ocf.berkeley.edu/ wwu/cgi-bin/yabb/YaBB.cgi?board=riddles_putnam;action=display;num=1055335322

Problem: Let $x_{1}, x_{2}, x_{3}, \ldots$ be positive real numbers. For positive integer n , denote $A_{n}=\frac{x_{1}+\ldots+x_{n}}{n}$. Use the inequality $(a+b)^{n} \geq a^{n}+n a^{n-1} b$ to prove the following statement:

$$
\forall n \in \mathbb{N}: A_{n+1}^{n+1} \geq A_{n}^{n} \cdot x_{n+1}
$$

Attempted Solution: Let $a=x_{1}+\ldots+x_{n}$ and $b=x_{n+1}$. Then, applying the inequality $(a+b)^{n} \geq a^{n}+n a^{n-1} b$:

$$
\begin{aligned}
{\left[\left(x_{1}+\ldots+x_{n}\right)+x_{n+1}\right]^{n+1} } & \geq\left(x_{1}+\ldots+x_{n}\right)^{n+1}+(n+1)\left(x_{1}+\ldots+x_{n}\right)^{n} x_{n+1} \\
\left(\frac{1}{n+1}\right)^{n+1}\left[\left(x_{1}+\ldots+x_{n}\right)+x_{n+1}\right]^{n+1} & \geq\left(\frac{1}{n+1}\right)^{n+1}\left[\left(x_{1}+\ldots+x_{n}\right)^{n+1}+(n+1)\left(x_{1}+\ldots+x_{n}\right)^{n} x_{n+1}\right] \\
A_{n+1}^{n+1} & \geq\left(\frac{1}{n+1}\right)^{n+1}\left[\left(x_{1}+\ldots+x_{n}\right)^{n+1}+(n+1)\left(x_{1}+\ldots+x_{n}\right)^{n} x_{n+1}\right] \\
\left(\frac{1}{n}\right)^{n} A_{n+1}^{n+1} & \geq\left(\frac{1}{n}\right)^{n}\left(\frac{1}{n+1}\right)^{n+1}\left[\left(x_{1}+\ldots+x_{n}\right)^{n+1}+(n+1)\left(x_{1}+\ldots+x_{n}\right)^{n} x_{n+1}\right] \\
\left(\frac{1}{n}\right)^{n} A_{n+1}^{n+1} & \geq\left(\frac{1}{n+1}\right)^{n+1}\left[\frac{\left(x_{1}+\ldots+x_{n}\right)^{n+1}+(n+1)\left(x_{1}+\ldots+x_{n}\right)^{n} x_{n+1}}{n^{n}}\right] \\
\left(\frac{1}{n}\right)^{n} A_{n+1}^{n+1} & \geq\left(\frac{1}{n+1}\right)^{n+1}\left[\frac{\left(x_{1}+\ldots+x_{n}\right)^{n}\left(x_{1}+\ldots+x_{n}\right)}{n^{n}}+\frac{(n+1)\left(x_{1}+\ldots+x_{n}\right)^{n} x_{n+1}}{n^{n}}\right] \\
\left(\frac{1}{n}\right)^{n} A_{n+1}^{n+1} & \geq\left(\frac{1}{n+1}\right)^{n+1}\left[A_{n}^{n}\left(x_{1}+\ldots+x_{n}\right)+(n+1) A_{n}^{n} x_{n+1}\right]
\end{aligned}
$$

Since $\forall i \in \mathbb{N}: x_{i}>0$, we can eliminate $A_{n}^{n}\left(x_{1}+\ldots+x_{n}\right)$ from the right-hand side of the above inequality, thereby loosening the inequality:

$$
\begin{aligned}
\left(\frac{1}{n}\right)^{n} A_{n+1}^{n+1} & \geq\left(\frac{1}{n+1}\right)^{n+1}(n+1) A_{n}^{n} x_{n+1} \\
\left(\frac{1}{n}\right)^{n} A_{n+1}^{n+1} & \geq\left(\frac{1}{n+1}\right)^{n} A_{n}^{n} x_{n+1} \\
A_{n+1}^{n+1} & \geq\left(\frac{n}{n+1}\right)^{n} A_{n}^{n} \cdot x_{n+1}
\end{aligned}
$$

This falls short of proving the desired inequality. The earlier loosening is probably where I went astray, but I tried playing with that term I threw out and didn't get very far. - WW

