Section 16.6

Definition: We can describe a surface by a vector function $\vec{r}(u, v)$ of two parameters u and v. We suppose that

$$
\vec{r}(u, v)=x(u, v) \vec{i}+y(u, v) \vec{j}+z(u, v) \vec{k}
$$

is a vector-valued function defined on a region D in the $u v$-plane. If $\vec{r}_{u} X \vec{r}_{v}$ is not $\overrightarrow{0}$, then the surface S is called smooth.
Exercise 1. Identify and sketch the surface with equation $\vec{r}(u, v)=2 \cos u \vec{i}+v \vec{j}+2 \sin u \vec{k}($ Stew $\operatorname{Sec} 16.6 \operatorname{Ex} 1)$

Class Exercise 1. Identify the surface with the given vector equation. (\#4,6)
(a) $\vec{r}(u, v)=2 \sin u \vec{i}+3 \cos u \vec{j}+v \vec{k}, 0 \leq v \leq 2$
(b) $\vec{r}(s, t)=<s \sin 2 t, s^{2}, s \cos 2 t>$

Exercise 2. Find a parametrization of the cone $z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$. (Hass Sec 16.5 Ex 1)
Exercise 3. Find a parametrization of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$. (Hass Sec 16.5 Ex 2)
Exercise 4. Find a parametrization of the cylinder $x^{2}+(y-3)^{2}=9,0 \leq z \leq 5$. (Hass Sec 16.5 Ex 3)

Class Exercise 2. Find a parametric representation of the surface (\#22-26 even).
(a) The part of the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=1$ that lies to the left of the $x z$-plane
(b) The part of the sphere $x^{2}+y^{2}+z^{2}=16$ that lies between the planes $z=-2$ and $z=2$
(c) The part of the plane $z=x+3$ that lies inside the cylinder $x^{2}+y^{2}=1$

Definition: For a smooth surface, the tangent plane is the plane that contains the tangent vectors \vec{r}_{u} and \vec{r}_{v} and the vector $\vec{r}_{u} X \vec{r}_{v}$ is a normal vector to the tangent plane.
Exercise 5. Find the tangent plane to the surface with parametric equations $x=u^{2}, y=v^{2}$, $z=u+2 v$ at the point $(1,1,3)$. (Stew Sec 16.6 Ex 9)

Class Exercise 3. Find an equation of the tangent plane to the given parametric surface at the specified point. ($\# 34,36$)
(a) $x=u^{2}+1, y=v^{3}+1, z=u+v ;(5,2,3)$
(b) $\vec{r}(u, v)=\sin u \vec{i}+\cos u \sin v \vec{j}+\sin v \vec{k} ; u=\pi / 6, v=\pi / 6$

Definition: If a smooth parametric surface S is given by the equation

$$
\vec{r}(u, v)=x(u, v) \vec{i}+y(u, v) \vec{j}+z(u, v) \vec{k} \quad(u, v) \in D
$$

and S is covered just once as (u, v) ranges throughout the parameter domain D, then the surface area of S is

$$
A(S)=\iint_{D}\left|\vec{r}_{u} X \vec{r}_{v}\right| d A
$$

where $\vec{r}_{u}=\frac{\partial x}{\partial u} \vec{i}+\frac{\partial y}{\partial u} \vec{j}+\frac{\partial z}{\partial u} \vec{k}$ and $\vec{r}_{v}=\frac{\partial x}{\partial v} \vec{i}+\frac{\partial y}{\partial v} \vec{j}+\frac{\partial z}{\partial v} \vec{k}$
Exercise 6. Find the surface area of the (a) cone $z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$ and (b) a sphere of radius a. (Hass Sec 16.5 Ex 4, 5)

Class Exercise 4. Find the area of the surface. (\#40-50 even)
(a) The part of the plane with vector equation $\vec{r}(u, v)=\langle u+v, 2-3 u, 1+u-v>$ that is given by $0 \leq u \leq 2,-1 \leq v \leq 1$.
(b) The part of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies between the plane $y=x$ and the cylinder $y=x^{2}$.
(c) The part of the surface $z=1+3 x+2 y^{2}$ that lies above the triangle with vertices $(0,0),(0,1)$, and $(2,1)$.
(d) The part of the paraboloid $x=y^{2}+z^{2}$ that lies inside the cylinder $y^{2}+z^{2}=9$
(e) The helicoid (or spiral ramp) with vector equation $\vec{r}(u, v)=u \cos v \vec{i}+u \sin v \vec{j}+v \vec{k}, 0$ $\leq u \leq 1,0 \leq v \leq \pi$.
(f) The part of the sphere $x^{2}+y^{2}+z^{2}=b^{2}$ that lies inside the cylinder $x^{2}+y^{2}=a^{2}$, where 0 $<a<b$.
Homework: 1-5 ODD, 13-25 (every 4th), 33, 35, 39-49 ODD

