Section 7.1

In this section, we evaluate integrals using integration by parts. Here is the formula:

$$
\int u d v=u v-\int v d u
$$

The "trick" for using this technique correctly is to choose the $d v$ properly - $d v$ should be the derivative of something times $d x$. The $d v$ should also take up as much as possible of the integrand.

Exercise 1. Evaluate the following integrals:
(a) $\int x \tan ^{-1} x d x$.
(b) $\int x^{2} e^{x} d x$.
(c) $\int e^{x} \cos x d x$.

Class Exercise 1. Evaluate the following integrals:
(a) $\int \sqrt{x} \log _{2} x d x$.
(b) $\int(x+5) \csc ^{2} 4 x d x$.
(c) $\int e^{3 x} \cos 2 x d x$.
(d) $\int \cot ^{-1} 3 x d x$.
(e) $\int \cos (\ln x) d x$.
(f) $\int \sec ^{3} x d x$.

Homework: 3-19 (every 4th), 25-45 (every 4th)

