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THEORETICAL NOTE

Adaptive Learning and Risk Taking

Jerker Denrell
Stanford University

Humans and animals learn from experience by reducing the probability of sampling alternatives with
poor past outcomes. Using simulations, J. G. March (1996) illustrated how such adaptive sampling could
lead to risk-averse as well as risk-seeking behavior. In this article, the author develops a formal theory
of how adaptive sampling influences risk taking. He shows that a risk-neutral decision maker may learn
to prefer a sure thing to an uncertain alternative with identical expected value and a symmetric
distribution, even if the decision maker follows an optimal policy of learning. If the distribution of the
uncertain alternative is negatively skewed, risk-seeking behavior can emerge. Consistent with recent
experiments, the model implies that information about foregone payoffs increases risk taking.
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Much research on decisions under uncertainty has focused on risk
attitudes of individuals, defined by the curvature of the utility or value
function, and how they vary with the context and past outcomes
(Gonzales-Vallejo, Reid, & Schiltz, 2003; Kahneman & Tversky,
1979; Lopes & Oden, 1998). But decisions under uncertainty are
influenced by many other factors that may mask the relationship
between risk attitudes and observed decisions. One important influ-
ence is the information decision makers have about alternatives.
Outside the laboratory, individuals seldom know the outcome distri-
butions of the alternatives between which they can choose. As em-
phasized in the recent literature on decision from experience (Barron
& Erev, 2003; Erev & Barron, 2005; Hertwig, Weber, Barron, &
Erev, 2004), decision makers may not have access to descriptions of
outcome distributions, as in experiments, but only to samples of past
outcomes. The resulting sampling variability weakens the association
between risk attitudes and observed choices. It is not clear whether
individuals who choose an uncertain alternative instead of a sure thing
are risk seeking or only have experienced a favorable sequence of
outcomes when sampling the uncertain alternative.

Such sampling variability can also have systematic effects on
decision under uncertainty, producing apparent risk-averse and
risk-seeking behavior (Denrell & March, 2001; March, 1996). To
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illustrate this, March (1996) examined how decision makers fol-
lowing different learning rules allocate their choices between a
certain alternative and an uncertain alternative with an unknown
payoff. In his setup, the certain alternative paid k and the uncertain
alternative paid k / r with probability r and zero with probability
1 — r. For example, if £k = 1 and r = .01, the uncertain alternative
pays 100 with probability .01 and zero otherwise, whereas the
certain alternative pays 1. Decision makers could only observe the
payoff of the chosen alternative. Using simulations of several
models of learning, such as the Bush—-Mosteller algorithm (Bush &
Mosteller, 1955), March (1996) showed that if k was positive and
r < .5, the proportion of choices of the uncertain alternative
quickly fell below 50%."

Two mechanisms contribute to this result. First, if r is small and
k is positive, the favorable outcome (k / r) is a rare event. The
uncertain alternative then generates a payoff of zero most of the
time, and the certain alternative will seem to be superior most of
the time. If decision makers rely on recent outcomes when esti-
mating the value of the uncertain alternative, most will underesti-
mate the uncertain alternative. Second, most learning models as-
sume that decision makers revise the probability of sampling the
uncertain alternative in response to outcome feedback. To avoid
unfavorable future outcomes, decision makers reduce the proba-
bility of sampling the uncertain alternative if past outcomes have
been poor. Such an adaptive sampling rule implies that decision
makers who have a low estimate of the expected value of the
uncertain alternative are unlikely to choose it. If information is
only available about the chosen alternative, they are unlikely to
experience the occasional high payoff (k / r) and to revise their low
estimate.

! Burgos (2002) found similar results using a different learning algo-
rithm. Denrell and March (2001) found similar results using a learning
model in which payoffs are compared with a changing aspiration level.
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Several researchers have recently examined the first of these
mechanisms, the bias in estimates generated by rare events (Erev
& Barron, 2005; Hertwig, Barron, Weber, & Erev, 2006; Hertwig
et al., 2004; Weber, Shafir, & Blais, 2004). These studies show
that decision makers may underestimate the expected value of an
uncertain alternative that usually generates a poor payoff but
occasionally generates a very favorable payoff. The second mech-
anism, adaptive sampling, has received less attention (although,
see Barron & Erev, 2003). However, adaptive sampling can also
lead to a systematic bias in estimates (Denrell, 2005; Denrell &
March, 2001; Fazio, Eiser, & Shook, 2004). If decision makers
overestimate the expected payoff of an uncertain alternative, they
are likely to sample it again and can correct the error. If decision
makers underestimate the expected payoff of an alternative, they
may avoid it and thus cannot correct the error. As a result, most
individuals may end up underestimating an uncertain alternative,
even if it has a symmetric distribution (Denrell, 2005).

This article clarifies the implications of adaptive sampling for
risk taking in decisions from experience. The purpose is not to
suggest a comprehensive descriptive model of risk taking in deci-
sions from experience (for such a model, see Erev & Baron, 2005),
but to examine the theoretical and empirical implications of the
mechanism of adaptive sampling. I demonstrate formally that
common assumptions about learning imply that even a risk-neutral
decision maker would learn to prefer a certain alternative to an
uncertain alternative with identical expected value and a symmetric
distribution. I first illustrate this in the next section for the case in
which the decision between the two alternatives follows a logit
choice rule based on an estimate of the uncertain alternative. In the
subsequent section, I show that the basic conclusion holds, even if
a risk-neutral decision maker would follow the decision rule that
maximizes total expected value in a repeated choice between an
uncertain and unknown alternative and a known and certain alter-
native (the so-called “one-armed bandit problem”). This demon-
strates that apparent risk-averse behavior can be the result of a
normatively appropriate policy for managing the trade-off between
exploration and exploitation in sequential choice under uncer-
tainty, as suggested by March (1996), Denrell & March (2001),
and Niv, Joel, Meilijson, and Ruppin (2002). I next show that a
model of adaptive sampling also has distinct empirical implica-
tions. Consistent with recent experiments, a model of adaptive
sampling implies that information about foregone payoffs will
increase the tendency to choose risky alternatives. Finally, I illus-
trate that learning from adaptive samples could also generate
apparent risk-seeking behavior if the uncertain alternative has a
negatively skewed distribution. In the concluding section, I discuss
the significance of adaptive sampling for understanding decision
making under uncertainty.

Adaptive Sampling Is Sufficient to Generate Risk-Averse
Behavior

An Illustrative Model

Consider a decision maker faced with a repeated choice between a
certain alternative and an unknown and uncertain alternative. The
decision maker knows that the certain alternative always generates a

payoff of zero. The payoff generated by the uncertain alternative is a
normally distributed random variable, X, with mean zero and variance
o?. To demonstrate that adaptive sampling is sufficient to generate
risk-averse behavior, I assume in this section that the decision maker
cares only about the expected values of the two alternatives.

The decision maker does not know the expected value of X but
has to rely on past outcome information to estimate it and choose
between the two alternatives. To illustrate the effect of adaptive
sampling, I first consider a simple model that assumes that the
decision in each period between the two alternatives follows a logit
choice rule based on an estimate of the uncertain alternative
(Denrell, 2005). I also initially abstract away from other influences
on decision making from experience, including loss aversion and
the tendency for more variable outcomes to produce more random
choices (the “payoff variability effect,” Erev & Barron, 2005).

Following Busemeyer and Myung (1992), March (1996), Sarin
and Vahid (1999), Busemeyer and Stout (2002), and Barron and
Erev (2003), I assume that the decision maker’s estimate of the
expected value of the uncertain alternative in period #, denoted £,
is a weighted average of the previous estimate and the observed
payoff, if any. Specifically, £, = (1 — b)£,_, + bx, if the uncertain
alternative is chosen in period #, and X, = £,_,; otherwise. Here
X, = 0 and b is a positive fraction regulating the weight of the new
observation. Because information is only available about the pay-
off of the chosen alternative, the decision maker only updates the
estimate of the uncertain alternative when he or she chooses the
uncertain alternative.

I assume that the decision maker mainly samples the uncertain
alternative if its estimated value is positive, but sometimes ex-
plores it even if its estimated value is negative. Specifically, the
probability of choosing the uncertain alternative in period ¢ + 1 is
assumed to follow the exponential version of the Luce choice rule
(Luce, 1959): P,,; = 1/(1 + ¢ 5%).2 Here S is a parameter regulat-
ing how sensitive the choice probability is to the value of the
estimate. As § — oo, the uncertain alternative is only chosen if its
estimated value is positive. Experiments on repeated choices be-
tween uncertain alternatives have shown that this logit choice
model provides a good fit to choice data (Busemeyer & Stout,
2002; Yechiam & Busemeyer, 2005). Moreover, Gans, Knox, and
Croson (2004) and Busemeyer and Stout (2002) showed that a
logit choice model combined with a weighted-average model for
belief updating provided the best overall fit to data from experi-
ments on repeated choices between uncertain alternatives
(Yechiam & Busemeyer, 2005, however, concluded that a different
model of belief updating provided the best fit).

Given these assumptions, what is the probability of choosing the
uncertain alternative? Figure 1 shows how the probability of
choosing the uncertain alternative changes over time for different
values of § when » = .5. The probability of choosing the uncertain
alternative is always below 50% after the first period and declines
over time. It is possible to derive an explicit formula for the
expected probability that the uncertain alternative is chosen as

21t is also assumed that the uncertain alternative is chosen in the first
period. The results do not change if this assumption is changed.
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Figure 1. The average probability of choosing the uncertain alternative for two different values of S. Each entry

is based on averages from 100,000 simulations in which » = .5 and o’ =1

t — . As demonstrated in Appendix A, the expected (asymptotic)
probability of choosing the uncertain alternative, denoted E(C,)), is

1
. <0.5. (1)
1+ e22-»

E(Cy) =

Thus, the decision maker behaves as if he or she is risk averse.
Simulations show that the prediction of this asymptotic solution is
very close to the average probability of choosing the uncertain
alternative in, say, Period 50.% The asymptotic solution implies that
the probability of choosing the uncertain alternative is a decreasing
function of both S and b. Only if they are both large will the bias
be large. To illustrate the size of the bias, suppose that § = 4.81
and b = .25. These are median estimates from an experiment by
Gans et al. (2004) in which participants repeatedly choose between
two uncertain alternatives with Bernoulli distributions.* If the
uncertain alternative pays off +.5 or —.5 with equal probability
and the certain alternative has a payoff of zero, these estimates
imply that the probability of choosing the uncertain alternative is
.40 after 50 periods (based on 10,000 simulations).

The bias against the uncertain alternative is due to the asymmetry
in the probability of over- and underestimation. As demonstrated in
Denrell (2005), the above assumptions imply that a majority of all
decision makers will have a negative estimate of the uncertain alter-
native. This negativity bias occurs only when the probability of
sampling the uncertain alternative depends on the value of the esti-
mate and when information is available only about the payoff of the
chosen alternative. If the probability of sampling was exogenous (i.e.,
independent of the value of the estimate) or if information was always
available about the payoft of the uncertain alternative, the probability
of choosing the uncertain alternative would be .5.

Suppose next that the expected value of X was not zero but m #
0. In this case, the asymptotic probability of choosing the uncertain
alternative under adaptive sampling (as t — %) is

1
ECy)=—"®% - (2)

@
1 4 e 5" 205"

Equation 2 implies that the probability of choosing the uncertain
alternative will be a strictly increasing function of the expected
value (m) and a strictly decreasing function of the variance (¢%) of
the uncertain alternative. The probability of choosing the uncertain
alternative will only be 50% if the expected value is positive. If
o?=1,8=3,and b = .5, the expected value (i) has to be .5 for
probability of choosing the uncertain alternative, E(C,,), to be .5.
Equation 2 is also identical to the probability of choosing the
uncertain alternative for a risk-averse decision maker who knows
the distribution of the uncertain alternative, who only cares about
the expected value and the variance of the uncertain alternative,
and whose decisions follow the logit choice rule. A model of
learning from experience assuming risk neutrality thus generates
exactly the same choice probabilities as does a logit random-utility
model (McFadden, 1974) that assumes risk aversion and known
outcome distributions. This equivalence between the two models
implies that estimates in field studies of a negative effect of
variability in outcomes on choice probabilities do not necessarily
provide evidence for a distaste of dispersion but may be due to
learning. A possible way to distinguish these hypotheses is to
estimate choice models that include recent experiences as a proxy
for the belief (£,) of the decision maker. If decisions are mainly
influenced by a belief (£;) based on recent experiences, the esti-
mated effect of the variance in outcomes should disappear.

3 This holds true unless S is very large, which implies that the uncertain
alternative may be avoided for many periods. A simulation of 50 periods
will underestimate the duration of such avoidance.

+1 am grateful to the authors for providing me this information.
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The probability of choosing the uncertain alternative is a continu-
ously decreasing function of the variance of the uncertain alternative,
o?, because the choice probability is a continuous function of the
value of the estimate. A different choice rule would give different
results. Suppose the alternative with the highest estimated value is
chosen with probability 1 — ¢, where ¢ < .5. The asymptotic
probability of choosing the uncertain alternative is then 2g(1 — g) (see
Appendix A), which is less than .5 but not a continuously decreasing
function of the variance of the uncertain alternative.

Generalization

The result that adaptive sampling generates risk-averse behavior
is not limited to the case in which the payoff of the uncertain
alternative is normally distributed and sampling follows the logit
choice rule but holds for a somewhat broader set of assumptions
about outcome distributions and choice rules (cf. Niv et al., 2002).

Consider again a repeated choice between an uncertain and a
certain alternative. The certain alternative generates a payoff of
zero. The payoff generated by the uncertain alternative is a random
variable, X. Rather than assuming that X is normally distributed, it
is sufficient to assume that X is a random variable with mean zero
and with a density that is symmetric around zero: fix) = f{—x). In
the section titled “When Can Adaptive Sampling Generate Risk-
Seeking Behavior?” I treat the case in which X has a skewed
distribution. Rather than assuming that sampling follows the logit
choice rule, it is sufficient to assume that the probability of
sampling is an increasing function of the estimate. Specifically,
P(x) = P(y) whenever x >y, with strict inequality for at least
some values, x and y, and P(x) > 0 for all x. To avoid any inbuilt
bias for or against the uncertain alternative, I also assume that P(x)
is symmetric around zero, that is, P(x) = 1 — P(—x). Thus,
decision makers treat gains and losses symmetrically.

Finally, rather than assuming that the weight of the most recent
observation is constant, it is sufficient to assume that the estimate
at the end of period t + 1, £,,, is some weighted average of the N
most recent observations. Formally, £, , = b,x, + byx, +
.. .Fbyx,, Where x,, is the most recent observation, b; € (0,1), and

This assumption includes, or can approximate, a wide range of
possible models of belief formation. For example, the above for-
mulation can approximate very well the model used in the previous
section (and also in March, 1996) in which the weight of the most
recent observation was constant. It also includes, or can approxi-
mate, models in which the weight of the most recent observation
declines with experience (unless the weight declines to zero). This
assumption does not include a model in which the estimate is the
average of all observations made so far.

If information is only available about the chosen alternative,
these assumptions imply that decision makers will behave as if
they were risk averse: The expected probability that the uncertain
alternative is chosen (as 1 — ) is below 50% (see Appendix B).?
The reason for such risk-averse behavior is that sampling is as-
sumed to be adaptive. Suppose, instead, that the decision maker
had to base his or her decision on an estimate formed on the basis

of a given sample of N observations of X. If the estimate and the
choice rule followed the assumptions outlined in the above para-
graphs, the expected probability of choosing the uncertain alter-
native would be .5 (see Appendix B).

Even Optimal Sequential Sampling Can Generate
Risk-Averse Behavior

The bias against the uncertain alternative occurs in the above
models because decision makers are likely to avoid the uncertain
alternative if recent outcomes were poor. Although such an adap-
tive sampling rule is reasonable, it is not necessarily optimal. Even
if initial outcomes are poor, it could be optimal to continue to
sample the uncertain alternative to obtain further information
about its payoff distribution. If a decision maker followed such an
optimal sampling policy, would the bias against the uncertain
alternative still hold? Or do the above results only hold when
decision makers are myopic, in the sense that they ignore the value
of experimentation?

The bias against the uncertain alternative holds, even if the
decision maker follows an optimal policy of experimentation. To
illustrate this, consider a risk-neutral decision maker who can
choose, in N periods, between a known alternative with a certain
payoff of zero and an uncertain alternative. The payoff generated
by the uncertain alternative is normally distributed with an un-
known mean, m, and known variance o2. If m is positive, the
decision maker would prefer to choose the uncertain alternative.
However, the decision maker does not know the value of m
characterizing the uncertain alternative with which he or she is
faced. The decision maker only knows that the value of m is drawn
from a normal distribution with mean zero (i.e., the prior of the
decision maker is normal with mean zero). Thus, ex ante, the value
of m is equally likely to be positive or negative.

The decision maker has to rely on outcome information to
estimate the value of m and to decide which alternative to choose
in each period. Rather than assuming that the decision maker
follows some heuristic choice rule, I assume the decision maker
chooses, at the beginning of period ¢, the alternative that maxi-
mizes the expected total payoff in the remaining periods

N
... NE X),

i=t

where X, is the payoff of the alternative chosen in period i. Thus,
the decision maker takes into account the value of experimenta-
tion. I also assume that the estimate of the decision maker follows
Bayes rule.

The optimization problem facing the decision maker is a
version of the classical one-armed bandit problem (Berry &
Fristedt, 1985). An optimal policy in this problem needs to
specify when past outcomes justify that the uncertain alterna-

S Niv et al. (2002) derived a similar result, but only under the slightly
stronger assumption that 1 / P(x) is a convex function. In related articles
Borgers, Morales, and Sarin (2004) and Oyarzun and Sarin (2006) exam-
ined the assumptions regarding the mapping between the realized payoff
and changes in choice probabilities required for a learning rule to be
(locally) risk neutral or risk averse.
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tive is abandoned, even if this implies that no new information
about its expected value will be obtained. Choosing the uncer-
tain alternative provides additional information about its ex-
pected value, which is valuable because it makes possible more
informed choices in the future. If the estimated expected value
of the uncertain alternative is lower than the payoff of the
certain alternative, obtaining such information is costly because
information can only be obtained by choosing a seemingly
inferior alternative. An optimal policy has to find a balance
between exploring the uncertain alternative and exploiting the
certain alternative, if it is believed to be better.

Even if risk-neutral decision makers followed an optimal policy,
fewer than 50% of all decision makers will choose the uncertain
alternative in the last period. The proof of this is very simple and
follows from a few well-known characteristics of the optimal policy
in this finite-horizon one-armed bandit problem (for a characterization
of the optimal policy see Burnetas & Katehakis, 1997).°

First, because the expected values of the uncertain and the
certain alternatives are equal at the beginning of the first period, it
is optimal to choose the uncertain alternative in the first period to
obtain information about its distribution. Second, if the decision
maker ever decides to switch to the certain alternative, it is never
optimal to switch back to the uncertain alternative (Berry &
Fristedt, 1985), because no further information is available. Third,
in the last period, the alternative with the highest expected value,
given past outcomes, should be chosen. This implies that the
uncertain alternative is only chosen in the last period if

N—1
E X, > 0,
i=1

where x,, is the payoff of the uncertain alternative in period i.
Fourth, in all periods before the last, it is optimal to choose the
uncertain alternative in period ¢ if its expected value given past
outcomes, 71, _, is higher than some (negative) threshold value
(Burnetas & Katehakis, 1997). This implies that the uncertain
alternative is only chosen in period r = 2, ..., N — 1 if the sum
of its past outcomes is higher than some negative threshold (Bur-
netas & Katehakis, 1997):

—1
E Xy > —Ci—y, Vtic; > 0.
i=1

Opverall, this implies that the decision maker chooses the uncertain
alternative in the final period only if the following conditions hold:

N-2

.N E Xiu

X1~ Nx, +x,>—caN L

N—1
>~y N DO x>0 (3)

i=1

The probability of this combined event is lower than the proba-
bility of any one of the events (because they are not identical
events). In particular, the probability of the combined event is
lower than

N—1

P> X, >0)=0.5.

i=1

Thus, if a decision maker follows an optimal policy, the prob-
ability that the uncertain alternative will be chosen in the last
period is less than 50%. The same reasoning implies that most
decision makers underestimate the expected value of the uncertain
alternative. The above argument shows that for more than 50% of
all decision makers, the expected value of the uncertain alternative
at the beginning of period N, given the past outcomes experienced
by the decision maker, denoted ry_;, is negative. It can also be
demonstrated that the probability that 77, is negative is larger than
50% for all t > 1.7

To illustrate how the probability of choosing the uncertain
alternative changes over time, the optimal policy needs to be
calculated. Although the optimal policy for N > 3 is very difficult
to calculate for a one-armed bandit with a normal distribution, it
can be computed, using stochastic dynamic programming, for a
one-armed bandit with a Bernoulli distribution (e.g., Berry &
Fristedt, 1985). Suppose, for example, that a decision maker can
choose in 10 periods between a known alternative with a certain
payoff of 0 and an uncertain alternative, which pays off 1 with
probability ¢ and —1 with probability 1 — ¢. The decision maker
does not know ¢ but has a correct prior about ¢: ¢ is a random
variable drawn from a uniform distribution between zero and 1.

Figure 2 shows how the probability of choosing the uncertain
alternative changes over time if the decision maker follows an
optimal policy in this one-armed bandit problem. The probability
of choosing the uncertain alternative is initially 1, reflecting the
value of exploring the uncertain alternative to obtain information
about its expected value. The probability of choosing the uncertain
alternative then quickly falls below 50%, as more and more deci-
sion makers believe that it is not useful to continue to explore the
uncertain alternative. In the 10th period only 35.5% of all decision
makers choose the uncertain alternative. This also implies that
most decision makers underestimate the uncertain alternative at the
end of the 10th period. In this case, 7, the expected value of the
uncertain alternative at the end of the 10th period, given the past
outcomes experienced by the decision maker, is negative for
64.7% of all decision makers, is equal to zero for 1.6%, and is
positive for 33.8% (based on 100,000 simulations).

Although it may seem peculiar that the optimal policy should
have these implications, it is more intuitive once one considers the
“costs” of correcting errors of under- and overestimation. Suppose
the uncertain alternative is mistakenly classified as inferior to the
certain alternative, an error of underestimation. Because new in-
formation about the uncertain alternative can only be gained if the
uncertain alternative is sampled, and the uncertain alternative is
believed to be inferior, sampling the uncertain alternative is costly

¢ Note that the Gittins (1979) index does not apply to this bandit problem
because it is a finite-horizon bandit problem.

7 To show this, note that it is possible that a decision maker will abandon
the uncertain alternative after the first period if the payoff is sufficiently
negative, X; < —c,. If so, the decision maker will continue to believe that
the uncertain alternative has a negative expected value. The probability that
i, is positive is thus P(X; > —c; N X; + X, > 0), which is less than .5.
The same argument can be applied to any period.
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Figure 2. The probability of choosing the uncertain alternative over time, based on 100,000 simulations of the
optimal policy in a 10-period one-armed bandit problem in which the uncertain arm has a Bernoulli distribution

and the prior has a uniform distribution.

in the sense that it is believed to generate an immediate payoff
lower than that of the certain alternative. If the uncertain alterna-
tive is mistakenly classified as superior to the certain alternative,
however, sampling the uncertain alternative is not costly because
it is believed to generate a higher immediate payoff. Thus, it is
more costly to correct errors of underestimation than errors of
overestimation, and even an optimal policy has a tendency to
produce more errors of underestimation than overestimation.

Calculating the optimal policy is very difficult, and experiments
on bandit problems show that participants do not follow an optimal
policy (Gans et al., 2004; Meyer & Shi, 1995). The value of the
above analysis of the consequences of following an optimal policy
is that it illustrates a different rationale for risk-averse behavior.
The analysis shows why even a risk-neutral decision maker would
prefer a policy that results in a tendency to choose a certain
alternative instead of an uncertain alternative with identical ex-
pected value.

Information About Foregone Payoffs Increases Risk Taking

The results so far illustrate that even a risk-neutral decision
maker may learn to prefer a certain alternative to an uncertain
alternative with identical expected value. These results suggest
that apparent risk-averse behavior should not necessarily be
attributed to nonlinear value functions but could also be due to
adaptive sampling. In reality, decisions may be influenced both
by properties of the value function and adaptive sampling. A
decision maker may be both loss averse and sample adaptively,
which makes the impact of each difficult to identify. Neverthe-
less, it is possible to detect the influence of adaptive sampling
by examining the effect of information about foregone payoffs.
Adaptive sampling may reduce the tendency to choose an
uncertain alternative instead of a sure thing only when infor-
mation about foregone payoffs is not available. If information

about foregone payoffs is available, a decision maker who
follows an adaptive sampling rule should thus be more likely to
choose an uncertain alternative in a repeated choice between an
uncertain alternative and a sure thing. This holds even if the
value function of the decision maker is nonlinear.

This effect of information about foregone payoffs on risk
taking can be demonstrated formally under quite general as-
sumptions about the value function of the decision maker.
Consider a decision maker who repeatedly chooses between a
certain alternative and an uncertain alternative with an arbitrary
(continuous or discrete) distribution. Regarding the value func-
tion, it could be assumed that the value of an outcome of X is
determined according to a concave value or utility function.
Alternatively, the decision maker may evaluate gains and losses
differently. For example, it could be assumed that the value of
a gain of x > 0 is v(x) = x, whereas the value of a loss of —x <
01is v(—x) = —Ax, where A > 1 (Kahneman & Tversky, 1979).
Introducing loss aversion or a concave utility function does not
change the basic setup because these assumptions only imply
that one arbitrary probability distribution, of the outcomes, X, is
transformed into another, of the values or utilities, v(X). The
estimate is formed according to the assumptions outlined under
the Generalization heading in the section titled “Adaptive Sam-
pling is Sufficient to Generate Risk-Averse Behavior,” but the
estimate is based on the experienced value or utility, u(x), rather
than the outcome, x. The probability of choosing the uncertain
alternative in period ¢ depends on its estimated value at the
beginning of period ¢. Regarding the choice rule, I only assume
that P(v,) = P(v,) whenever v, > v,, with strict inequality for
at least some values, v, and v,, and P(v) > 0 for all v.

Two different information conditions are contrasted. In the first,
information is only available about the payoff generated by the
chosen alternative. This implies that the decision maker only
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updates the estimate of the value of the uncertain alternative in
periods in which it is chosen. Let E(C,) denote the expected
(asymptotic) probability of choosing the uncertain alternative in
this information condition. In the second information condition,
information is available in every period about the payoffs gener-
ated by both alternatives. This implies that the decision maker
updates the estimate of the value of the uncertain alternative in
every period. Let E(Cy,,) denote the expected (asymptotic) prob-
ability of choosing the uncertain alternative in this information
condition.

As shown in Appendix B, the expected (asymptotic) probability
of choosing the uncertain alternative is higher in the second
information condition, in which information is available about
foregone payoffs: E(C,, ;) > E(C,). This prediction is consistent
with findings from recent experiments (see Erev & Barron, 2005,
and Yechiam & Busemeyer, 2006, for reviews and discussion). For
example, in an experiment by Haruvy and Erev (2001, see also
Erev & Barron, 2005) participants repeatedly chose, in 200 trials,
between a certain alternative that paid off 10 and an uncertain
alternative that paid off 21 or 1 with equal probability. The
probability of choosing the uncertain alternative in the last 100
trials was .59 if no information was available about foregone
payoffs and .68 if information about foregone payoffs was avail-
able (Erev & Barron, 2005, Table 1). A similar but much smaller
effect occurred if all payoffs were multiplied by —1.

Yechiam and Busemeyer (2006) showed that information about
foregone payoffs can have an even more dramatic effect. In their
experiment, participants repeatedly chose, in 400 trials, between
two uncertain alternatives with different risk levels. The first paid
—2 with probability .995 and —8 with probability .005, whereas
the second paid —1 with probability .995 and —300 with proba-
bility .005. Although the expected values of the two alternatives
are similar (—2.03 vs. —2.50), the variance of the second is
substantially higher. Half of the participants were only informed
about the outcome for the chosen alternative, whereas the rest were
also informed in every second period about the outcome of the
other alternative. The average proportion choosing the risky alter-
native in the last 50 periods was 70% if information about fore-
gone payoffs was available but only 45% otherwise. Similar results
were found in an experiment on repeated choices between four
uncertain alternatives (the lowa Gambling task; Yechiam & Buse-
meyer, 2005) and in an experiment on repeated choices between
100 alternatives (Grosskopf, Erev, & Yechiam, 2006).

When Can Adaptive Sampling Generate Risk-Seeking
Behavior?

Adaptive sampling does not always generate apparent risk-
averse behavior, in the sense that E(C,,) < .5. The above models
show that apparent risk-averse behavior can emerge when the
distribution of the uncertain alternative is symmetric. If the distri-
bution of the uncertain alternative is not symmetric, the first of the
mechanisms mentioned in the introduction—the bias in estimates
generated by rare events—also matters and can lead to apparent
risk-seeking behavior.

Consider a decision between a certain alternative with a
payoff of 9 and an uncertain alternative that pays 10 with
probability .9 and zero otherwise. The uncertain alternative has
a negatively skewed distribution (the median is above the

mean), and it usually generates a payoff higher than the payoff
of the certain alternative. Because its payoff is usually higher,
the uncertain alternative may seem superior to the certain
alternative if only small samples of the outcomes of each
alternative are available. Such a bias in estimates can lead to
apparent risk-seeking behavior (Hertwig et al., 2004; Weber et
al.,, 2004). For example, in the experiment by Weber et al.
(2004), participants were asked to sample each of the above
alternatives for as many times as they wanted to and then make
a decision (thus, sampling was exogenous). Most participants
chose the uncertain alternative (76%).

Suppose that sampling instead is adaptive and information is only
available about the chosen alternative. The uncertain alternative may
then initially seem superior, but continued sampling of the uncertain
alternative will reveal that it sometimes generates a payoft of zero,
and this will reduce the probability of choosing the uncertain alterna-
tive. But it does not follow that the probability of choosing the
uncertain alternative will eventually fall below 50%. In fact, in an
experiment by Barron and Erev (2003), in which participants could
choose between the two alternatives described in the above paragraph
in 400 periods and information was only provided about the payoff of
the chosen alternative, 56% of all participants chose the uncertain
alternative (averaged over all periods).

A simple model can illustrate when such risk-seeking behavior
persists under adaptive sampling. Consider a decision maker re-
peatedly choosing between a certain alternative with payoff k and
an unknown and uncertain alternative that pays k / r with proba-
bility » and zero otherwise. Suppose the estimate of the uncertain
alternative is X, = (1 — b)X,_, + bx, if it is chosen in period ¢ and
X, = X,_, otherwise. Moreover, suppose that the alternative with the
highest estimated value at the beginning of period ¢ is chosen in
period r with probability 1 — ¢, and the other alternative is chosen
with probability ¢ < .5. Thus, ¢ is the probability of exploring the
seemingly inferior alternative.

Let Z be the random variable to which the estimate of the uncertain
alternative converge if it is sampled infinitely often and sampling is
exogenous. The probability of choosing the uncertain alternative, if
sampling is adaptive, converges to (see Appendix A):

B q(1 — q)
E(Cy,) = l—qg—PZ>hk(1 -2 @

This probability is increasing in P(Z > k), the probability of
overestimating the uncertain alternative if sampling is exogenous.
If » = .5 and the uncertain alternative most often generates a
payoff lower than k, then P(Z > k) = .5, which implies that
E(Cy;,) < .5, and the model predicts risk-averse behavior. But if
r>.5 and P(Z > k) and g are sufficiently large, E(C,, ) can be
larger than .5, and the model predicts risk-seeking behavior. For
example, if k = 9 and r = .9 (the case described above) and b (the
weight of the most recent observation) is .5, then P(Z > k) is
approximately .7235 (based on 50,000 simulations of 5,000 peri-
ods), and E(Cy, ) is higher than .5 whenever .28 < g < .5 and is
at a maximum of 52.8% when g = .38. E(C,, ) will be higher if
r, and thus also P(Z > k), is higher.

This model illustrates that persistent risk-seeking behavior (as
t — ) under adaptive sampling requires (a) that the distribution of
the uncertain alternative is negatively skewed (i.e., r > .5), which
implies P(Z > k) > .5, and (b) that decision makers are quite likely
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to choose the uncertain alternative even after an unfavorable recent
outcome (i.e., g is high but less than .5, which implies random
choice). These implications of the model are consistent with find-
ings from experiments in which participants have to choose re-
peatedly between a certain and an uncertain alternative without
knowing the payoff distribution of the uncertain alternative. When
risk-seeking behavior occurred in these experiments, (a) the dis-
tribution of the uncertain alternative was negatively skewed and
(b) although the probability of choosing the uncertain alternative
declined after an unfavorable outcome, it still remained at a rela-
tively high level (Erev & Barron, 2005).

The model also illustrates that adaptive sampling can lead to
risk-seeking behavior in the domain of gains and not only in the
domain of losses, in contrast to the simulation results of March
(1996), which showed that risk-seeking behavior only occurs in the
domain of losses. In the above models, however, the domain of the
payoffs does not influence the results. Consider a choice between
a certain alternative with a payoff of —1 and an uncertain alter-
native that pays off zero with probability .9 and —10 otherwise.
Adding 10 to each outcome, we get the decision problem intro-
duced in the beginning of this section. For any choice rule that only
depends on the difference in the estimates of the uncertain alter-
native and the certain, such as the logit choice rule and the choice
rule that chooses the alternative with the highest estimated value
with probability 1 — ¢, the two decision problems are identical.
March (1996) could not generate risk-seeking behavior in the
domain of gains because of the choice rule he assumed. He
assumed that the probability of choosing the uncertain alternative
was %,/(X,, + X,.), where X,, is the estimate of the uncertain
alternative and £, the estimate of the certain. As discussed in the
appendix to March (1996), this choice rule implies that if the
uncertain alternative pays 10 with probability .9 and zero other-
wise and the certain alternative pays 9, the probability of choosing
the uncertain alternative can never be above 10/ (9 + 10) = 0.53,
whereas the lower limit is zero.

Overall, the model introduced in this section suggests that
whether learning from experience can lead to risk-seeking be-
havior in a repeated choice between a sure thing and an un-
known uncertain alternative depends on whether the uncertain
alternative has a negative skew and does not depend on the
domain of the payoffs. This conclusion is consistent with recent
experiments on decision from experience, which have found
risk-seeking behavior both in the domain of gains and losses but
mainly when the distribution of the uncertain alternative was
negatively skewed (Barron & Erev, 2003; Erev & Barron,
2005).

Although the model introduced in this section shows that a
negatively skewed uncertain alternative can lead to risk-seeking
behavior, the model also implies that whether such risk-seeking
behavior occurs depends on the choice rule. Risk-seeking be-
havior will not emerge in the model introduced in this section
if ¢ is low. More generally, the effect of a negative skew
depends on how sensitive the choice rule is to recent outcomes.
The model introduced in this section, in which the alternative
with the highest estimate is chosen with probability 1 — g,
implies that decision makers are more risk seeking when choos-
ing between a sure thing and a negatively skewed uncertain
alternative, consistent with experiments on decisions from ex-
perience (Barron & Erev, 2003). However, simulations show

that if the choice rule is the logit, P,., = 1/(1 + ¢ %%), and § is
large, decision makers can be more risk seeking when choosing
between a sure thing and a positively skewed uncertain alter-
native. Such a preference for positively skewed uncertain alter-
natives is consistent with experiments with animals (Shafir,
Bechar, & Weber, 2003) and with experiments in which par-
ticipants do not have to learn but are told about the distributions
of the alternatives between which they can choose (Weber et al.,
2004). It is thus possible that the different results from exper-
iments on skewness preferences could be explained, in part, by
differences in sensitivity to recent outcomes.

The Empirical Significance of Adaptive Sampling

How important is adaptive sampling in explaining risk-taking
behavior? Clearly, it is only a piece of the puzzle. Properties of the
value function, such as loss aversion, have an important impact on
decisions between uncertain alternatives, even in decisions from
experience (Erev & Barron, 2005). But recent experiments have
shown that adaptive sampling is also important in modeling risk-
taking behavior in decisions from experience. Based on a review of
several experiments, Erev and Barron (2005) concluded that de-
scriptive models of risk taking in decisions from experience need
to take into account the effect of adaptive sampling (what they call
the “stickiness effect”). Models that ignore adaptive sampling
exaggerate the probability that decision makers will choose alter-
natives with high expected values and high variability. As dis-
cussed in the section on the effect of information about foregone
payoffs, adaptive sampling also explains the tendency for infor-
mation about foregone payoffs to increase risk taking. Yechiam
and Busemeyer (2006) also showed that a simple learning model,
similar to the illustrative model introduced in the second section,
predicts well this effect of foregone information. Finally, adaptive
sampling implies that the probability of choosing a sure thing,
instead of an uncertain alternative with identical expected value,
should increase with experience, as observed in recent experiments
(Barron & Erev, 2003, Experiment 3b; Munichor, Erev, & Lotem,
2006).

Although these results show that adaptive sampling does influence
risk taking in predictable ways, one should not exaggerate its impor-
tance. First, adaptive sampling only matters when decision makers
can learn only from personal experience. Whether sampling is adap-
tive or not does not influence risk taking when decision makers can
observe foregone payoffs or obtain information about outcome dis-
tributions from others. Second, the magnitude of the effect depends on
the sampling rule of the decision maker. A large effect requires
limited experimentation with seemingly inferior alternatives: In the
logit choice model, S has to be large or rise quickly. Experimental
studies show that limited experimentation is more likely if the time
horizon (N) is short or the discount rate is high (Banks, Olson, &
Porter, 1997, p. 68). If the horizon (N) is long or the discount rate low,
extensive experimentation can be motivated and the effect of adaptive
sampling will be small. Third, the magnitude of the effect also
depends on the assumptions made about how decision makers form an
estimate about the value of the uncertain alternative. The bias will be
smaller if the estimate of the value of the uncertain alternative
changes, even if the uncertain alternative is not sampled (Yechiam &
Busemeyer, 2005).
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Mechanisms outside the scope of the present models also influence
risk taking and will moderate the effect of adaptive sampling. Two of
the most important are changing risk attitudes and the gambler’s
fallacy. Suppose decision makers take more risks if their status quo is
below a reference point (Kahneman & Tversky, 1979). A decision
maker who has chosen the uncertain alternative several times with
poor results might then become more risk prone. To have a chance of
obtaining a satisfactory total payoff, he or she might continue to
choose the uncertain alternative rather than avoid it. This would
reduce the bias against the uncertain alternative and could possibly
even reverse it. A gambler’s fallacy would also reduce the bias against
the uncertain alternative. If decision makers believe that good out-
comes follow poor outcomes, decision makers will be less likely to
avoid alternatives with poor recent outcomes. The tendency for more
variable outcomes to produce more random choices (the payoft vari-
ability effect) will also reduce the tendency to avoid alternatives with
poor past outcomes.

Finally, the present analysis is limited to choices between a sure
thing and an uncertain alternative. Suppose decision makers can
choose between several uncertain alternatives. Simulations show
that a decision maker may still end up favoring the alternative with
the lowest variance in a repeated choice between several normally
distributed uncertain alternatives with identical expected values. A
formal treatment of this problem is more difficult, especially an
analysis of the implications of following an optimal policy in a
multiarm bandit problem.®

Despite these limitations, the present results illustrate how the
adaptive tendency to reduce the probability of sampling alterna-
tives with poor past outcomes is sufficient to generate apparent
risk-averse behavior. Even a normatively appropriate policy for
managing the trade-off between exploration and exploitation in
sequential choice under uncertainty can lead to apparent risk-
averse behavior.

8 Sarin and Vahid (1999), however, examine the consequences of one
particular learning model.
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Appendix A

The Asymptotic Probability of Choosing the Uncertain Alternative

The asymptotic density of the estimate for the illustrative model
is (Denrell, 2005, p. 975)

(I + e ™M)
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f (1 + e ™)f)dy

y=—o

where f(y) is the normal density, with mean zero and variance v* =
ba? /| (2 — b), to which the estimate would converge if the
uncertain alternative was sampled (exogenously) infinitely often.
Thus,
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When E(X) = m # 0, the same reasoning gives Equation 2.

If the alternative with the highest estimate is chosen with
probability 1 — ¢, similar reasoning implies that the ex-
pected asymptotic probability of choosing the uncertain alter-
native is

y=—=% y=0
LIS I | ¥ ot =1 1 o .,
- 2 »?
R B e IN T
e .
1
=T 1 ~2-q9. (A
-0.5+ 0.5
q l—g¢q

If the uncertain alternative pays off k / r with probability r and zero
otherwise and the choice rule is to choose the alternative with the
highest estimate with probability 1 — ¢, then (as t — )
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where g(+) is the density of random variable that the estimate of the
uncertain alternative would converge to if the decision maker
could sample (exogenously) this alternative infinitely often.

Appendix B

The Effect of Adaptive Sampling and Information About Foregone Payoffs

The asymptotic density of the estimate (assuming a continuous
density of the outcome) is

1
oy 80
hy) = % (1B)
j ) g(v)dy

(Denrell, 2005, p. 975), where g(+) is the density of the random
variable, Z, to which the estimate of the value (or utility) of the
uncertain alternative would converge if it was sampled (exog-

enously) infinitely often. The expected probability that the uncer-
tain alternative is chosen is

1
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where the index denotes that the expectation is with respect to the
density g(+) (for a similar derivation of the expected choice prob-
ability, see Niv et al., 2002). Thus, E(C,) equals

1 1
Eg(P(Y))Eg<—> + cng<P(Y), W)

P(Y)
1
B\ p)
1
COVK<P(Y), W)
=EPM) + - (B

Because 1 / P(Y) is a decreasing function of Y and P(Y) an
increasing, Cov,[P(Y), 1 / P(Y)] < 0 (Ross, 2000, p. 626). Because
E(Cy,) = E(P(Y)), E(Cy, ) > E(Cy) (a similar proof holds when
the distribution of the outcome of the uncertain alternative is
discrete). To show that E(C,) < .5, if f(*) is symmetric around
zero, note that then g(-) is also symmetric around zero (a distribu-
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tion is symmetric around zero if and only if its characteristic
function is real valued, and the characteristic function of Z is real
valued if the characteristic function of X is real valued). The
assumption of P(—y) = 1 — P(y) and the variable substitution ¢ =
—y gives
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