wu :: forums
« wu :: forums - Finite Genus »

Welcome, Guest. Please Login or Register.
Apr 20th, 2024, 2:13am

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   general
   complex analysis
(Moderators: Grimbal, SMQ, Icarus, towr, william wu, ThudnBlunder, Eigenray)
   Finite Genus
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: Finite Genus  (Read 3815 times)
Jason
Guest

Email

Finite Genus  
« on: Feb 2nd, 2004, 8:36pm »
Quote Quote Modify Modify Remove Remove

Hello people. Help me please to solve this problem.
 
Prove that finite genus implies finite order.
 
IP Logged
towr
wu::riddles Moderator
Uberpuzzler
*****



Some people are average, some are just mean.

   


Gender: male
Posts: 13730
Re: Finite Genus  
« Reply #1 on: Feb 3rd, 2004, 1:45am »
Quote Quote Modify Modify

any context? What sort of genus and order are we talking about?
IP Logged

Wikipedia, Google, Mathworld, Integer sequence DB
Jason
Guest

Email

Re: Finite Genus  
« Reply #2 on: Feb 3rd, 2004, 6:51pm »
Quote Quote Modify Modify Remove Remove

Entire function f is of finite order if there are numbers a,r>0 such that |f(z)|<=exp(|z|^a)
 
IP Logged
Icarus
wu::riddles Moderator
Uberpuzzler
*****



Boldly going where even angels fear to tread.

   


Gender: male
Posts: 4863
Re: Finite Genus  
« Reply #3 on: Feb 3rd, 2004, 7:21pm »
Quote Quote Modify Modify

Presumably, given the forum this post is in, he is talking about the order & genus of entire functions.
 
The order of an entire function f(z) is defined as limsupr[to][subinfty] ln(ln(sup|z|=r|f(z)|)) / ln(r).
 
The genus of an entire function is the smallest integer for which the series [sum]n |an|-1-h converges, where {an} is the sequence of zeros of the function (with each zero having as many entries as its multiplicity). An entire function f of finite genus may be expressed as an infinite product:
 
f(z) = eg(z)[prod](1-z/an)eq(z/a_n),
 
where g(z) is a polynomial of degree [le] h, and q(z) = z + z2/2 + ... + zh/h.
 
The definition of order for an entire function in my reference (Complex Analysis, Lars Ahlfors; Third Edition, 1979; page 207) comes right before the following theorem:
 
The genus h and order [lambda] of an entire function satisfy the double inequality h [le] [lambda] [le] h + 1.
 
With this theorem, the problem is fairly trivial!
 
Assuming that you must prove the result without assuming this theorem, it will be harder. The proof of the result in my reference took 3 pages of some messy looking approximations. However, the far weaker result you want may not be bad. All you need to show is that any such product expansion as shown above has finite order.
IP Logged

"Pi goes on and on and on ...
And e is just as cursed.
I wonder: Which is larger
When their digits are reversed? " - Anonymous
Icarus
wu::riddles Moderator
Uberpuzzler
*****



Boldly going where even angels fear to tread.

   


Gender: male
Posts: 4863
Re: Finite Genus  
« Reply #4 on: Feb 3rd, 2004, 7:27pm »
Quote Quote Modify Modify

I see that while I was researching my post Jason has filled in part of the definition. But the definition you gave is obviously incomplete, since there is no "r" in the formula.
 
Before attempting a proof, perhaps you should provide exactly the definitions you are using for both "finite genus" and "finite order". Otherwise we may start from the wrong place.
IP Logged

"Pi goes on and on and on ...
And e is just as cursed.
I wonder: Which is larger
When their digits are reversed? " - Anonymous
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board