Let p be an offspring distribution for a branching process such that $p(0)>0$ and $\mu \geq 1$. Let φ be the generating function for p. Let X_{n} denote the number of individuals in the nth generation and assume $X_{0}=1$.
(a) If $\mu=1$ and $\sigma^{2}<\infty$, then there exist c_{1}, c_{2} such that for $n \geq 1, c_{1} / n \leq P\left\{X_{n} \neq 0\right\} \leq c_{2} / n$.

Let $b_{n}=1-a_{n}=P\left\{X_{n} \neq 0\right\}$, so $b_{n+1}=1-\varphi\left(1-b_{n}\right)$.
We have $a_{1}=\varphi(0)>0, \varphi(1)=1$, and $\varphi^{\prime}(1)=\mu=1$. Because $\mu=1$, we have $p(0)<1$, so $b_{1}=1-\varphi(0)>0$. Also, because $p(0)>0$ and $\mu=1$, we must have $p(k)>0$ for some $k \geq 2$, so $\varphi^{\prime \prime}(t)>0$ for $t>0$.
Since $\sigma^{2}<\infty, \varphi^{\prime \prime}$ is continuous on the compact interval [$\left.a_{1}, 1\right]$, and we may pick $0<r_{1}<r_{2}$ such that

$$
r_{1}<\varphi^{\prime \prime}(t)<r_{2} \text { for } t \in\left[a_{1}, 1\right]
$$

Because $b_{n} \rightarrow 0$, we may pick $N>2$ such that $b_{n}<1 / r_{2}<1 / r_{1}$ for $n \geq N$. Now we may pick c_{2} such that $N / r_{1}>c_{2}>N b_{N}$ and $c_{2}>2 / r_{1}$. Pick c_{1} less than both b_{N} / N and $1 / r_{2}$.
We prove $c_{1} / n<b_{n}<c_{2} / n$ for $n \geq N$. The case $n=N$ is true by assumption.
By Taylor's Theorem, for some $t \in\left[a_{n}, 1\right] \subset\left[a_{1}, 1\right]$,

$$
b_{n+1}=1-\varphi\left(1-b_{n}\right)=1-\left(\varphi(1)-\varphi^{\prime}(1) b_{n}+\varphi^{\prime \prime}(t) \frac{b_{n}^{2}}{2}\right)=b_{n}-\frac{\varphi^{\prime \prime}(t)}{2} b_{n}^{2}
$$

Now the function $f_{1}(t)=t-r_{1} t^{2} / 2$ is increasing for $t \in\left[0,1 / r_{1}\right] \supset\left[0, c_{2} / N\right]$. It follows that

$$
b_{n+1}<f_{1}\left(b_{n}\right)<f\left(c_{2} / n\right)=\frac{c_{2}}{n}\left(1-\frac{r_{1}}{2} \frac{c_{2}}{n}\right)<\frac{c_{2}}{n}\left(1-\frac{1}{n}\right)=c_{2} \frac{n-1}{n^{2}}<\frac{c_{2}}{n+1} .
$$

Similarly, $f_{2}(t)=t-r_{2} t^{2} / 2$ is increasing for $t \in\left[0,1 / r_{2}\right] \supset\left[0, b_{n}\right]$, so

$$
b_{n+1}>f_{2}\left(b_{n}\right)>f_{2}\left(c_{1} / n\right)=\frac{c_{1}}{n}\left(1-\frac{r_{2}}{2} \frac{c_{1}}{n}\right)>\frac{c_{1}}{n}\left(1-\frac{1}{2 n}\right)=c_{1} \frac{2 n-1}{2 n^{2}}>\frac{c_{1}}{n+1} .
$$

Since $c_{1} / n<b_{n}<c_{2} / n$ for $n \geq N$, letting $C_{2}=\max \left(c_{2}, \max _{n=1}^{N} n b_{n}\right), C_{1}=\min \left(c_{1}, \min _{n=1}^{N} n b_{n}\right)$, shows $C_{1} / n \leq b_{n} \leq C_{2} / n$ for all $n \geq 1$.
(b) If $\mu>1$ and $a<1$ is the extinction probability, then $\varphi^{\prime}(a)<1$.

$$
1-a=1-\varphi(a)=\int_{a}^{1} \varphi^{\prime}(t) d t>\int_{a}^{1} \varphi^{\prime}(a) d t=(1-a) \varphi^{\prime}(a)
$$

because $\varphi^{\prime}(t)$ is (strictly) increasing, and it follows $\varphi^{\prime}(a)<1$.
(c) If $\mu>1$, there exist $c, b>0$ such that for all $n>1, P\left(\right.$ extinction $\left.\mid X_{n} \neq 0\right) \leq c e^{-b n}$.

$$
\begin{aligned}
P(\text { extinction }) & =P\left(\text { extinction } \mid X_{n}=0\right) P\left(X_{n}=0\right)+P\left(\text { extinction } \mid X_{n} \neq 0\right) P\left(X_{n} \neq 0\right) \\
a & =a_{n}+P\left(\text { extinction } \mid X_{n} \neq 0\right)\left(1-a_{n}\right)
\end{aligned}
$$

Let $\delta_{n}=a-a_{n}$. By Taylor's Theorem, for some $t \in\left[a_{n}, a\right]$,

$$
\begin{gathered}
a_{n+1}=\varphi\left(a_{n}\right)=\varphi\left(a-\delta_{n}\right)=\varphi(a)-\varphi^{\prime}(a) \delta_{n}+\varphi^{\prime \prime}(t) \delta_{n}^{2} / 2 \\
\delta_{n+1}=a-a_{n+1}=\varphi(a)-a_{n+1}=\varphi^{\prime}(a) \delta_{n}-\varphi^{\prime \prime}(t) \delta_{n}^{2} / 2 \leq \varphi^{\prime}(a) \delta_{n}
\end{gathered}
$$

It follows $\delta_{n} \leq \varphi^{\prime}(a)^{n} \delta_{0}=\varphi^{\prime}(a)^{n} a$. Since also $1-a_{n} \geq 1-a$,

$$
P\left(\text { extinction } \mid X_{n} \neq 0\right)=\frac{a-a_{n}}{1-a_{n}} \leq \varphi^{\prime}(a)^{n} \frac{a}{1-a}=c e^{-b n}
$$

with $b=-\log \varphi^{\prime}(a)>0, c=a /(1-a)$.

