Section 7.2

Assume that x has a normal distribution with mean μ. For samples of size n with sample mean \bar{x} and sample standard deviation s, the t variable

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{n}}
$$

has a Student's t distribution with degrees of freedom d.f. $=n-1$.

Properties of a Student's t Distribution

1. The distribution is symmetric about the mean 0 .
2. The distribution depends on the degrees of freedom, d.f. (d.f. $=n-1$ for μ confidence intervals).
3. The distribution is bell-shaped, but has thicker tails than the standard normal distribution.
4. As the degrees of freedom increase, the t distribution approaches the standard normal distribution.
5 . The area under the entire curve is 1 .
In Chapter 5, we learned about the normal distribution. In this section, we will learn about the Student's t-distribution. From now on, I will use t-distribution for short. The following is the equation for the t-distribution:

$$
f(x)=\frac{\gamma\left(\frac{n+1}{2}\right)}{\sqrt{n \pi \Gamma\left(\frac{n}{2}\right)}}\left(1+\frac{x^{2}}{n}\right)^{-\left(\frac{n+1}{2}\right)},
$$

where Γ is the Gamma function and n is a positive integer.
The family of t-distribution curves is similar to the normal distribution curve. As n increases, the t_{n-1} curve looks more and more like the normal curve.

We can find the area under a t-distribution curve using the t cdf function on the calculator.
Calculator Function: $\operatorname{tcdf}(a, b, n)$ gives the area under the t_{n} curve between a and b.
Exercise 1. (a) Suppose $W \sim t_{4}$. Find $\mathrm{P}(W>5)$.
Here is an illustration:
$\mathrm{P}(W>5)=$ the area under the
$\mathrm{P}(W>5)=$
(b) Suppose $R \sim t_{6}$. Find $\mathrm{P}(-0.43<R<0.68)$.
$\mathrm{P}(-0.43<R<0.68)=$ the area under the
$\mathrm{P}(-0.43<R<0.68)=$
Class Exercise 1. Suppose $W \sim t_{8}$. Find $\mathrm{P}(W<2)$. Answer: 0.960
Class Exercise 2. Suppose $Y \sim t_{25}$. Find $\mathrm{P}(0.12<Y<1.74)$. Answer: 0.406
Remember how we used the invNorm function to find percentiles for the normal distribution? There is a similar function for the t-distribution, the invT function.

Definition: Let $y=\operatorname{invT}(\mathrm{a}, \mathrm{n}) . a$ is the area to the left of y under the t_{n} curve.

Exercise 2. (a) Find invT(.975,5).
(b) Suppose $W \sim t_{5}$. Find the value of a such that $\mathrm{P}(W<\mathrm{a})=0.34$.

Class Exercise 3. Suppose $X \sim t_{7}$. For what value of a is $\mathrm{P}(X>a)=0.34$? Answer: $a=$ 0.430

Exercise 3. A sample of size $n=5$ is a simple random sample selected from a normally distributed population. Find the critical value t_{c} corresponding to a 90% confidence level.

Class Exercise 4. A sample of size $n=8$ is a simple random sample selected from a normally distributed population. Find the critical value t_{c} corresponding to a 99% confidence level. Answer: 3.499

Class Exercise 5. A sample of size $n=15$ is a simple random sample selected from a normally distributed population. Find the critical value t_{c} corresponding to a 95% confidence level. Answer: 2.145

Formula: Suppose the mean of a population is μ and the sample standard deviation is s. The confidence interval for estimating a population mean is:

$$
\bar{x} \pm t_{c} \cdot \frac{s}{\sqrt{n}} .
$$

Exercise 4. You work for a consumer advocate agency and want to find the mean repair cost of a washing machine. As part of your study, you randomly select 40 repair costs and find the mean to be $\$ 120.00$. (Assume that repair costs are normally distributed.) The sample standard deviation is $\$ 17.50$. Construct a 95% confidence interval for the population mean repair cost.

Class Exercise 6. In a random sample of 60 refrigerators, the mean repair cost was $\$ 150.00$ and the standard deviation was $\$ 15.50$. (Assume the repair costs are normally distributed.) Construct a 99% confidence interval for the population mean repair cost. $\mathbf{(1 4 4 . 6 7}, \mathbf{1 5 5 . 3 3})$

Class Exercise 7. A random sample of forty-eight 200 -meter swims has a mean time of 3.12 minutes. (Assume that $\sigma=0.09$ and that swim-times are normally distributed.) Construct a 95% confidence interval for the population mean repair cost. Answer: (3.0945, 3.1455)

Homework

C problems

Section 7.2: 1, 3, 11(a), 11(b), 13(a), 13(b), 15(a), 15(b), 17(a), 17(b)

B problems

Section 7.2: 5, 11(c), 13(c), 15(c), 17(c)

A problems

Section 7.2: 7, 9, 19

