grad(div f) (i) curl(curl \overrightarrow{F}) (j) div(div \overrightarrow{F}) (k) (grad f) X (div \overrightarrow{F}) (l) div(curl(grad f))

Homework: 1-11 ODD, 15-23 ODD