Section 9.5

<u>Definition</u>: A <u>first-order linear differential equation</u> is an equation that can be put into the form

$$y' + P(x)y = Q(x),$$

where P and Q are continuous functions.

Exercise 1. Is xy' + y = 2x a linear equation?

Class Exercise 1. Determine whether the differential equation is linear: (a) $y' + xy^2 = \sqrt{x}$ (b) $y \sin x = x^2y' - x$

Theorem: The first-order linear differential equation y' + P(x)y = Q(x) may be transformed into a separable differential equation by multiplying both sides by the integrating factor $e^{\int P(x) dx}$.

Exercise 2. Solve the differential equation. (a) $\frac{dy}{dx} - 3x^2y = x^2$ (b) $x^2y' + 5xy + 3x^5 = 0$, where $x \neq 0$.

Exercise 3. Solve the differential equation:

$$y' + y \tan x = \sec x + 2x \cos x.$$

Class Exercise 2. Solve the differential equation.

(a) $y' - y = e^{x}$ (b) $4x^{3}y + x^{4}y' = \sin^{3}x$ (c) $y' + y = \sin(e^{x})$ (d) $x\frac{dy}{dx} - 4y = x^{4}e^{x}$ (e) $t \ln t \frac{dr}{dt} + r = te^{t}$

Exercise 4. Solve the initial-value problem: $t^3 \frac{dy}{dt} + 3t^2y = \cos t$, $y(\pi) = 0$.

Class Exercise 3. Solve the initial-value problem. (a) 2xy' + y = 6x, x > 0, y(4) = 20(b) $(x^2 + 1)\frac{dy}{dx} + 3x(y - 1) = 0$, y(0) = 2.

Exercise 5. An object of mass m is released from a hot-air balloon. Find the distance it falls in t seconds if the force of resistance due to the air is directly proportional to the speed of the object.

Class Exercise 4. A simple electrical circuit consists of a resistance R and an inductance L connected in series, with a constant electromotive force V. If the switch S is closed at t = 0, then it follows from one of Kirchhoff's rules for electrical circuits that if t > 0, the current I satisfies the differential equation

$$L\frac{dI}{dt} + RI = V.$$

Express I as a function of t.

Homework: 1-21 (every 4th), 27-39 (every 4th)