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CS61A Midterm 1 Review (v1.0)

Basic Info

Your login:
Your section number:
Your TA’s name:
Your signature:

Midterm 1 is going to be held on Wednesday 6-830p, at 1 Pimentel. There is going to be a group question after the
individual exam.

What will Scheme print?

What will the Scheme interpreter print in response to each of the following expressions?

1. (butfirst ’(help!))

2. (+ 27 ’(word 1 0))

3. (and 127 ((lambda (y) #f)))

4. (cond (first ’(1 2 3)) (else ’foo))

5. (* (+ 5))

6. (if (23) (23) (23))

7. ((let ()
(lambda () 2)))

8. (every (lambda (x) (word (first x) ’- x))
’(waiting for my rocket to come))

9. ((lambda (x) (* 2 (x x))) (lambda (y) (* 4 (y y))))
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Efficiency, Applicative/Normal Order, Invariants

1. Here are some definitions:

(define (square x) (* x x))
(define (foo x y) x)
(define (bar x y) (* x y y)) ;; treat as one call to *

(a) How many times is * called when we evaluate (foo (square (* 1 1)) (square (* 1 1))) in normal
order?

in applicative order?

(b) How many times is * called when we evaluate (bar (square (* 1 1)) (square (* 1 1)))

in normal order?

in applicative order?

2. Given a function FOO:

(define (foo n)
(if (< n 2)

1
(+ (baz (- n 1))

(baz (- n 2))))))

For each of the following definitions of BAZ, state the order of growth of FO0.

(a) (define baz fib)

(b) (define (baz n) (+ n (- n 1)))

(c) (define baz foo)

(d) (define baz factorial)

3. The function below, truncate, takes a sentence and cuts it off at the first occurrence of the word ”end”. If that
word never appears, it returns the whole sentence.

(define (truncate sent)
(define (helper part1 part2)

(cond (( empty? part2) part1)
((eq? (first part2) ’end) part1)
(else (helper (se part1 (first part2 )) (bf part2 )))))

(helper ’() sent))

What is the most useful invariant of the helper function helper?
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Recursion

1. Write a procedure interleave, which takes two sentences as arguments and returns a sentence containing the
first sentence, then the first element of the second sentence, then the second of the first sentence, then the
second of the second sentence, etc. etc.

> (interleave ’(dont so to away) ’(be quick walk))
(dont be so quick to walk away)

> (interleave ’(i feel) ’(cant the way i did before ))
(i cant feel the way i did before)

2. Write a function running-total, that takes in non- empty sentence of numbers and returns another sentence of
the running totals. In other words, the first number in the resulting sentence should be the first number of
the argument sentence; the second number in the resulting sentence should be the sum of the first and second
numbers in the argument sentence, and so on.

> (running -total ’(1 2 3 4))
(1 3 6 10)
> (running -total ’(-5 0 -22 18 55))
(-5 -5 -27 -9 46)
> (running -total ’(3))
(3)
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Higher Order Functions/Lambdas

1. Write a procedure named constant-fn? that takes two arguments: a function of one argument and a sentence
of numbers. It should return #t if the value returned by the function is always the same for all numbers in the
argument sentence.

> (constant -fn? sqrt ’(2 3 4 5 6))
#f
> (constant -fn? (lambda (x) 4) ’(5 3 88 2 100 7 8 9))
#t
> (constant -fn? (lambda (a) (< a 10)) ’(22 23 24 25 26 27))
#t
> (constant -fn? (lambda (a) (< a 10)) ’(5 7 9 11))
#f

2. Define a procedure called make-keeper that takes a unary (one-argument) predicate function as an argument
and returns a procedure that, when invoked on a sentence argument, will keep only those elements that satisfy
the predicate.

> ((make -keeper even?) ’(1 2 3 4 5 6))
(2 4 6)

You may assume that the input to make-keeper will always be a unary function and that the input to the
returned procedure will always be a sentence. Use HOF, not recursion


