Section 16.7

The surface integral of f over the surface S is

$$
\iint_{S} f(x, y, z) d S=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(P_{i j}^{*}\right) \triangle S_{i j}
$$

Formula:

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(\vec{r}(u, v))\left|\vec{r}_{u} X \vec{r}_{v}\right| d A
$$

Formula

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(x, y, g(x, y)) \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} d A
$$

Exercise 1. Evaluate $\iint x^{2} z d S$ if S is the portion of the cone $z^{2}=x^{2}+y^{2}$ that lies between the planes $z=1$ and $z=4$. (Swok Sec 18.5 Ex 1)

Exercise 2. Evaluate $\iint_{S}(x z / y) d S$ if S is the portion of the cylinder $x=y^{2}$ that lies in the first octant between the planes $z=0, z=5, y=1$, and $y=4$. (Swok Sec 18.5 Ex 2)

Exercise 3. Evaluate $\iint_{S}(z+y) d S$ if S is the part of the graph of $z=\sqrt{1-x^{2}}$ in the first octant between the $x z$-plane and the plane $y=3$. (Swok Sec 18.5 Ex 3)

Class Exercise 1. Evaluate the surface integral. (\#6-20 even)
(a) $\iint_{S} x y z d S, S$ is the cone with parametric equations $x=u \cos v, y=u \sin v, z=u$, $0 \leq u \leq 1,0 \leq v \leq \pi / 2$
(b) $\iint_{S}\left(x^{2}+y^{2}\right) d S, S$ is the surface with vector equation:

$$
\vec{r}(u, v)=<2 u v, u^{2}-v^{2}, u^{2}+v^{2}>, u^{2}+v^{2} \leq 1
$$

(c) $\iint_{S} x z d S, S$ is the part of the plane $2 x+2 y+z=4$ that lies in the first octant
(d) $\iint_{S} y d S, S$ is the surface $z=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right), 0 \leq x \leq 1,0 \leq y \leq 1$
(e) $\iint_{S}^{S} z d S, S$ is the surface $x=y+2 z^{2}, 0 \leq y \leq 1,0 \leq z \leq 1$
(f) $\iint y^{2} d S, S$ is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies inside the cylinder $x^{2}+y^{2}=1$ and above the $x y$-plane
(g) $\iint_{S} x z d S, S$ is the boundary of the region enclosed by the cylinder $y^{2}+z^{2}=9$ and the planes $x=0$ and $x+y=5$
(h) $\iint_{S}\left(x^{2}+y^{2}+z^{2}\right) d S, S$ is the part of the surface of the cylinder $x^{2}+y^{2}=9$ between the planes $z=0$ and $z=2$, together with its top and bottom disks.

Definition: If it is possible to choose a unit normal vector \vec{n} at every such point (x, y, z) so that \vec{n} varies continuously over S, then S is called an oriented surface and the given choice of \vec{n} provides S with an orientation.

Definition: For a closed surface, that is, a surface that is the boundary of a solid region E, the convention is that the positive orientation is the one for which the normal vectors point outward from E.

Definition: If \vec{F} is a continuous vector field defined on an oriented surface S with unit normal vector \vec{n}, then the surface integral of \vec{F} over S is

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{S} \vec{F} \cdot \vec{n} d S
$$

This integral is called the flux of \vec{F} across S.

Formula:

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{D} \vec{F} \cdot\left(\vec{r}_{u} X \vec{r}_{v}\right) d A
$$

Formula:

$$
\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{D}\left(-P \frac{\partial g}{\partial x}-Q \frac{\partial g}{\partial y}+R\right) d A
$$

Exercise 4. Consider the radial vector field $\vec{F}=\langle x, y, z\rangle$. Find the upward flux of the field across the hemisphere $x^{2}+y^{2}+z^{2}=1$, for $z \geq 0$. (Briggs Sec 14.8 Ex 8a)

Exercise 5. Consider the radial vector field $\vec{F}=\langle x, y, z\rangle$. Find the upward flux of the field across the paraboloid $z=1-x^{2}-y^{2}$, for $z \geq 0$. (Briggs Sec 14.8 Ex 8b)

Exercise 6. Let S be the part of the graph of $z=9-x^{2}-y^{2}$ with $z \geq 0$.
If $\vec{F}(x, y, z)=3 x \vec{i}+3 y \vec{j}+z \vec{k}$, find the flux of \vec{F} through S. (Swok Sec 18.5 Ex 5)
Class Exercise 2. Evaluate the surface integral $\iint_{S} \vec{F} \cdot d \vec{S}$ for the given vector field \vec{F} and the oriented surface S. In other words, find the flux of \vec{F} across S. For closed surfaces, use the positive (outward) orientation. (\#24-32 even)
(a) $\vec{F}(x, y, z)=-x \vec{i}+-y \vec{j}+z^{3} \vec{k}, S$ is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=3$ with downward orientation
(b) $\vec{F}(x, y, z)=x z \vec{i}+x \vec{j}+y \vec{k}, S$ is the hemisphere $x^{2}+y^{2}+z^{2}=25, y \geq 0$, oriented in the direction of the positive y-axis
(c) $\vec{F}(x, y, z)=x y \vec{i}+4 x^{2} \vec{j}+y z \vec{k}, S$ is the surface $z=x e^{y}, 0 \leq x \leq 1,0 \leq y \leq 1$, with upward orientation
(d) $\vec{F}(x, y, z)=x \vec{i}+y \vec{j}+5 \vec{k}, S$ is the boundary of the region enclosed by the cylinder $x^{2}+z^{2}=1$ and the planes $y=0$ and $x+y=2$
(e) $\vec{F}(x, y, z)=y \vec{i}+(z-y) \vec{j}+x \vec{k}, S$ is the surface of the tetrahedron with vertices $(0,0,0)$, $(1,0,0),(0,1,0),(0,0,1)$

Homework: 1, 3, 5-17 (every 4th), 19-31 (every 4th)

