Section 7.3

It is difficult to find antiderivatives for expressions that contain radicals.
In this section, we learn a technique for finding antiderivatives for such expressions.
Exercise 1. Evaluate $\int \frac{1}{x^{2} \sqrt{16-x^{2}}} d x$.
The following substitutions are used for eliminating radical expressions:

Expression in Integrand	Trigonometric Substitution
$\sqrt{a^{2}-x^{2}}$	$x=a \sin \theta$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan \theta$
$\sqrt{x^{2}-a^{2}}$	$x=a \sec \theta$

Exercise 2. Evaluate $\int \frac{1}{\sqrt{4+x^{2}}} d x$.

Class Exercise 1. Evaluate $\int \frac{\sqrt{x^{2}-9}}{x} d x$.
Class Exercise 2. Evaluate $\int \frac{\left(1-x^{2}\right)^{3 / 2}}{x^{6}} d x$.
Class Exercise 3. Evaluate $\int \frac{x^{2}}{\sqrt{9-x^{2}}} d x$.
Class Exercise 4. Evaluate $\int \frac{1}{\sqrt{25 x^{2}-4}} d x$.
Exercise 3. Evaluate $\int \frac{1}{\sqrt{t^{2}-6 t+13}} d t$.

Class Exercise 5. Evaluate $\int \frac{x^{2}}{\left(3+4 x-4 x^{2}\right)^{3 / 2}} d x$.
Class Exercise 6. Evaluate $\int \frac{x^{2}+1}{\left(x^{2}-2 x+2\right)^{2}} d x$.
Homework: 3-35 (every 4th)

