Section 7.7

Class Exercise 1. Find $\int e^{x^2} dx$.

Midpoint Rule

$$\int_{a}^{b} f(x) \ dx \approx M_{n} = \Delta \ x \ [f(\bar{x}_{1}) + f(\bar{x}_{2}) + \dots + f(\bar{x}_{n})],$$

where $\triangle x = \frac{b-a}{n}$ and $\bar{x}_i = \frac{1}{2}(x_{i-1} + x_i) = \text{midpoint of } [x_{i-1}, x_i].$

Exercise 1. Evaluate $\int_0^1 e^{x^2} dx$ using the Midpoint Rule (n=4).

Class Exercise 2. Use the Midpoint Rule with n = 4 to find the approximate value of the integral:

- (a) $\int_0^2 x \, dx$ (b) $\int_0^2 x^2 \, dx$ (c) $\int_0^2 x^3 \, dx$ (d) $\int_1^2 \frac{1}{x} \, dx$ (e) $\int_0^4 \sqrt{x} \, dx$ (f) $\int_0^{\pi} \sin x \, dx$.

Trapezoidal Rule: To approximate $\int_a^b f(x) dx$, use

$$T = \frac{\Delta x}{2}(y_0 + 2y_1 + 2y_2 + \dots + 2y_{n-1} + y_n).$$

The y's are the values of f at the partition points

$$x_0 = a, x_1 = a + \Delta x, x_2 = a + 2\Delta x, \dots, x_{n-1} = a + (n-1)\Delta x, x_n = b,$$

where $\triangle x = (b-a)/n$.

Exercise 2. Use the Trapezoidal Rule with n=4 to evaluate $\int_1^2 \frac{1}{x} dx$.

Class Exercise 3. Use the Trapezoidal Rule with n=4 to find the approximate value of the integral:

- megran: (a) $\int_0^2 x \, dx$ (b) $\int_0^2 x^2 \, dx$ (c) $\int_0^4 \sqrt{x} \, dx$ (d) $\int_0^{\pi} \sin x \, dx$.

Homework: 1, 5(a), 7-17 odd (a), (b)