Section 9.3

Definition: If y is a function of x and if n is a positive integer, then an equation that involves x, $y, y^{\prime}, y^{\prime \prime}, \ldots \ldots ., y^{(n)}$ is called an ordinary differential equation of order n.

Example: The differential equation $y^{\prime}=2 x$ is a first-order differential equation.
Example: The differential equation $\frac{d^{2} y}{d x^{2}}+x^{2}\left(\frac{d y}{d x}\right)^{3}-15 y=0$ is a second order differential equation.

Example: The differential equation $\left(y^{\prime \prime \prime}\right)^{4}-x^{2}\left(y^{\prime \prime}\right)^{5}+4 x y=x e^{x}$ is a third order differential equation.

Definition: A separable equation is a first-order differential equation in which the expression for $d y / d x$ can be factored as a function of x times a function of y. In other words, it can be written in the form

$$
\frac{d y}{d x}=g(x) f(y)
$$

The name separable comes from the fact that the expression on the right side can be "separated" into a function of x and a function of y. Equivalently, if $f(y) \neq 0$, we could write

$$
\frac{d y}{d x}=\frac{g(x)}{h(y)}
$$

Exercise 1. Given the differential equation $y^{\prime}=2 x$,
(a) find the general solution and illustrate it graphically
(b) find the particular solution that satisfies the condition $y=3$ if $x=0$

Exercise 2. Solve the differential equation: $\frac{d y}{d x}=x e^{-y}$.
Class Exercise 1. Solve the differential equation.
(a) $\left(y^{2}+x y^{2}\right) y^{\prime}=1$
(b) $\frac{d v}{d s}=\frac{s+1}{s v+s}$
(c) $\frac{d y}{d \theta}=\frac{e^{y} \sin ^{2} \theta}{y \sec \theta}$

Exercise 3. Find the solution of the differential equation that satisfies the given initial condition:

$$
\frac{d y}{d x}=\frac{\ln x}{x y}, y(1)=2 .
$$

Class Exercise 2. Find the solution of the differential equation that satisfies the given initial condition.
(a) $y^{\prime}=\frac{x y \sin x}{y+1}, y(0)=1$
(b) $\frac{d P}{d t}=\sqrt{P t}, P(1)=2$
(c) $\frac{d L}{d t}=k L^{2} \ln t, L(1)=-1$

Definition: An orthogonal trajectory of a family of curves is a curve that intersects each curve of the family orthogonally.

Exercise 4. Find the orthogonal trajectories of the family of ellipses $x^{2}+3 y^{2}=c$, and sketch several members of each family.

Class Exercise 3. Find the orthogonal trajectories of the family of curves.
(a) $y^{2}=k x^{3}$
(b) $y=\frac{x}{1+k x}$

Homework: 1, 3-11 ODD, 13, 17, 39-55 (every 4th)

