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Problem: Let x1, x2, x3, . . . be positive real numbers. For positive integer n, denote An = x1+...+xn

n . Use the
inequality (a + b)n ≥ an + nan−1b to prove the following statement:

∀n ∈ N : An+1
n+1 ≥ An

n · xn+1

Attempted Solution: Let a = x1 + ... + xn and b = xn+1. Then, applying the inequality (a + b)n ≥ an + nan−1b:
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Since ∀i ∈ N : xi > 0, we can eliminate An
n(x1 + ... + xn) from the right-hand side of the above inequality, thereby

loosening the inequality:
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This falls short of proving the desired inequality. The earlier loosening is probably where I went astray, but I tried
playing with that term I threw out and didn’t get very far. - WW
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