Write \equiv_{k} for equivalence modulo p^{k}, where p is prime.
The claim is that $\binom{p a}{p b} \equiv_{2}\binom{a}{b}$ for $a, b \in \mathbb{Z}_{\geq 0}, 0 \leq b \leq a$.
It suffices to show that the coefficients of powers of x^{p} in $(1+x)^{p a}$ and $\left(1+x^{p}\right)^{a}$ are congruent modulo p^{2}.
Let $u=1+x^{p}$, and let $v=\frac{(1+x)^{p}-u}{p} \in \mathbb{Z}[x]$. Then

$$
(1+x)^{p a}-\left(1+x^{p}\right)^{a}=(u+p v)^{a}-u^{a} \equiv_{2} p a u^{a-1} v,
$$

and note that the result has no powers of x^{p}, since v only involves $x, x^{2}, \ldots, x^{p-1}$. To prove $\binom{p a}{p b} \equiv_{3}\binom{a}{b}$, we need to go one step further and consider the term

$$
\binom{a}{2} u^{a-2} p^{2} v^{2}=\binom{a}{2}\left(1+x^{p}\right)^{a-2}\left(\sum_{k=1}^{p-1}\binom{p}{k} x^{k}\right)^{2}
$$

The only power of x^{p} that will appear in v^{2} is x^{p}, so it suffices to prove that

$$
\sum_{k=1}^{p-1}\binom{p}{k}\binom{p}{p-k}=\binom{2 p}{p}-2 \equiv_{3} 0
$$

which is equivalent to showing that

$$
\binom{2 p}{p}=\frac{(2 p)(2 p-1) \ldots(p+2)(p+1)}{p(p-1) \ldots(2)(1)}=2 \frac{f(1)}{f(0)} \equiv_{3} 2,
$$

where $f(n)=\prod_{i=1}^{p-1}(p n+i)$. Thus it suffices to show that $f(1) \equiv_{3} f(0)$.

$$
f(1)=\prod_{i=1}^{p-1}(i+p)=f(0)+p \sum_{i=1}^{p-1} \frac{f(1)}{i+p}+p^{2} \sum_{i<j} \frac{f(1)}{(i+p)(j+p)}+\ldots
$$

We need to show that the second and third terms on the right hand side vanish modulo p^{3}. But note that

$$
\begin{aligned}
2 \sum_{i=1}^{p-1} \frac{1}{p+i} & =\sum_{i=1}^{p-1}\left(\frac{1}{p+i}+\frac{1}{2 p-i}\right) \\
& =\sum_{i=1}^{p-1} \frac{3 p}{(p+i)(2 p-i)} \\
& \equiv_{2} 3 p \sum_{i=1}^{p-1} \frac{1}{-i^{2}} \equiv_{2}-3 p \sum_{i^{-1}=1}^{p-1} i^{2} \\
& \equiv_{2}-3 p \frac{2(p-1) p(2 p-1)}{6} \equiv_{2} 0
\end{aligned}
$$

when $p>3$, and further,

$$
2 \sum_{i<j} \frac{1}{i j}=\left(\sum_{i} \frac{1}{i}\right)^{2}-\sum_{i} \frac{1}{i^{2}} \equiv_{1} 0 .
$$

