Section 8.1

In this section, we will be using integrals to find the length of the graph of a function.
Mean Value Theorem: If $y=f(x)$ is continuous at every point of the closed interval $[a, b]$ and differentiable at every point of its interior (a, b), then there is at least one point c in (a, b) at which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

Definition: A function f is smooth on an interval if it has a derivative f^{\prime} that is continuous throughout the interval. (Intuitively, this means that a small change in x produces a small change in the slope $f^{\prime}(x)$ of the tangent line to the graph of f.)

Definition: Let f be smooth on $[a, b]$. The arc length of the graph of f from $A(a, f(a))$ to $B(b, f(b))$ is

$$
L_{a}^{b}=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Exercise 1. Find the length of the curve, $y=\frac{4 \sqrt{2}}{3} x^{3 / 2}-1,0 \leq x \leq 1$.

Class Exercise 1. Find the lengths of the curves.
(a) $y=(1 / 3)\left(x^{2}+2\right)^{3 / 2}$ from $x=0$ to $x=3$.
(b) $y=x^{3 / 2}$ from $x=0$ to $x=4$.

Exercise 2. Find the length of the graph of

$$
f(x)=\frac{x^{3}}{12}+\frac{1}{x}, 1 \leq x \leq 4
$$

Exercise 3. If $f(x)=3 x^{2 / 3}-10$, find the length of the graph of f from the point $A(8,2)$ to $B(27,17)$.

Class Exercise 2. Find the length of the curves.
(a) $y=\frac{1}{2}\left(e^{x}+e^{-x}\right), 0 \leq x \leq 2$.
(b) $y=x^{3} / 3+x^{2}+x+1 /(4 x+4), 0 \leq x \leq 2$.
(c) $y=\int_{-2}^{x} \sqrt{3 t^{4}-1} d t,-2 \leq x \leq-1$

Definition: If g^{\prime} is continuous on $[c, d]$, the length of the curve $x=g(y)$ from $A=(g(c), c)$ to B $=(g(d), d)$ is

$$
L=\int_{c}^{d} \sqrt{1+(d x / d y)^{2}} d y=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

Exercise 4. Set up an integral for finding the arc length of the graph of the equation $y^{3}-y-x$ $=0$ from $A(0,-1)$ to $B(6,2)$.

Class Exercise 3. Find the lengths of the curves.
(a) $x=\left(y^{3} / 3\right)+1 /(4 y)$ from $y=1$ to $y=3$.
(b) $x=\left(y^{4} / 4\right)+1 /\left(8 y^{2}\right)$ from $y=1$ to $y=2$.
(c) $x=y^{3} / 6+1 /(2 y)$ from $y=1$ to $y=2$.
(d) $x=\int_{0}^{y} \sqrt{\sec ^{4} t-1} d t,-\pi / 4 \leq y \leq \pi / 4$.

Homework: 1-9 ODD, 13, 17-23 ODD

