Section 16.8

Stokes' Theorem: Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let \vec{F} be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^{3} that contains S. Then,

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S}
$$

Exercise 1. Evaluate the integral $\iint_{S}(\nabla X \vec{F}) \cdot \vec{n} d S$, where $\vec{F}=-x z \vec{i}+y z \vec{j}+x y e^{z} \vec{k}$ and S is the cap of the paraboloid $z=5-x^{2}-y^{2}$ above the plane $z=3$. Assume \vec{n} points in the upward direction on S. (Briggs Sec 14.7 Ex 3)

Exercise 2. Let the surface S be the elliptical paraboloid $z=x^{2}+4 y^{2}$ lying beneath the plane $z=1$. We define the orientation of S by taking the inner normal vector \vec{n} to the surface, which is the normal vector having a positive \vec{k}-component. Find the flux of $\nabla X \vec{F}$ across S in the direction \vec{n} for the vector field $\vec{F}=y \vec{i}-x z \vec{j}+x z^{2} \vec{k}$. (Hass Sec 16.7 Ex 10)

Class Exercise 1. Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S} \cdot(\# 2,4,6)$
(a) $\vec{F}(x, y, z)=2 y \cos z \vec{i}+e^{x} \sin z \vec{j}+x e^{y} \vec{k}, S$ is the hemisphere $x^{2}+y^{2}+z^{2}=9, z \geq 0$, oriented upward
(b) $\vec{F}(x, y, z)=\tan ^{-1}\left(x^{2} y z^{2}\right) \vec{i}+x^{2} y \vec{j}+x^{2} z^{2} \vec{k}, S$ is the cone $x=\sqrt{y^{2}+z^{2}}, 0 \leq x \leq 2$, oriented in the direction of the positive x-axis
(c) $\vec{F}(x, y, z)=e^{x y} \vec{i}+e^{x z} \vec{j}+x^{2} z \vec{k}, S$ is the half of the ellipsoid $4 x^{2}+y^{2}+4 z^{2}=4$ that lies to the right of the $x z$-plane, oriented in the direction of the positive y-axis
Exercise 3. Evaluate the line integral $\oint \vec{F} \cdot d \vec{r}$, where $\vec{F}=z \vec{i}-z \vec{j}+\left(x^{2}-y^{2}\right) \vec{k}$ and C consists of the three line segments that bound the plane $z=8-4 x-2 y$ in the first octant. (Briggs Sec 14.7 Ex 2)

Exercise 4. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y, z)=-y^{2} \vec{i}+x \vec{j}+z^{2} \vec{k}$ and C is the curve of intersection of the plane $y+z=2$ and the cylinder $x^{2}+y^{2}=1$. (Stew Sec 16.8 Ex 1)

Class Exercise 2. Use Stokes' Theorem to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$. In each case C is oriented counterclockwise as viewed from above. $(\# 8,10)$
(a) $\vec{F}(x, y, z)=\vec{i}+(x+y z) \vec{j}+(x y-\sqrt{z}) \vec{k}, C$ is the boundary of the part of the plane $3 x+2 y+z=1$ in the first octant
(b) $\vec{F}(x, y, z)=x y \vec{i}+2 z \vec{j}+3 y \vec{k}, C$ is the curve of intersection of the plane $x+z=5$ and the cylinder $x^{2}+y^{2}=9$

Exercise 5. Let S be the part of the paraboloid $z=9-x^{2}-y^{2}$ with $z \geq 0$, and let C be the trace of S on the $x y$-plane. Verify Stokes' Theorem for the vector field $\vec{F}=3 z \vec{i}+4 x \vec{j}+2 y \vec{k}$. (Swok Sec 18.7 Ex 1)
Class Exercise 3. Verify that Stokes' Theorem is true for the given vector field \vec{F} and surface $S . \vec{F}(x, y, z)=-2 y z \vec{i}+y \vec{j}+3 x \vec{k}, S$ is the part of the paraboloid $z=5-x^{2}-y^{2}$ that lies above the plane $z=1$, oriented upward. (\#14)

Class Exercise 4. Let C be a simple closed smooth curve that lies in the plane $x+y+z=1$. Show that the line integral

$$
\int_{C} z d x-2 x d y+3 y d z
$$

depends only on the area of the region enclosed by C and not on the shape of C or its location in the plane. (\#16)

Class Exercise 5. Evaluate

$$
\int_{C}(y+\sin x) d x+\left(z^{2}+\cos y\right) d y+x^{3} d z
$$

where C is the curve $\vec{r}(t)=<\sin t, \cos t, \sin 2 t>, 0 \leq t \leq 2 \pi$. (\#18)
Homework: 3-9 ODD, 17-21 ODD

