wu :: forums
« wu :: forums - Sum of Powers »

Welcome, Guest. Please Login or Register.
Apr 30th, 2024, 7:27pm

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   medium
(Moderators: Eigenray, towr, william wu, SMQ, Grimbal, Icarus, ThudnBlunder)
   Sum of Powers
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: Sum of Powers  (Read 1173 times)
tony123
Junior Member
**





   


Posts: 61
Sum of Powers  
« on: Oct 5th, 2007, 2:54pm »
Quote Quote Modify Modify

Find the last decimal digit of the sum 1^1 + 2^2 + 3^3 + ... + 2001^2001
IP Logged
JP05
Guest

Email

Re: Sum of Powers  
« Reply #1 on: Oct 5th, 2007, 3:13pm »
Quote Quote Modify Modify Remove Remove

I found it = 1.
 
IP Logged
Grimbal
wu::riddles Moderator
Uberpuzzler
*****






   


Gender: male
Posts: 7527
Re: Sum of Powers  
« Reply #2 on: Oct 6th, 2007, 11:16am »
Quote Quote Modify Modify

That's right, "1^1 + 2^2 + 3^3 + ... + 2001^2001" ends with a 1.   Roll Eyes
IP Logged
ThudnBlunder
wu::riddles Moderator
Uberpuzzler
*****




The dewdrop slides into the shining Sea

   


Gender: male
Posts: 4489
Re: Sum of Powers  
« Reply #3 on: Oct 7th, 2007, 3:37pm »
Quote Quote Modify Modify

Prove it.
IP Logged

THE MEEK SHALL INHERIT THE EARTH.....................................................................er, if that's all right with the rest of you.
JP05
Guest

Email

Re: Sum of Powers  
« Reply #4 on: Oct 8th, 2007, 11:42am »
Quote Quote Modify Modify Remove Remove

After 19 pencils and 407 pieces of paper I get
 
 62445943596933665023923094895458744549218343603974464915942504299692  
   3348831437519734835371654302653472558338668437115725691746954537314  
   5379002192037595166993287598236056143375273383470303700734176610361  
   4329498901396153347349980083791659937183031970591773089520808137197  
   6387140705277647596680421306634688532697265122445978370182914765902  
   6716026018037027188892307343519279547843192812967092003947344769499  
   7655446199436888769146385788898614530372984508624072102970493419288  
   3919970258110681099165226318632651328021430147886584164142806348277  
   5675619591477594058212320824840051660670656073526645237615716083140  
   3622884811487202578948053214343714742562411139771165533912240526566  
   2810759654984635450713035462314329634937560127774413396086567813874  
   7078943330963293112054971521642765732278188161697702533401156041951  
   2132943780520332867892220427440014946203768784045703025759870554906  
   8730997341812597112663372682157620563613823265800657478189092784083  
   8902658968672690403552541350336470129056725620597549670908276206541  
   7068587501628939825138439023019987325228933762129472457029069742967  
   7323075235457453997698335437670452249075899675829250367632092573103  
   0824753018182201286807965984206118675066949091329663142338387319693  
   0077429282152085813316773479333481580377768115862247570021849094533  
   1765539332935696362126894458421338352187465957489123056438700490435  
   9857205666787963697787968899754416478847125450852246085377612411773  
   6957780124194105943264748439151047752332745314568888070235477051593  
   9365660121468671404418402746186802952916298266144066854154249970112  
   3653529697785843450051915147282490846251785672879851755175455347759  
   0140863811842947488196506559360953743636727991374549288910341518301  
   4163149003197575571831104906658958422909630822797095304606299534978  
   4001319498987576822828772904982596894191469730542761856852596287142  
   2887573064920981144402165317506194208100469652039975512829516769766  
   8350897765718563926141743092471936664744541630149389659272359051319  
   6749288596331103812064355461543768091083425915327518424749841061725  
   4115888105914114750485912589768490514482066134708797269222652986780  
   1977826852529088228209837598712593028712635011538286972052932028778  
   1951619351053062227012190960431078972062738476819034818067222647615  
   6840315295681655072630468613971563812441752962491815338623730848846  
   3671618878910658051748251687047571158958633870984046091078408166081  
   6008729400681877059551531966866805032014888885458040140565953077453  
   1124901032767115565786520601456485716561498747421527897471456777292  
   9033622932968178821832753996121415235797106352560777936960870163083  
   2448201666522632764943239886543223912794494785328658241119659969012  
   0750982011769523186743275772341878294791533936355560550123586692071  
   0469302003385227797821485305625733046674978861689472676733492806165  
   7338832191824794756141790489023818823266629986328926255511756852651  
   1239954567134213931396108685134934180029252147004054282361085210539  
   0747660133435120664291368449461024633400088239637147831345902469970  
   6846383994876724845878629569224631303976638658680857614134689799873  
   5807637602174138712908033656810647451035073702384734968153071526277  
   2746753132311659825579142941572964189931907503923546394984805731560  
   4704666798111703920129626872041360193147394366307270751846909834305  
   9602918352430632693404890218766697584790823131571311321285701358779  
   1940220978375417643810883349697544197853913478896304119838859277664  
   7248540340885668203127626877601201382544380668352085729017421507219  
   4366587070596313093770435645643235501280648935104969293790890409927  
   0069050635477098948997959156906178633482849514588726125549767475620  
   8057187214498220847695633777818624224232362625922609985742415496645  
   4746393023226410618932372829291420339628385419145215636992810698393  
   7975917564595654562469771625048593897907898462872376176723595651772  
   2122544300803212395369696815169908600011078702014785171269191703142  
   4005726278913603067294423654511237055687284643969999045740847304614  
   8775684390684471353501184176211558664629758840187453656584615153000  
   3695233873573037921029508572950988641548855063337628223491348148916  
   0796503717077705017927663623566961326313068937877775132327648881601  
   6173468650369863833254441620694578650673821422609828804067676934871  
   6977702060056528855305723307043335129637834422167856472838245531474  
   3055593545359216469687431985724549584483966570029902834136377954576  
   3229137275480928996024300088655878664962464256636211681104186966892  
   2000802082007939088324036107189498928574691785506769124870091644115
IP Logged
JP05
Guest

Email

Re: Sum of Powers  
« Reply #5 on: Oct 8th, 2007, 11:43am »
Quote Quote Modify Modify Remove Remove

continued...
 
   6186778488477620027247582252358374233303008055584786946434027256925  
   1667614344776558083090711265779160452074252951003223832415798040225  
   1721934556259446882062266351012052440017500617409062449501313426559  
   3373759341762312544541907370512259988160761689083829054127706521209  
   6559706693136151698985282496171948329782883209532939276617572722513  
   3912295350512098242655419953426425311274447379555431248049194251844  
   7578307401376023519446094153100929635926344704698410782607722281022  
   5299727837403696683913460211781449329238622327434376931794148972975  
   5907807785675996810671355523133277047501462127001709324404222536643  
   2017032418367314388216851437827862751643504825386678349288548752096  
   8485472506059749706591083796385843752345880066221551120375603953084  
   5869660796861834457596457775378327114177685948136572704326822794101  
   5804693372028133635537567974341143150225633441303281453177578251888  
   9835385303048688716941866384973610364319649646290550369770626242036  
   2577884381405185595884688746890580018291982496233121366822816317546  
   0299139784099280898479908386342430339181938798437557715015741439196  
   1146323893989002768444953089550206521460718897651735726276879905397  
   9052100601356599101634792550282755313318892830796778201396790217372  
   4409482482950021126453638490562662999954448397339039189166831799992  
   5390630349674008468541750510474588576830318747360612689770794983832  
   3796595862839860136927964353055179447548075051524087301269203353486  
   8752727464223420924049952139178517311934039176925870823111031119683  
   0153108820403376955179143736668149255675324362241514758767592238340  
   9187316433725461254294075240063008810718763585705947277616419163783  
   6160949617811306994475290076323796178982918708206757772190159832007  
   9224729782922921429141486513206729200664214539627741172048849253769  
   6214849122364192668563334168183562928874722387399108614691482385034  
   3466618752731587871599703394302948206061810942656041011089976130621  
   4288116843032783042012698686591107603839121572902048286835536800751  
   6163756084441834034158692478056262130986915560978545349260410495900  
   2365426710140383073452707479779899170196281441573207973532729591915  
   5035081119651694846865247004914777573799012744855068631575204084084  
   986899042353332621456794028630940532901  <--- there it is
IP Logged
towr
wu::riddles Moderator
Uberpuzzler
*****



Some people are average, some are just mean.

   


Gender: male
Posts: 13730
Re: Sum of Powers  
« Reply #6 on: Oct 8th, 2007, 11:49am »
Quote Quote Modify Modify

Why didn't you just calculate it modulo 10, that'd have saved you some paper Tongue
IP Logged

Wikipedia, Google, Mathworld, Integer sequence DB
JP05
Guest

Email

Re: Sum of Powers  
« Reply #7 on: Oct 8th, 2007, 11:54am »
Quote Quote Modify Modify Remove Remove

I thought about that but I had plenty of paper, after all.
IP Logged
SMQ
wu::riddles Moderator
Uberpuzzler
*****






   


Gender: male
Posts: 2084
Re: Sum of Powers  
« Reply #8 on: Oct 8th, 2007, 12:47pm »
Quote Quote Modify Modify

on Oct 8th, 2007, 11:49am, towr wrote:
Why didn't you just calculate it modulo 10, that'd have saved you some paper Tongue

For that matter, since (10) = 4, aa (mod 10) [a (mod 10)a (mod 4)] (mod 10) (with the exception of 0th powers -- see posts below), so the pattern repeats every 20:
 
11 (mod 10) 11 (mod 10) 1 (mod 10)
22 (mod 10) 22 (mod 10) 4 (mod 10)
33 (mod 10) 33 (mod 10) 7 (mod 10)
44 (mod 10) 44 (mod 10) 6 (mod 10)
55 (mod 10) 51 (mod 10) 5 (mod 10)
66 (mod 10) 62 (mod 10) 6 (mod 10)
77 (mod 10) 73 (mod 10) 3 (mod 10)
88 (mod 10) 84 (mod 10) 6 (mod 10)
99 (mod 10) 91 (mod 10) 9 (mod 10)
1010 (mod 10) 02 (mod 10) 0 (mod 10)
1111 (mod 10) 13 (mod 10) 1 (mod 10)
1212 (mod 10) 24 (mod 10) 6 (mod 10)
1313 (mod 10) 31 (mod 10) 3 (mod 10)
1414 (mod 10) 42 (mod 10) 6 (mod 10)
1515 (mod 10) 53 (mod 10) 5 (mod 10)
1616 (mod 10) 64 (mod 10) 6 (mod 10)
1717 (mod 10) 71 (mod 10) 7 (mod 10)
1818 (mod 10) 82 (mod 10) 4 (mod 10)
1919 (mod 10) 93 (mod 10) 9 (mod 10)
2020 (mod 10) 04 (mod 10) 0 (mod 10)
 
 20100
So   (x+k)x+k (mod 10) = 94 4 (mod 10) for any x, and   (x+k)x+k (mod 10) = 470 0 (mod 10) for any x
k=1k=1

20002001
Therefore   kk (mod 10) 0 (mod 10), and   kk (mod 10) = 20012001 (mod 10) 1 (mod 10)
k=1 k=1

 
--SMQ
« Last Edit: Oct 8th, 2007, 1:56pm by SMQ » IP Logged

--SMQ

denis
Uberpuzzler
*****






   


Gender: male
Posts: 1222
Re: Sum of Powers  
« Reply #9 on: Oct 8th, 2007, 1:05pm »
Quote Quote Modify Modify

SMQ, maybe just a typo but 44=256 so how come 44 1 (mod 10)? Should it not be 44 6 (mod 10)? Or does this relation do something I am not aware of?
 
« Last Edit: Oct 8th, 2007, 1:41pm by denis » IP Logged
Obob
Senior Riddler
****





   


Gender: male
Posts: 489
Re: Sum of Powers  
« Reply #10 on: Oct 8th, 2007, 1:43pm »
Quote Quote Modify Modify

It is only true that aphi(n) = 1 (mod n) if a is relatively prime to n.  So the analysis is a bit more complicated.
IP Logged
SMQ
wu::riddles Moderator
Uberpuzzler
*****






   


Gender: male
Posts: 2084
Re: Sum of Powers  
« Reply #11 on: Oct 8th, 2007, 1:48pm »
Quote Quote Modify Modify

Yeah, fixed now -- it still works (although I have yet to find a reference to back me up I have never encountered a situation where it fails) if you avoid raising to the 0 power (i.e. use 4th powers where you would expect 0th powers).  I just forgot that step -- i.e. I'm an idiot. Embarassed
 
on Oct 8th, 2007, 1:43pm, Obob wrote:
It is only true that aphi(n) = 1 (mod n) if a is relatively prime to n.  So the analysis is a bit more complicated.

But consecutive powers are still cyclic (obviously by pigeon-hole), and the cycle-length still divides (n) for every a, it's just that the cycle may not contain a value of 1 for a not relatively prime to n.  (Right?  That's the part I can't find a reference to back me up on, but I have never discovered a case where it's not true...)
 
--SMQ
« Last Edit: Oct 8th, 2007, 1:57pm by SMQ » IP Logged

--SMQ

Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board