Section 7.8

Definition: Integrals with infinite limits of integration are improper integrals.

1. If $f(x)$ is continuous on $[a, \infty)$, then

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

2. If $f(x)$ is continuous on $(-\infty, b]$, then

$$
\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

3. If $f(x)$ is continuous on $(-\infty, \infty)$, then

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{c} f(x) d x+\int_{c}^{\infty} f(x) d x
$$

where c is any real number.
In parts 1 and 2 , if the limit is finite the improper integral converges and the limit is the value of the improper integral. If the limit fails to exist, the improper integral diverges. In part 3 , the integral on the left-hand side of the equation converges if both improper integrals on the right-hand side converge, otherwise it diverges and has no value.
Exercise 1. Does the improper integral $\int_{1}^{\infty} \frac{1}{x} d x$ converge or diverge?
Exercise 2. Evaluate $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$.
Exercise 3. For what values of p does the integral $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ converge? When the integral does converge, what is its value?
Definition: Integrals of functions that become infinite at a point within the interval of integration are improper integrals.

1. If $f(x)$ is continuous on $(a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

2. If $f(x)$ is continuous on $[a, b)$, then

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x
$$

3. If $f(x)$ is continuous on $[a, c) \cup(c, b]$, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

In parts 1 and 2, if the limit is finite the improper integral converges and the limit is the value of the improper integral. If the limit fails to exist the improper integral diverges. In part 3 , the integral on the left-hand side of the equation converges if both integrals on the right-hand side have values, otherwise it diverges
Exercise 4. Evaluate $\int_{0}^{3} \frac{1}{(x-1)^{2 / 3}} d x$.
Exercise 5. Evaluate $\int_{1}^{4} \frac{1}{x-2} d x$.
Class Exercise 1. Evaluate the integral or state that it diverges.
(a) $\int_{1}^{\infty} \frac{1}{x^{1.001}} d x$
(b) $\int_{0}^{4} \frac{1}{\sqrt{4-r}} d r$
(c) $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x$
(d) $\int_{-\infty}^{-2} \frac{2}{x^{2}-1} d x$
(e) $\int_{0}^{1} \frac{\theta+1}{\sqrt{\theta^{2}+2 \theta}} d \theta$
(f) $\int_{0}^{\infty} \frac{1}{(1+x) \sqrt{x}} d x$
(g) $\int_{1}^{2} \frac{1}{s \sqrt{s^{2}-1}} d s$
(h) $\int_{0}^{\infty} \frac{16 \tan ^{-1} x}{1+x^{2}} d x$
(i) $\int_{-\infty}^{0} \theta e^{\theta} d \theta$
(j) $\int_{-\infty}^{\infty} e^{-|x|} d x$

Exercise 6. Does the integral $\int_{1}^{\infty} e^{-x^{2}} d x$ converge?
Theorem: Let f and g be continuous on $[a, \infty)$ with $0 \leq f(x) \leq g(x)$ for all $x \geq a$. Then 1. $\int_{a}^{\infty} f(x) d x$ converges if $\int_{a}^{\infty} g(x) d x$ converges
2. $\int_{a}^{\infty} g(x) d x$ diverges if $\int_{a}^{\infty} f(x) d x$ diverges

Exercise 7. Does $\int_{1}^{\infty} \sin ^{2} x / x^{2} d x$ converge or diverge?

Exercise 8. Does $\int_{1}^{\infty} \frac{1}{\sqrt{x^{2}-0.1}} d x$ converge or diverge?
Theorem: If the positive functions f and g are continuous on $[a, \infty)$ and if

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L, \quad 0<L<\infty
$$

then

$$
\int_{a}^{\infty} f(x) d x \text { and } \int_{a}^{\infty} g(x) d x \text { both converge or both diverge. }
$$

Exercise 9. Show that $\int_{1}^{\infty} \frac{1}{1+x^{2}} d x$ converges by comparison with $\int_{1}^{\infty} \frac{1}{x^{2}} d x$. Find and compare the two integral values.

Exercise 10. Show that $\int_{1}^{\infty} \frac{1}{e^{x}-5} d x$ converges.

Class Exercise 2. Use integration, the direct comparison test, or the limit comparison test to determine whether the integral converges or diverges.
(a) $\int_{0}^{\pi / 2} \tan \theta d \theta$
(b) $\int_{-\infty}^{\infty} 2 x e^{-x^{2}} d x$
(c) $\int_{0}^{\pi} \frac{1}{\sqrt{t}+\sin t} d t$
(d) $\int_{1}^{\infty} \frac{1}{x^{3}+1} d x$
(e) $\int_{0}^{2} \frac{1}{1-x} d x$
(f) $\int_{1}^{\infty} \frac{1}{1+e^{\theta}} d \theta$
(g) $\int_{1}^{\infty} \frac{\sqrt{x+1}}{x^{2}} d x$
(h) $\int_{\pi}^{\infty} \frac{2+\cos x}{x} d x$
(i) $\int_{-\infty}^{\infty} \frac{x}{e^{x}+e^{-x}} d x$
(j) $\int_{0}^{\infty} \frac{1}{\left(1+y^{2}\right)\left(1+\tan ^{-1} y\right)} d y$

Homework: 15, 19, 25-45 (every 4th), 57, 61. 63. 67

