Section 7.8

Definition: Integrals with infinite limits of integration are **improper integrals**.

1. If f(x) is continuous on $[a, \infty)$, then

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

2. If f(x) is continuous on $(-\infty, b]$, then

$$\int_{-\infty}^{b} f(x) \, dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) \, dx.$$

3. If f(x) is continuous on $(-\infty, \infty)$, then

$$\int_{-\infty}^{\infty} f(x) \ dx = \int_{-\infty}^{c} f(x) \ dx + \int_{c}^{\infty} f(x) \ dx,$$

where c is any real number.

In parts 1 and 2, if the limit is finite the improper integral **converges** and the limit is the **value** of the improper integral. If the limit fails to exist, the improper integral **diverges**. In part 3, the integral on the left-hand side of the equation **converges** if both improper integrals on the right-hand side converge, otherwise it **diverges** and has no value.

Exercise 1. Does the improper integral $\int_1^\infty \frac{1}{x} dx$ converge or diverge?

Exercise 2. Evaluate $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$.

Exercise 3. For what values of p does the integral $\int_1^\infty \frac{1}{x^p} dx$ converge? When the integral does converge, what is its value?

Definition: Integrals of functions that become infinite at a point within the interval of integration are **improper integrals**.

1. If f(x) is continuous on (a, b], then

$$\int_a^b f(x) \, dx = \lim_{c \to a^+} \int_c^b f(x) \, dx.$$

2. If f(x) is continuous on [a, b), then

$$\int_a^b f(x) \, dx = \lim_{c \to b^-} \int_a^c f(x) \, dx$$

3. If f(x) is continuous on $[a, c) \cup (c, b]$, then

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx.$$

In parts 1 and 2, if the limit is finite the improper integral **converges** and the limit is the **value** of the improper integral. If the limit fails to exist the improper integral **diverges**. In part 3, the integral on the left-hand side of the equation **converges** if both integrals on the right-hand side have values, otherwise it **diverges**

Exercise 4. Evaluate $\int_0^3 \frac{1}{(x-1)^{2/3}} dx$.

Exercise 5. Evaluate $\int_1^4 \frac{1}{x-2} dx$.

Class Exercise 1. Evaluate the integral or state that it diverges.

Class Exercise 1. (a) $\int_{1}^{\infty} \frac{1}{x^{1-01}} dx$ (b) $\int_{0}^{4} \frac{1}{\sqrt{4-r}} dr$ (c) $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} dx$ (d) $\int_{-\infty}^{-2} \frac{2}{x^{2}-1} dx$ (e) $\int_{0}^{1} \frac{\theta+1}{\sqrt{\theta^{2}+2\theta}} d\theta$ (f) $\int_{0}^{\infty} \frac{1}{(1+x)\sqrt{x}} dx$ (g) $\int_{1}^{2} \frac{1}{s\sqrt{s^{2}-1}} ds$ (h) $\int_{0}^{\infty} \frac{16\tan^{-1}x}{1+x^{2}} dx$ (i) $\int_{-\infty}^{0} \theta e^{\theta} d\theta$ (j) $\int_{-\infty}^{\infty} e^{-|x|} dx$ **Exercise 6.** Does the integral $\int_{1}^{\infty} e^{-x^2} dx$ converge?

<u>Theorem</u>: Let f and g be continuous on $[a, \infty)$ with $0 \le f(x) \le g(x)$ for all $x \ge a$. Then 1. $\int_a^{\infty} f(x) dx$ converges if $\int_a^{\infty} g(x) dx$ converges

2. $\int_a^{\infty} g(x) dx$ diverges if $\int_a^{\infty} f(x) dx$ diverges

Exercise 7. Does $\int_{1}^{\infty} \sin^2 x/x^2 dx$ converge or diverge?

Exercise 8. Does $\int_1^\infty \frac{1}{\sqrt{x^2 - 0.1}} dx$ converge or diverge?

<u>Theorem</u>: If the positive functions f and g are continuous on $[a, \infty)$ and if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L, \qquad 0 < L < \infty,$$

then

 $\int_a^{\infty} f(x) \, dx$ and $\int_a^{\infty} g(x) \, dx$ both converge or both diverge.

Exercise 9. Show that $\int_1^{\infty} \frac{1}{1+x^2} dx$ converges by comparison with $\int_1^{\infty} \frac{1}{x^2} dx$. Find and compare the two integral values.

Exercise 10. Show that $\int_1^\infty \frac{1}{e^x-5} dx$ converges.

Class Exercise 2. Use integration, the direct comparison test, or the limit comparison test to determine whether the integral converges or diverges.

determine whether the interval (a) $\int_{0}^{\pi/2} \tan \theta \ d\theta$ (b) $\int_{-\infty}^{\infty} 2xe^{-x^{2}} \ dx$ (c) $\int_{0}^{\pi} \frac{1}{\sqrt{t+\sin t}} \ dt$ (d) $\int_{1}^{\infty} \frac{1}{x^{3}+1} \ dx$ (e) $\int_{0}^{2} \frac{1}{1-x} \ dx$ (f) $\int_{1}^{\infty} \frac{1}{1+e^{\theta}} \ d\theta$ (g) $\int_{\pi}^{\infty} \frac{\sqrt{x^{2}}}{x} \ dx$ (h) $\int_{\pi}^{\infty} \frac{2+\cos x}{x} \ dx$ (i) $\int_{-\infty}^{\infty} \frac{1}{(1+y^{2})(1+\tan^{-1}y)} \ dy$

Homework: 15, 19, 25-45 (every 4th), 57, 61. 63. 67