
Spring 2006 1

CS61A Midterm 2 Review (v1.1)

Basic Info

Your login:
Your section number:
Your TA’s name:

Midterm 2 is going to be held on Tuesday 7-9p, at 1 Pimentel.

What will Scheme print?

What will the Scheme interpreter print in response to each of the following expressions? If the return value is a pair,
then draw the corresponding box and pointer diagram.

1. ((caddr ’(1 + * 2)) 3 4)

2. (list? (cons 1 (cons 2 (cons nil nil))))

3. (list (list (list (cons 1 nil))))

4. (list ’one (cons ’foo (list ’())))

5. (filter number? ’(1 (a 2) ((b) 3) c 4 d))

6. (cddadr ’(a (((b)) c d e f) g))

7. (map (lambda (x) (cons ’foo x)) ’(1 (2) (3)))

Spring 2006 2

Lists

1. Write a procedure, (flatten ls) that takes in a deep list and flattens all the elements into a flat list. For
example,
(flatten ’(1 (2 (3 4 ((5 6) 7) 8) 9) 10)) ==> (1 2 3 4 5 6 7 8 9 10)

2. Write a predicate procedure deep-car? that takes a symbol and a deep-list (possibly including sublists to any
depth) as its arguments. It should return true if and only if the symbol is the car of the list or of some list
thats an element, or an element of an element, etc.

> (deep -car? \’a \ (a b c))
#t
> (deep -car? \ a \’(b (c a) a d))
#f
> (deep -car? \ a \’((x y) (z (a b) c) d))
#t

Fill in the blanks to complete the definition.

(define (deep -car? symbol lst)
(if (pair? lst)

(or (eq? symbol)
(helper symbol))

)

(define (helper symbol lsts)
(cond ((null? lsts))

((deep -car? symbol (car lsts))
)

(else)))

Spring 2006 3

Trees

1. Write a procedure, (tree-member? x tree) that takes in an element and a general tree, and returns #t if x
is part of tree, and #f otherwise.

2. Write double-datum?, which takes a tree as its argument, and returns true if there exists a node anywhere in
the tree that has the same datum as one of its children (immediate children), otherwise false.

Spring 2006 4

Scheme-1

Here is code for scheme-1

(define (eval -1 exp)
(cond ((constant? exp) exp)

((symbol? exp) (eval exp))
((quote -exp? exp) (cadr exp))
((if-exp? exp)

(if (eval -1 (cadr exp))
(eval -1 (caddr exp))
(eval -1 (cadddr exp))))

((lambda -exp? exp) exp)
((pair? exp)

(apply -1 (eval -1 (car exp))
(map eval -1 (cdr exp))))

(else (error "bad expr: " exp))))

(define (apply -1 proc args)
(cond ((procedure? proc)

(apply proc args))
((lambda -exp? proc)

(eval -1 (substitute (caddr proc) ; the body

(cadr proc) ; the formal parameters

args ; the actual arguments

()))) ; bound -vars

(else (error "bad proc: " proc))))

1. Suppose we moved the moved the cond clause beginning with pair? (the one that handles function calls) to
the beginning of the cond, making it the first clause:

(define (eval -1 exp)
(cond ((pair? exp) ...)

((constant? exp) ...)
((symbol? exp) ...)
...
(else (error ...))))

With the above changes, show what Scheme-1 would print given the following inputs. If the result is an error,
just write error.

Scheme-1: 3

Scheme-1: +

Scheme-1: (if #t 1 2)

Scheme-1: ((lambda (x) (* x x)) 3)

Scheme-1: (+ 3 4)

Scheme-1: (lambda (x) (* x x))

Spring 2006 5

2. Suppose we changed it so that we no longer called substitute inside of apply-1:

(define (apply -1 proc args)
(cond ((procedure? proc)

(apply proc args))
((lambda -exp? proc)

(eval -1 (caddr proc))) ; evaluate the body without using substitute

(else (error "bad proc: " proc))))

With the above changes, show what Scheme-1 would print given the following inputs. If the result is an error,
just write error.

Scheme-1: ((lambda (x) (* x x)) 3)

Scheme-1: ((lambda (x) (+ 2 3)) 2)

Scheme-1: (+ 3 4)

Scheme-1: (lambda (x) (* x x))

Scheme-1: (lambda (x) (+ 3 4))

Scheme-1: ((lambda (cons) (cons 1 2)) +)

Spring 2006 6

Data Directed Programming and Message Passing

1. Instead of attaching one tag to an ob ject, suppose we wanted to attach multiple tags. After all, a tomato is
not only a food, its also a projectile! So well rename attach-tag to attach-tags (taking a list of tags as its
first argument), and rename type-tag to type-tags. Here is the original version of operate:

(define (operate op obj)
(let ((proc (get (type -tag obj) op)))

(if proc
(proc (contents obj))
(error "No such operator for this type "))))

Rewrite operate so that it looks for each of an objects type tags in the table, using the first one for which a
procedure is found for this operator.

2. Below are definitions of m-car and m-cdr (the m here stands for message-passing).
(define (m-car pair) (pair ’car))
(define (m-cdr pair) (pair ’cdr))

(a) Write a definition of m-cons that behaves just like regular cons when used in conjunction with m-car and
m-cdr.

(b) If you type list1 at the STk prompt, what would it print out?
(define list1 (m-cons 1 (m-cons 2 (m-cons 3 ’()))))

(c) We would like to be able to convert a message-passing list into an ordinary Scheme list. Write the
function m-list-to-regular-list that takes a message-passing list (hmm, I havent yet defined what a
message-passing list is; how should it be defined?) and returns a regular list of the same elements.

