Section 8.2

Definition: If f is smooth and $f(x) \geq 0$ on $[a, b]$, then the area S of the surface generated by revolving the graph of f about the x-axis is

$$
S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Exercise 1. The graph of $y=\sqrt{x}$ from $(1,1)$ to $(4,2)$ is revolved about the x-axis. Find the area of the resulting surface.

Class Exercise 1. The given curve is rotated about the x-axis. Find the area of the resulting surface.
(a) $9 x=y^{2}+18,2 \leq x \leq 6$.
(b) $y=\sqrt{1+e^{x}}, 0 \leq x \leq 1$.
(c) $y=\frac{x^{3}}{6}+\frac{1}{2 x}, \frac{1}{2} \leq x \leq 1$
(d) $y=2 \sqrt{x}, 1 \leq x \leq 2$

Definition. If $x=g(y)$ and g is smooth and nonnegative on $[c, d]$, then the area S of the surface generated by revolving the graph of g about the y-axis is

$$
S=\int_{c}^{d} 2 \pi g(y) \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y=\int_{a}^{b} 2 \pi x \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x .
$$

Exercise 2. The given curve is rotated about the y-axis. Find the area of the resulting surface.

$$
y=1-x^{2}, 0 \leq x \leq 1
$$

Class Exercise 2. The given curve is rotated about the y-axis. Find the area of the resulting surface.
(a) $x=\sqrt{y}, 0 \leq y \leq 2$
(b) $x=y^{3} / 3,0 \leq y \leq 1$
(c) $x=\sqrt{2 y-1},(5 / 8) \leq y \leq 1$

Homework: 3-19 ODD

