Section 9.5

Definition: A first-order linear differential equation is an equation that can be put into the form

$$
y^{\prime}+P(x) y=Q(x)
$$

where P and Q are continuous functions.
Exercise 1. Is $x y^{\prime}+y=2 x$ a linear equation?

Class Exercise 1. Determine whether the differential equation is linear:
(a) $y^{\prime}+x y^{2}=\sqrt{x}$
(b) $y \sin x=x^{2} y^{\prime}-x$

Theorem: The first-order linear differential equation $y^{\prime}+P(x) y=Q(x)$ may be transformed into a separable differential equation by multiplying both sides by the integrating factor $e^{\int P(x) d x}$.

Exercise 2. Solve the differential equation.
(a) $\frac{d y}{d x}-3 x^{2} y=x^{2}$
(b) $x^{2} y^{\prime}+5 x y+3 x^{5}=0$, where $x \neq 0$.

Exercise 3. Solve the differential equation:

$$
y^{\prime}+y \tan x=\sec x+2 x \cos x
$$

Class Exercise 2. Solve the differential equation.
(a) $y^{\prime}-y=e^{x}$
(b) $4 x^{3} y+x^{4} y^{\prime}=\sin ^{3} x$
(c) $y^{\prime}+y=\sin \left(e^{x}\right)$
(d) $x \frac{d y}{d x}-4 y=x^{4} e^{x}$
(e) $t \ln t \frac{d r}{d t}+r=t e^{t}$

Exercise 4. Solve the initial-value problem: $t^{3} \frac{d y}{d t}+3 t^{2} y=\cos t, y(\pi)=0$.

Class Exercise 3. Solve the initial-value problem.
(a) $2 x y^{\prime}+y=6 x, x>0, y(4)=20$
(b) $\left(x^{2}+1\right) \frac{d y}{d x}+3 x(y-1)=0, y(0)=2$.

Exercise 5. An object of mass m is released from a hot-air balloon. Find the distance it falls in t seconds if the force of resistance due to the air is directly proportional to the speed of the object.

Class Exercise 4. A simple electrical circuit consists of a resistance R and an inductance L connected in series, with a constant electromotive force V. If the switch S is closed at $t=0$, then it follows from one of Kirchhoff's rules for electrical circuits that if $t>0$, the current I satisfies the differential equation

$$
L \frac{d I}{d t}+R I=V
$$

Express I as a function of t.
Homework: 1-21 (every 4th), 27-39 (every 4th)

