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Selecting two different defective coins q

Mingnan Qi a,b,*, Sanyang Liu a

a Department of Mathematics Science, Xidian University, Xian, Shaanxi 710071, PR China
b Department of Mathematics, Linyi Teachers College, Linyi, Shandong 276005, PR China
Abstract

In this paper, given a balance scale and the information that there are exactly two different defective coins present, the
authors consider the problem of ascertaining the minimum number of testing which suffice to determine the two different
defective coins in a set of k coins in same appearance, and here k P 3. A testing algorithm for all the possible values of k is
constructed, and the testing algorithm needs at most one testing step more than the optimal testing algorithm.
� 2006 Published by Elsevier Inc.
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1. Introduction

Group testing is a problem of optimization and it has strong practical background, it also belong to
dynamic programming. Today, group testing has been widely applied in industry application such as printed
circuit board test [1], image compression [2], pattern recognition [3], screen sizing [4], etc. A common phenom-
enon in group testing theory is that while it is often straightforward to find an optimal testing algorithm for m

defective coins, it is immensely more difficult to search the optimal testing algorithm for m defective coins.
Cairns in [5] and Tos̆ić in [6], studied the group testing problem of identifying two uniform defective coins,
and proposed a testing algorithm respectively. But neither of them related to the group testing problem of
identifying or selecting two different defective coins. Hwang only studied the basic model of identifying two
different defective coins and proposed a testing algorithm in [3], while leaving the group testing problem of
the other models of identifying two different defective coins open. In this paper, the authors studied the group
testing problem of identifying two different defective coins in a set of k coins. A testing (weighing) algorithm
for all the possible values of k would be constructed, and here k P 3, k 2 N. Let Ik

DCð2ÞðpÞ denote the minimum
number of testing of identifying two different defective coins and Sk

DCð2ÞðpÞ denote the minimum number of
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testing of selecting two different defective coins in a set of k coins with a balance scale, and p denote a random
testing algorithm, DC(2) denote the group testing model of identifying and selecting two different defective
coins in a set of k coins øøjøe1; øe2; øe1e2; e1e2je1ø; e2ø; e1e2ø; e2e1. We will prove: for random k P 2,

k 2 N, a testing algorithm p is existed, and inequality log3

P 2
k

2!

l m
6 Sk

DCð2ÞðpÞ 6 log3

P 2
k

2!

l m
þ 1 holds, here dze

denotes the smallest integer not less than the number z, symbol P m
k denotes the permutation number of select-

ing m different elements out of k different elements. This inequality indicates that the testing algorithm of
selecting two different defective coins p need at most one testing step more than the optimal testing algorithm
of model DC(2).

2. Some symbols, definitions and lemmas

The symbol, definitions and lemmas used in the paper will be introduced as follows. Symbol and terminol-
ogy can be refereed in monograph [9] except that presented by this paper.

Let X(h,k � h) be a set consisting of k coins, and H is the subset of the set X, H 5 ;, the set H contains
h 6 k defective coins, and the other k � h coins are standard. The symbol, definitions and lemmas used in
the paper will be introduced as follows. Symbol and terminology can be refereed in monograph [9] except that
presented by this paper.

Definition 2.1 [6]. Let X(h,k � h) be a set consisting of k coins and H is the subset of the set X, H 5 ;. Each
element in set H is called a defective coin. A is a set consisting of n-dimensional order group (A1,A2, . . . ,An),
Ai 2 P(H), i = 1,2, . . . ,n, Ai \ Aj = ;, i 5 j, i, j = 1,2, . . . ,n, where P(H) denotes the power set of H. If
F = {F1,F2, . . . ,Fm} is a partition of set A, then the partition F is called the model of identifying the defective
coins with n set parallel devices, model for short. We refer to m as the resolution number of the partition F.
Each of the Fj (j = 1,2, . . . ,m) is called a feedback. The model F is symbolized with F1jF2j� � �jFm for short.

Definition 2.2 [6]. Let F = {F1,F2, . . . ,Fm} be a partition of the set A. If each feedback Fj (j = 1,2, . . . ,m) con-
tains only one n-dimensional order group, then feedback Fj (j = 1,2, . . . ,m) is usually called basic and the
model F = {F1,F2, . . . ,Fm} is known as basic model.

For example, if there are two set parallel devices for the set X(2,k � 2), its subset H = {e1,e2}, then the
model øøjøe1jøe2jøe1e2je1øje1e2je2øje2e1je1e2ø is a basic model.
Definition 2.3 [7]. Let X(h,k � h) be the set consisting of k coins and H is the subset of set X, H 5 ;. Each
element in set H is called a defective coin. When the defective coins in the set H are distinguishable, the set
P = {(x1,x2, . . . ,xh) jxi 2 X(h,k � h), i = 1,2, . . . ,h} is call the original solution space of the set X(h,k � h),
where (x1,x2, . . . ,xh) is an h-dimensional order group. When the defective coins in the set H are not
distinguishable, the set P = {(x1,x2, . . . ,xh) jxi 2 X(h,k � h),i = 1,2, . . . ,h} is call the original solution space of
the set X(h,k � h), where (x1,x2, . . . ,xh) is an h-dimensional unorder group.

Definition 2.4 [6]. Suppose that the cardinality of the original solution space of the set X(h,k � h) is s, and the
resolution number of model F is m. This dlogm se is usually referred as the information-theoretic lower bound
of model F. Here dze denotes the smallest integer not less than the number z.

Lemma 2.5 [8]. Suppose that the cardinality of the original solution space of the set X(h,k � h) is s, and the res-

olution number of the model F is m, let p denote a testing algorithm of identifying all the h defective coins among k
coins, and Ik

F ðpÞ denote the maximum number of testing under testing algorithm p, then Ik
F ðpÞP dlogmse.

We can get following corollary directly by Lemma 2.5.

Corollary 2.6. Suppose that the cardinality of the original solution space of the set X(h,k � h) is s, and the

resolution number of the model F is m, let p denote a testing algorithm of selecting all the h defective coins among k
coins, and Sk

F ðpÞ denote the maximum number of testing under testing algorithm p, then Sk
F ðpÞP logm

s
h!

� �
, here

h! = 1 Æ 2 Æ � � � h, h 2 N.
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Lemma 2.7 [8]. The information-theoretic lower bound of model F :øøjøe1je1ø is accessible. Namely if dlogm se is

the information-theoretic lower bound of the model, when 3i�1 < k 6 3i, i 2 N, then there is a group testing pro-

cedure p to identify all the h defective coins among k coins, such that Ik
F ðpÞ ¼ dlogmse ¼ log3kd e ¼ i.

The model øøjøe1; øe2; øe1e2; e1e2je1ø; e2ø; e1e2ø; e2e1 can be symbolized by DC(2) for short. The three
testing feedbacks of model DC(2) can be symbolized by F1, F2, F3 respectively.

Lemma 2.8. For the model DC(2), then for a selection testing algorithm p existed, S3
DCð2ÞðpÞP log3

3
2

� �� �
þ 1 ¼ 2

holds.

Lemma 2.9. For the model DC(2), a selection testing algorithm p is existed such that Sk
DCð2ÞðpÞ ¼ dlog3

k
2

� �
e, and

testing algorithm p is optimal, here k 2 [4,6] \ N.

The conclusions of Lemmas 2.8 and 2.9 are true apparently, and the proof is omitted.

Lemma 2.10. For the model DC(2), then there is a selection testing algorithm p such that S7
DCð2ÞðpÞP

log3
7
2

� �� �
þ 1 ¼ 4.

Proof. Apparently, log3
7
2

� �� �
¼ 3. The testing algorithm p can be constructed according to the following

schemes: let (A,B) be the disjoint subset of the set X(2,5), the first step is (A,B), here jAj = jBj = 1.

Case 1: If F(A,B) = øø, then e1,e2 2 R, R = X � A � B. Because jRj = 5, by Lemma 2.9, three additional
steps are needed to select out e1, e2.
Case 2: If F(A,B) = F2, then the second step is (C,D), here C,D � X � A � B, C \ D = ;, jCj = jDj = 1.
Case 2.1: If F(C,D) = F1, then the third step is (E,F), here E,F � X � A � B � C � D, E \ F = ;,
jEj = jFj = 1.
Case 2.1.1: If F(E,F) = F1, then the forth step is (A,R), here R = X � A � B � C � D � E � F, jRj = 1.
Case 2.1.1.1: Apparently, the case of F(A,R) = F1 is not existed.
Case 2.1.1.2: If F(A,R) = F2, then e1,e2 2 B [ R. Because jB [ Rj = 2, e1, e2 can be selected.
Case 2.1.1.3: If F(A,R) = F3, then e1 2 A, e2 2 B. Because jAj = jBj = 1, e1, e2 can be selected.
Case 2.1.2: If F(E,F) = F2, then e1,e2 2 B [ F. Because jB [ Fj = 2, e1, e2 can be selected.
Case 2.1.3: If F(E,F) = F3, then the case is quite similar to the case of F(E,F) = F2.
Case 2.2: If F(C,D) = F2, then e1,e2 2 B [ D. Because jB [ Dj = 2, e1, e2 can be selected.
Case 2.3: If F(C,D) = F3, then the case is quite similar to the case of F(C,D) = F2.
Case 3: If F(A,B) = F3, then the case is quite similar to the case of F(A,B) = F2.

So four steps at most are needed to select out e1, e2, the conclusion is proved. h

Lemma 2.11. For the model DC(2), a selection testing algorithm p is existed such that Sk
DCð2ÞðpÞ ¼ log3

k
2

� �� �
¼ 4,

and testing algorithm p is optimal, here k 2 [8,10] \ N.

Proof. Apparently, log3
k
2

� �� �
¼ 4, here k 2 [8, 10] \ N. The testing algorithm p can be constructed according

to the following schemes: let (A,B) be the disjoint subset of the set X(2,k � 2), the first step is (A,B), here
jAj ¼ jBj ¼ k

3

� �
, k 2 [8,10] \ N, and bzc denotes the greatest integer 6z.

Case 1: If F(A,B) = F1, then e1,e2 2 R, R = X � A � B. Because 3 6 jRj 6 4, by Lemmas 2.8 and 2.9, two
additional steps at most are needed to select out e1, e2.
Case 2: If F(A,B) = F2, then the second step is (A,C), here C � X � A � B, jCj ¼ k

3

� �
.

Case 2.1: If F(A,C) = F1, then e1,e2 2 B [ R, R = X � A � B � C. Because 3 6 jB [ Rj 6 4, by Lemmas
2.8 and 2.9, two additional steps at most are needed to select out e1, e2.
Case 2.2: If F(A,C) = F2, then e1 2 B, e2 2 C or e2 2 B, e1 2 C. Because jBj = jCj = 3, by Lemma 2.7, two
additional steps are needed to select out e1, e2.
Case 2.3: If F(A,C) = F3, then the case is quite similar to the case of F(C,D) = F2.
Case 3: If F(A,B) = F3, then the case is quite similar to the case of F(A,B) = F2.
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So four steps at most are needed to select out e1, e2. By Corollary 2.6, Sk
DCð2ÞðpÞP log3

P 2
k

2!

l m
¼ log3

k
2

� �� �
¼ 4,

here k 2 [8,10] \ N. So testing algorithm p is the optimal testing algorithm, the conclusion is proved. h

Lemma 2.12. For the model DC(2), then for a selection testing algorithm p existed, Sk
DCð2ÞðpÞP log3

k
2

� �� �
þ 1 ¼

5, here k 2 [11,13] \ N.

Proof. Apparently, log3
k
2

� �� �
¼ 4, here k 2 [11,13] \ N.

I. When k = 11, the testing algorithm p can be constructed according to the following schemes: let (A,B) be
the disjoint subset of the set X(2,9), the first step is (A,B), here jAj = jBj = 3.

Case 1: If F(A,B) = F1, then e1,e2 2 R, R = X � A � B. Because jRj = 5, by Lemma 2.9, three additional
steps are needed to select out e1, e2.
Case 2: If F(A,B) = F2, then the second step is (A,C), here C � X � A � B, jCj = 3.
Case 2.1: If F(A,C) = F1, then e1,e2 2 B [ R. Because jB [ Rj = 5, by Lemma 2.9, three additional steps
are needed to select out e1, e2.
Case 2.2: If F(A,C) = F2, then e1 2 B, e2 2 C or e2 2 B, e1 2 C. Because jBj = jCj = 3, by Lemma 2.7,
two additional steps are needed to select out e1, e2.
Case 2.3: If F(A,C) = F3, then e1 2 A, e2 2 B. Because jAj = jBj = 3, by Lemma 2.7, two additional steps
are needed to select out e1, e2.
Case 3: If F(A,B) = F3, then the case is quite similar to the case of F(A,B) = F2.
So five steps at most are needed to select out e1, e2, the conclusion holds.

II. When k = 12,13, the testing algorithm p can be constructed according to the following schemes: let
(A,B) be the disjoint subset of the set X(2,k � 2), the first step is (A,B), here jAj = jBj = 3, k = 12,13.

Case 1: If F(A,B) = F1, then e1,e2 2 R, R = X � A � B. Because 6 6 jRj 6 7, by Lemmas 2.9 and 2.10,
we can select out e1, e2 using four additional steps at most.
Case 2: If F(A,B) = F2, then the second step is (C,D), here C,D � X � A � B, C \ D = ;, jCj = jDj = 3.
Case 2.1: If F(C,D) = F1, then the third step is (A,C).
Case 2.1.1: If F(A,C) = F1, then e1,e2 2 B [ R, R = X � A � B � C � D. Because 3 6 jB [ Rj 6 4, by
Lemmas 2.8 and 2.9, two additional steps are needed to select out e1, e2.
Case 2.1.2: Apparently, the case of F(A,C) = F2 is not existed.
Case 2.1.3: If F(A,C) = F3, then e1 2 A, e2 2 B. Because jAj = jBj = 3, by Lemma 2.7, two additional
steps are needed to select out e1, e2.
Case 2.2: If F(C,D) = F2, then e1 2 B, e2 2 D or e2 2 B, e1 2 D. Because jBj = jDj = 3, by Lemma 2.7,
two additional steps are needed to select out e1, e2.
Case 2.3: If F(C,D) = F3, then the case is quite similar to the case of F(C,D) = F2.
Case 3: If F(A,B) = F3, then the case is quite similar to the case of F(A,B) = F2.

So five steps at most are needed to select out e1, e2, the conclusion is proved. h

Lemma 2.13. For the model DC(2), then for a selection testing algorithm p existed, Sk
DCð2ÞðpÞP log3

k
2

� �� �
¼ 5,

and testing algorithm p is optimal, here k 2 [14,16] \ N.

Proof. Apparently, log3
k
2

� �� �
¼ 5, here k 2 [14,16] \ N.

I. When k = 14, the testing algorithm p can be constructed according to the following schemes: let (A,B) be
the disjoint subset of the set X(2,12), the first step is (A,B), here jAj = jBj = 3.

Case 1: If F(A,B) = F1, then e1,e2 2 R, R = X � A � B. Because jRj = 8, by Lemma 2.11, four additional
steps are needed to select out e1, e2.
Case 2: If F(A,B) = F2, then the second step is (C,D), here C,D � X � A � B, C \ D = ;, jCj = jDj = 3.
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Case 2.1: If F(C,D) = F1, then e1,e2 2 B [ R. Because jB [ Rj = 5, by Lemma 2.9, three additional steps
are needed to select out e1, e2.
Case 2.2: If F(C,D) = F2, then e1 2 B, e2 2 D or e2 2 B, e1 2 D. Because jBj = jDj = 3, by Lemma 2.7,
two additional steps are needed to select out e1, e2.
Case 2.3: If F(C,D) = F3, then the case is quite similar to the case of F(C,D) = F2.
Case 3: If F(A,B) = F3, then the case is quite similar to the case of F(A,B) = F2.
So five steps at most are needed to select out e1, e2.

II. When k = 15,16, the testing algorithm p can be constructed according to the following schemes: let
(A,B) be the disjoint subset of the set X(2,k � 2), the first step is (A,B), here jAj = jBj = 3, k = 15,16.

Case 1: If F(A,B) = F1, then e1,e2 2 R, R = X � A � B. Because 9 6 jRj 6 10, by Lemma 2.11, four
additional steps are needed to select out e1, e2.
Case 2: If F(A,B) = F2, then the second step is (C,D), here C,D � X � A � B, C \ D = ;, jCj = jDj = 3.
Case 2.1: If F(C,D) = F1, then the third step is (A,R [ C1), here C1 � C, R = X � A � B � C � D,
jR [ C1j = 3.
Case 2.1.1: If F(A,R [ C1) = F1, then e1,e2 2 B. Because jBj = 3, by Lemma 2.8, two additional steps are
needed to select out e1, e2.
Case 2.1.2: If F(A,R [ C1) = F2, then e1 2 B, e2 2 R [ C1 or e2 2 B, e1 2 R [ C1. Because jBj =
jR [ C1j = 3, by Lemma 2.7, two additional steps are needed to select out e1, e2.
Case 2.1.3: If F(A,R [ C1) = F3, then e1 2 A, e2 2 B. Because jAj = jBj = 3, by Lemma 2.7, two addi-
tional steps are needed to select out e1, e2.
Case 2.2: If F(C,D) = F2, then e1 2 B, e2 2 D or e2 2 B, e1 2 D. Because jBj = jDj = 3, by Lemma 2.7,
two additional steps are needed to select out e1, e2.
Case 2.3: If F(C,D) = F3, then the case is quite similar to the case of F(C,D) = F2.
Case 3: If F(A,B) = F3, then the case is quite similar to the case of F(A,B) = F2.
So five steps at most are needed to select out e1, e2. By Corollary 2.6, Sk
DCð2ÞðpÞP log3

P 2
k

2!

l m
¼ log3

k
2

� �� �
¼ 5,

here k 2 [14, 16] \ N. So testing algorithm p is the optimal testing algorithm, the conclusion is proved. h
Lemma 2.14. For the model DC(2), then for a selection testing algorithm p existed, Sk
DCð2ÞðpÞP log3

k
2

� �� �
þ

1 ¼ 6, here k 2 [17,22] \ N.

Proof. Apparently, log3
k
2

� �� �
¼ 5, here k 2 [17, 22] \ N. The testing algorithm p can be constructed according

to the following schemes: let (A,B) be the disjoint subset of the set X(2,k � 2), the first step is (A,B), here
jAj ¼ jBj ¼ k

3

� �
, k 2 [17,22] \ N.

Case 1: If F(A,B) = F1, then e1,e2 2 R, R = X � A � B. Because 6 6 jRj 6 8, by Lemmas 2.9, 2.10 and 2.11,
four additional steps at most are needed to select out e1, e2.
Case 2: If F(A,B) = F2, then the second step is (A,C), here C � X � A � B, jCj ¼ k

3

� �
.

Case 2.1: If F(A,C) = F1, then e1,e2 2 B [ R, here R = X � A � B � C. Because 6 6 jB [ Rj 6 8, by Lem-
mas 2.9, 2.10 and 2.11, four additional steps at most are needed to select out e1, e2.
Case 2.2: If F(A,C) = F2, then e1 2 B, e2 2 C or e2 2 B, e1 2 C. Because jBj ¼ jCj ¼ k

3

� �
6 8, by Lemma 2.7,

four additional steps at most are needed to select out e1, e2.
Case 2.3: If F(A,C) = F3, then e1 2 A, e2 2 B. Because jAj ¼ jBj ¼ k

3

� �
6 8, by Lemma 2.7, four additional

steps at most are needed to select out e1, e2.
Case 3: If F(A,B) = F3, then the case is quite similar to the case of F(A,B) = F2.

So six steps are at most needed to select out e1, e2, the conclusion is proved. h

Lemma 2.15. For the model DC(2), then for a selection testing algorithm p existed, Sk
DCð2ÞðpÞP log3

k
2

� �� �
¼ 6,

here k 2 [23,28] \ N, and testing algorithm p is optimal.
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Proof. Apparently, log3
k
2

� �� �
¼ 6, here k 2 [23,28] \ N. The testing algorithm p can be constructed according

to the following schemes: let (A,B) be the disjoint subset of the set X(2,k � 2), the first step is (A,B), here
jAj ¼ jBj ¼ k

3

� �
, k 2 [23, 28] \ N.

Case 1: If F(A,B) = F1, then e1,e2 2 R, R = X � A � B. Because 8 6 jRj 6 10, by Lemma 2.11, four addi-
tional steps are needed to select out e1, e2.
Case 2: If F(A,B) = F2, then the second step is (A,C), here C � X � A � B, jCj ¼ k

3

� �
.

Case 2.1: If F(A,C) = F1, then e1,e2 2 B [ R, here R = X � A � B � C. Because 8 6 jRj 6 10, by Lemma
2.11, four additional steps are needed to select out e1, e2.
Case 2.2: If F(A,C) = F2, then e1 2 B, e2 2 C or e2 2 B, e1 2 C. Because jBj ¼ jCj ¼ k

3

� �
6 9, by Lemma 2.7,

four additional steps at most are needed to select out e1, e2.
Case 2.3: If F(A,C) = F3, then e1 2 A, e2 2 B. Because jAj ¼ jBj ¼ k

3

� �
6 9, by Lemma 2.7, four additional

steps at most are needed to select out e1, e2.
Case 3: If F(A,B) = F3, then the case is quite similar to the case of F(A,B) = F2.

So six steps at most are needed to select out e1, e2. By Corollary 2.6, Sk
DCð2ÞðpÞP log3

P 2
k

2!

l m
¼ log3

k
2

� �� �
¼ 5,

here k 2 [23,28] \ N. So testing algorithm p is the optimal testing algorithm, the conclusion is proved. h
3. A testing algorithm of selecting two different defective coins

Next for model DC(2), a group testing algorithm of selecting two different defective coins will be
constructed.

Theorem 3.1. For the model DC(2), a selection testing algorithm p is existed, and Sk
DCð2ÞðpÞ ¼ log3

k
2

� �� �
¼

2k þ 2, here k 2 [m + 1,3k+1 + 1] \ N, k 2 N, log3
m
2

� �� �
þ 1 ¼ 2k þ 2, log3

mþ1
2

� �� �
¼ 2k þ 2, k, m 2 N, and

testing algorithm p is optimal.

Proof. Because k
2

� �
6

3kþ1þ1
2

� 	
< 32kþ2, then log3

k
2

� �� �
6 2k þ 2. While log3

k
2

� �� �
P 2k þ 2, so equality

log3
k
2

� �� �
¼ 2k þ 2 holds. Here k 2 [m + 1,3k+1 + 1] \ N, log3

mþ1
2

� �� �
¼ 2k þ 2, log3

m
2

� �� �
þ 1 ¼ 2k þ 2,

k,m 2 N.
Next we use mathematical induction to prove: for random natural number k, a testing algorithm p exists

absolutely, and in the testing algorithm p, 2k + 2 steps at most are needed to select out e1, e2.
For k = 1, by Lemma 2.11, the conclusion holds. And the testing algorithm p is the testing algorithm in

Lemma 2.11. Suppose for k = l, the conclusion is true and that corresponding algorithms are constructed.
Then for k = l + 1, the testing algorithm p can be constructed according to the following schemes: let (A,B) be
the disjoint subset of the set X(2,k � 2), here jAj ¼ jBj ¼ bk3c, k 2 [m + 1,3k+2 + 1] \ N, log3

mþ1
2

� �� �
¼ 2k þ 2,

log3
m
2

� �� �
þ 1 ¼ 2k þ 2, k,m 2 N. The first step is (A,B).

Case 1: If F(A,B) = F1, then e1,e2 2 R, here R = X � A � B. Because jRj 6 3l+1 + 1, by the inductive
assumption, 2l + 2 additional steps at most are needed to select out e1, e2.
Case 2: If F(A,B) = F2, then the second step is (A,C), here C � X � A � B, jCj ¼ k

3

� �
.

Case 2.1: If F(A,C) = F1, then e1,e2 2 B [ R, here R = X � A � B � C. Because jB [ Rj 6 3l+1 + 1, by the
inductive assumption, 2l + 2 additional steps at most are needed to select out e1, e2.
Case 2.2: If F(A,C) = F2, then e1 2 B, e2 2 C or e2 2 B, e1 2 C. Because jBj ¼ jCj ¼ k

3

� �
6 3lþ1, by Lemma

2.7, 2l + 2 additional steps at most are needed to select out e1, e2.
Case 2.3: If F(A,C) = F3, then e1 2 A, e2 2 B. Because jAj = jBj 6 3l+1, by Lemma 2.7, 2l + 2 additional
steps at most are needed to select out e1, e2.
Case 3: If F(A,B) = F3, then the case is quite similar to the case of F(A,B) = F2.

For k = l + 1, 2l + 4 steps at most are needed to select out e1, e2, here k 2 [m + 1,3k+2 + 1] \ N, k 2 N. By
induction principle, for random natural number k, 2k + 2 at most steps are needed to select out e1, e2, here
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k 2 [m + 1,3k+2 + 1] \ N, k 2 N. By Corollary 2.6, Sk
DCð2ÞðpÞP log3

P 2
k

2!

l m
¼ log3

k
2

� �� �
¼ 2k þ 2, here k 2

[m + 1,3k+2 + 1] \ N, k 2 N. So testing algorithm p is the optimal testing algorithm, the theorem is proved. h

Theorem 3.2. For the model DC(2), then for a selection testing algorithm p existed, Sk
DCð2ÞðpÞ ¼ log3

k
2

� �� �
6

2k þ 3, here k 2 [3k+1 + 2,5 Æ 3k + 1] \ N, k 2 N.

Proof. Because k
2

� �
6

5�3kþ1
2

� 	
< 32kþ3, then log3

k
2

� �� �
6 2k þ 3, here k 2 [3k+1 + 2,5 Æ 3k + 1] \ N, k 2 N. If we

can prove the conclusion: for k 2 [3k+1 + 2,5 Æ 3k + 1] \ N, k 2 N, a selection testing algorithm p is existed, and
the algorithm needs 2k + 3 steps at most to select out two different defective coins e1, e2, then the conclusion of
the lemma can be proved. Next we use mathematical induction to prove.

For k = 1, by Lemmas 2.12 and 2.13, the conclusion holds. And the testing algorithm p is the testing
algorithm in Lemmas 2.12 and 2.13. Suppose for k = l, the conclusion is true, and that corresponding
algorithms are constructed, then for k = l + 1:

I. When k 2 [3l+2,4 Æ 3l+1 � 1] \ N, k 2 N, the testing algorithm p can be constructed according to the fol-
lowing schemes: let (A,B) be the disjoint subset of the set X(2,k � 2), here jAj = jBj = 3l+1. The first step
is (A,B).

Case 1: If F(A,B) = F1, then the second step is (C,R [ A1), here C � X � A � B, A1 � A, R =
X � A � B � C, jCj = jR [ A1j = 3l+1.
Case 1.1: Apparently, the case of F(C,R [ A1) = F1 is not existed.
Case 1.2: If F(C,R [ A1) = F2, then the third step is (C,B).
Case 1.2.1: If F(C,B) = F1, then e1,e2 2 R [ A1. Because jR [ A1j = 3l+1, by Theorem 3.1, 2l + 2 addi-
tional steps are needed to select out e1, e2.
Case 1.2.2: Apparently, the case of F(C,B) = F2 is not existed.
Case 1.2.3: If F(C,B) = F3, then e1 2 C, e2 2 R [ A1. Because jCj = jR [ A1j = 3l+1, by Lemma 2.7,
2l + 2 additional steps are needed to select out e1, e2.
Case 1.3: If F(C,R [ A1) = F3, then the case is quite similar to the case of F(C,R [ A1) = F2.
Case 2: If F(A,B) = F2, then the second step is (C,R [ A1), here C � X � A � B, A1 � A, jCj =
jR [ A1j = 3l+1.
Case 2.1: If F(C,R [ A1) = F1, then the case is quite similar to the case of F(A,B) = F1 and
F(C,R [ A1) = F2.
Case 2.2: If F(C,R [ A1) = F2, then e1 2 B, e2 2 R [ A1 or e2 2 B, e1 2 R [ A1. Because jBj =
jR [ A1j = 3l+1, by Lemma 2.7, 2l + 2 additional steps are needed to select out e1, e2.
Case 2.3: If F(C,R [ A1) = F3, then the case is quite similar to the case of F(C,R [ A1) = F2.
Case 3: If F(A,B) = F3, then the case is quite similar to the case of F(A,B) = F2.
So for k = l + 1, 2l + 5 steps are needed to select out e1, e2.

II. When k 2 [4 Æ 3l+1,5 Æ 3l+1 � 1] \ N, k 2 N, the testing algorithm p can be constructed according to the
following schemes: let (A,B) be the disjoint subset of the set X(2,k � 2), here jAj = jBj = 3l+1. The first
step is (A,B).

Case 1: If F(A,B) = F1, then the second step is (C,D), here C,D � X � A � B, C \ D = ;,
jCj = jDj = 3l+1.
Case 1.1: If F(C,D) = F1, then e1,e2 2 R, R = X � A � B � C � D. Because jRj 6 3l+1, by Theorem 3.1,
2l + 2 additional steps at most are needed to select out e1, e2.
Case 1.2: If F(C,D) = F2, then the third step is (C,R [ A1), here C � X � A � B, A1 � A, R =
X � A � B � C � D, jCj = jR [ A1j = 3l+1.
Case 1.2.1: If F(C,R [ A1) = F1, then e1,e2 2 D. Because jDj = 3l+1, by Theorem 3.1, 2l + 2 additional
steps are needed to select out e1, e2.
Case 1.2.2: If F(C,R [ A1) = F2, then e1 2 D, e2 2 R [ A1 or e2 2 D, e1 2 R [ A1. Because jDj =
jR [ A1j = 3l+1, by Lemma 2.7, 2l + 2 additional steps at most are needed to select out e1, e2.



566 M. Qi, S. Liu / Applied Mathematics and Computation 180 (2006) 559–568
Case 1.2.3: If F(C,R [ A1) = F3, then e1 2 C, e2 2 D. Because jCj = jDj = 3l+1, by Lemma 2.7, 2l + 2
additional steps are needed to select out e1, e2.
Case 1.3: If F(C,D) = F3, then the case is quite similar to the case of F(C,D) = F2.
Case 2: If F(A,B) = F2, then the second step is (C,D), here C,D � X � A � B, C \ D = ;, jCj =
jDj = 3l+1.
Case 2.1: If F(C,D) = F1, then the case is quite similar to the case of F(A,B) = F1 and F(C,D) = F2.
Case 2.2: If F(C,D) = F2, then e1 2 B, e2 2 D or e2 2 B, e1 2 D. Because jBj = jDj = 3l+1, by Lemma 2.7,
2l + 2 additional steps at most are needed to select out e1, e2.
Case 2.3: If F(C,D) = F3, then the case is quite similar to the case of F(C,D) = F2.
Case 3: If F(A,B) = F3, then the case is quite similar to the case of F(A,B) = F2.
So for k = l + 1, 2l + 5 steps at most are needed to select out e1, e2.

III. When k 2 [5 Æ 3l+1,5 Æ 3l+1 + 1] \ N, k 2 N, the testing algorithm p can be constructed according to the
following schemes: let (A,B) be the disjoint subset of the set X(2,k � 2), here jAj = jBj = 3l+1. The first
step is (A,B).

Case 1: If F(A,B) = F1, then the second step is (C,D), here C,D � X � A � B, C \ D = ;, jCj =
jDj = 3l+1.
Case 1.1: If F(C,D) = F1, then e1,e2 2 R, R = X � A � B � C � D. Because jRj 6 3l+1 + 1, by Theorem
3.1, 2l + 2 additional steps at most are needed to select out e1, e2.
Case 1.2: If F(C,D) = F2, then the third step is (C,E), here E � X � A � B � C � D, jEj = 3l+1.
Case 1.2.1: If F(C,E) = F1, then e1,e2 2 D. Because jDj = 3l+1, by Theorem 3.1, 2l + 2 additional steps
are needed to select out e1, e2.
Case 1.2.2: If F(C,E) = F2, then e1 2 D, e2 2 E or e2 2 D, e1 2 E. Because jDj = jEj = 3l+1, by Lemma
2.7, 2l + 2 additional steps at most are needed to select out e1, e2.
Case 1.2.3: If F(C,E) = F3, then e1 2 C, e2 2 D. Because jCj = jDj = 3l+1, by Lemma 2.7, 2l + 2 addi-
tional steps are needed to select out e1, e2.
Case 1.3: If F(C,D) = F3, then the case is quite similar to the case of F(C,D) = F2.
Case 2: If F(A,B) = F2, then the second step is (C,D), here C,D � X � A � B, C \ D = ;,
jCj = jDj = 3l+1.
Case 2.1: If F(C,D) = F1, then the case is quite similar to the case of F(A,B) = F1 and F(C,D) = F2.
Case 2.2: If F(C,D) = F2, then e1 2 B, e2 2 D or e2 2 B, e1 2 D. Because jBj = jDj = 3l+1, by Lemma 2.7,
2l + 2 additional steps are needed to select out e1, e2.
Case 2.3: If F(C,D) = F3, then the case is quite similar to the case of F(C,D) = F2.
Case 3: If F(A,B) = F3, then the case is quite similar to the case of F(A,B) = F2.
So for k = l + 1, 2l + 5 steps at most are needed to select out e1, e2. By induction principle, for random
natural number k, 2k + 3 steps at most are needed to select out e1, e2, here k 2 [3k+1 + 2,5 Æ 3k + 1] \ N,k 2 N.
The conclusion is proved. h
Corollary 3.3. For the model DC(2), in the selection testing algorithm p of Theorem 3.2, Sk
DCð2ÞðpÞ ¼ log3

k
2

� �� �
¼

2k þ 3, k 2 [m + 1,5 Æ 3k + 1] \ N, k 2 N, log3
m
2

� �� �
þ 1 ¼ 2k þ 3, log3

mþ1
2

� �� �
¼ 2k þ 3, k,m 2 N, here

k 2 [m,5 Æ 3k + 1] \ N, k 2 N, and the testing algorithm p is optimal.
Proof. By Theorem 3.2, Sk
DCð2ÞðpÞ ¼ log3

k
2

� �� �
6 2k þ 3. And log3

k
2

� �� �
P log3

mþ1
2

� �� �
¼ 2k þ 3, so

log3
m
2

� �� �
¼ 2k þ 3. By Corollary 2.6, log3

P 2
k

2!

l m
¼ log3

k
2

� �� �
¼ 2k þ 3 steps at least are needed to select out

e1, e2, here k 2 [m + 1,5 Æ 3k + 1] \ N, k 2 N, log3
m
2

� �� �
þ 1 ¼ 2k þ 3, log3

mþ1
2

� �� �
¼ 2k þ 3, k,m 2 N. So, the

testing algorithm p is the optimal testing algorithm. The corollary is proved. h

Theorem 3.4. For the model DC(2), a selection testing algorithm p is existed, and Sk
DCð2ÞðpÞ ¼ log3

k
2

� �� �
þ 1 ¼

2k þ 4, here k 2 [5 Æ 3k + 2,m] \ N, k 2 N, log3
m
2

� �� �
þ 1 ¼ 2k þ 4, log3

mþ1
2

� �� �
¼ 2k þ 4, k, m 2 N.
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Proof. Apparently, log3
k
2

� �� �
þ 1 ¼ 2k þ 4. If we can prove the conclusion: for k 2 [5 Æ 3k + 2,m] \ N, k 2 N, a

testing algorithm p is existed, and the algorithm needs 2k + 4 steps to select out two different defective coins e1,
e2, then the conclusion of the lemma can be proved. Because k 2 [5 Æ 3k + 2,m] \ N, log3

m
2

� �� �
þ 1 ¼ 2k þ 4,

log3
mþ1

2

� �� �
¼ 2k þ 4, k,m 2 N, apparently k < 3k+2 + 1, k 2 N. The testing algorithm p can be constructed

according to the following schemes: let (A,B) be the disjoint subset of the set X(2,k � 2), the first step is
(A,B), here jAj ¼ jBj ¼ big k

3

� �
, k 2 [5 Æ 3k + 2,m] \ N, k 2 N.

Case 1: If F(A,B) = F1, then e1,e2 2 R, R = X � A � B. Because jRj 6 3k+1 + 1, by Theorem 3.1, 2k + 2
additional steps at most are needed to select out e1, e2.
Case 2: If F(A,B) = F2, then the second step is (A,C), here C � X � A � B, jCj ¼ big k

3

� �
.

Case 2.1: If F(A,C) = F1, then e1,e2 2 B [ R, here R = X � A � B � C. Because jB [ Rj 6 3k+1 + 1, by
Theorem 3.1, 2k + 2 additional steps at most are needed to select out e1, e2.
Case 2.2: If F(A,C) = F2, then e1 2 B, e2 2 C or e2 2 B, e1 2 C. Because jBj ¼ jCj ¼ k

3
6 3kþ1, by Lemma 2.7,

2k + 2 additional steps at most are needed to select out e1, e2.
Case 2.3: If F(A,C) = F3, then e1 2 A, e2 2 B. Because jAj ¼ jBj ¼ big k

3
6 3kþ1

� �
, by Lemma 2.7, 2k + 2

additional steps at most are needed to select out e1, e2.
Case 3: If F(A,B) = F3, the case is quite similar to the case of F(A,B) = F2.

So 2k + 4 steps at most are needed to select out e1, e2, the theorem is proved. h

Algorithm 1. For the coin set X(2,k � 2) and model DC(2), an selection group testing algorithm o can be
described as follows.

(1) When k 2 [4, 6] \ N, the algorithm o is the selection group testing algorithm p in Lemma 2.9.
(2) When k 2 ([m + 1,3k+1 + 1] [ [m 0 + 1,5 Æ 3k + 1]) \ N, the algorithm o is the selection group testing algo-

rithm p in Theorem 3.1 and Corollary 3.3.
(3) When k 2 ([3k+1 + 2,m] [ [5 Æ 3k + 2,m 0]) \ N, the algorithm o is the selection group testing algorithm p

in Theorem 3.2 and Theorem 3.3.
Table 3.1
The relationship between sampling of k and test number of the optimal testing algorithm p

k Span of k Test number Span of k Test number
[4,4]0 2 [5,6]0 3
[m + 1,3k+1 + 1]0 2k + 2 [m0 + 1,5 Æ 3k + 1]0 2k + 3

1 [8,10]0 4 [14,16]0 5
2 [23,28]0 6 [39,46]0 7
3 [67,82]0 8 [116,136]0 9
4 [199,244]0 10 [345,406]0 11
5 [592,730]0 12 [1032,1216]0 13
6 [1787,2188]0 14 [3094,3646]0 15
..
. ..

. ..
. ..

. ..
.

[3,3]1 2 [7,7]1 4
[3k+1 + 2,m0]1 2k + 3 [5 Æ 3k + 2,m00]1 2k + 4

1 [11,13]1 5 [17,22]1 6
2 [29,38]1 7 [47,66]1 8
3 [83,115]1 9 [137,198]1 10
4 [245,344]1 11 [407,591]1 12
5 [731,1031]1 13 [1217,1786]1 14
6 [2189,3093]1 15 [3647,5357]1 16
..
. ..

. ..
. ..

. ..
.

Note: (1) [p,q]x denotes the set of all the integers k such that p 6 k 6 q; (2) [p,q]x means the testing interval which needs x steps at most
more than optimal testing algorithm.
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Here log3
m0þ1

3

� 	l m
¼ 2k þ 4, log3

m0

2

� 	l m
¼ 2k þ 3, log3

mþ1
2

� �� �
¼ 2k þ 3, log3

m
2

� �� �
¼ 2k þ 2, k,m,m 0 2 N.

Lemma 2.9 indicate that, when k 2 ([4,6] [ [m + 1,3k+1 + 1] [ [m 0 + 1,5 Æ 3k + 1]) \ N, Algorithm 1 also is
optimal. When k 2 ([3k+1 + 2,m] [ [5 Æ 3k + 2,m 0]) \ N, Algorithm 1 can differ from an optimal algorithm by
at most one.

Table 3.1 shows the relationship between sampling of k and test number in the optimal selection testing
algorithm p of model DC(2), here k denotes the cardinal number of a given set of coins including two different
defective coins.
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