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Abstract

■ Sometime in the past two decades, neuroimaging and be-
havioral research converged on pFC as an important locus of
cognitive control and decision-making, and that seems to be
the last thing anyone has agreed on since. Every year sees an
increase in the number of roles and functions attributed to dis-
tinct subregions within pFC, roles that may explain behavior
and neural activity in one context but might fail to generalize
across the many behaviors in which each region is implicated.
Emblematic of this ongoing proliferation of functions is dorsal
ACC (dACC). Novel tasks that activate dACC are followed by

novel interpretations of dACC function, and each new interpre-
tation adds to the number of functionally specific processes
contained within the region. This state of affairs, a recurrent
and persistent behavior followed by an illusory and transient
relief, can be likened to behavioral pathology. In this issue,
we collect contributed articles that seek to move the conversa-
tion beyond specific functions of subregions of pFC, focusing
instead on general roles that support pFC involvement in a
wide variety of behaviors and across a variety of experimental
paradigms. ■

In the Diagnostic and Statistical Manual of Mental Disor-
ders, Fifth Edition, obsessive–compulsive disorder (OCD)
is diagnosed based on the presence of obsessions, compul-
sions, or both (American Psychiatric Association, American
Psychiatric Association, & DSM-5 Task Force, 2013). Obses-
sion is defined as a recurrent, persistent thought that may
be intrusive and unwanted and that an individual attempts
to suppress through an alternate thought or action—a
compulsion. Compulsions are signified by repetitive behav-
iors undertaken to prevent or reduce anxiety or distress.
The Diagnostic and Statistical Manual of Mental Disor-
ders further specifies that obsessions and compulsions
are time-consuming and cannot be attributed to the phys-
iological properties of a substance.
Considering these criteria and noting that the authors

are not clinicians, it may be reasonably proposed that the
field of cognitive neuroscience is experiencing a form of
OCD in which the recurrent, intrusive thought concerns
how best to explain cognitive control and decision-making
as a product of the function of dorsal ACC (dACC). This
thought manifestly produces distress, leading to ongoing
debate and disagreement regarding the role of dACC
across an array of paradigms and subfields of cognitive
neuroscience (Shenhav, Straccia, Botvinick, & Cohen,
2016; Wager et al., 2016; Lieberman & Eisenberger, 2015;
Shenhav, Straccia, Cohen, & Botvinick, 2014; Kolling,

Behrens, Mars, & Rushworth, 2012). To prevent or reduce
this distress, time-consuming behaviors, such as the ump-
teenth replication of the Eriksen flanker task or the pro-
posal of a new computational model describing the role
of dACC in a particularly constrained setting, are performed.
The relief provided by such acts is ultimately temporary as
new variations on the same idea arise, and the resulting
unease must be ameliorated by additional behavioral
performances.

Perhaps coincidentally, dACC, in addition to a vast
range of other effects, is implicated in the neuroetiology
of OCD in individuals (Fitzgerald et al., 2005). In extreme
cases, the symptoms of OCD may be alleviated by cingu-
lotomy: the complete or partial removal of the cingulate
(Dougherty et al., 2002). This procedure is invasive in the
extreme and generally only invoked when all other forms
of treatment have been exhausted. Considering the per-
nicious nature of the idée fixe in our case—dACC activity
is ubiquitously observed in studies of brain activity, even
when it is not the target system (Alexander & Brown,
2015b)—and the increasingly drastic steps taken to re-
solve the discomfort—the number of scientific articles re-
ferring to dACC continues to increase on an yearly basis
(Gage, Parikh, & Marzullo, 2008), one begins to wonder
whether similarly drastic measures are called for. Does
cognitive neuroscience need a cingulotomy, and what
does that even mean?

Certainly, it is not feasible to remove all considerations
of dACC from attempts to understand brain function and
behavior—that the region is implicated in diverse modes
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of behavior, and cognition is without question. Instead,
we propose that the emphasis on examining differences
of behavior and brain function in the context of behavior-
ally narrow control and decision-making tasks may be
misplaced, resulting in a persistent focus on the functional
specialization of subregions of pFC rather than provid-
ing insight into general mechanisms and the architecture
of control across pFC. Rather than being the principal
generator of control signals in the brain, dACC may be
one especially obvious center for control that nonethe-
less recruits a distributed neural network. Rather than cal-
culating functionally specific signals that depend on the
nature of a particular task, dACC may compute general
signals that apply broadly over various experimental par-
adigms. Rather than investigating relatively simple con-
trol tasks to infer the nature of specific brain regions,
more complex tasks may be required to derive more gen-
eral principles by which the brain might operate. Instead
of removing cingulate, then, the articles contributed to
this special issue remove the focus on identifying the
function of particular regions of pFC, including dACC,
and illustrate how a broader theoretical and empirical ap-
proach may inform our understanding.

Eisenreich, Akaishi, and Hayden (2017) look at this is-
sue from a broad perspective. In their review, they
discuss the idea that control is a broadly distributed phe-
nomenon—and contrast that idea with more conven-
tional modular control systems (Eisenreich et al., under
review). As a way of introducing this idea, they discuss
several cases of distributed control systems from nature—
but not from brains. For example, colonies of ants can
make speed–accuracy trade-offs in their collective decision-
making procedures (Franks, Dornhaus, Fitzsimmons, &
Stevens, 2003). When making these trade-offs, there is no
special control-sensitive ant that influences all the others.
Instead, each ant has its own set of strategies and responses
to environmental parameters. The speed–accuracy trade-
off, like the decision itself, is an emergent phenomenon
of the rules the group follows. They introduce some key
principles of distributed control systems and then use these
ideas as a lens through which to view the function of the
dACC. Their focus is especially on reconciling the ideas of
control with the known physiological properties of the
structure (Heilbronner & Hayden, 2016). Ultimately, these
ideas support the idea that executive controlmay not reside
in the dACC—but not exclusively there. Instead, it may be a
more general property of brain systems that lies between
the input and output ends of decision-making. These ideas
align with recent work suggesting that economic decision-
making—another function associated with dACC—may
also be implemented in a distributed manner (Hunt &
Hayden, in press).

Brown and Alexander (2017) approach the question of
cingulate function by taking one of the current controver-
sies in the literature head on. They explore the dialectic
of the foraging theory of dACC (Kolling et al., 2012) ver-
sus the theories of choice difficulty and expected value of

control (Shenhav et al., 2014, 2016). From this dialectic,
the authors derive a synthesis (Alexander & Brown,
2015b) by which their PRO model can be extended to ac-
count for what seemed to be contradictory findings. They
propose a reinterpretation of choice difficulty signals as
reflecting surprise—when the choice is most difficult,
then one of the options is always very likely to have been
chosen (e.g., 50% likely), but it does not get chosen. The
consistent surprise averaged across trials leads to maxi-
mal activity when the choice is most difficult and the
option that will be chosen is most uncertain.
With respect to foraging value, the authors simulate

foraging as a choice to overcome a default response of
engaging with the current decision options. The decision
to forage therefore requires effort. This can be exerted by
the dACC in two ways, one of which may be character-
ized as proactive; and one, reactive. The proactive signals
are trained by experiences in which the model fails to for-
age, despite the high value of foraging, and therefore ex-
periences negative consequences. This in turn trains
control signals to drive foraging under similar conditions
in the future. Likewise, a surprising failure trains the PRO
model surprise signals to temporarily suppress the ac-
tions that led to surprising failure for the next few trials.
This allows the model to simulate a number of control
effects.
Moreover, the Brown and Alexander article highlights a

theme of the special issue—that there is no single scalar
control signal generated by the dACC. Instead, the con-
trol signals are rich and specific. They are rich because
there are multiple kinds of control signals: proactive, re-
active, and consisting of many different kinds of particu-
lar control signals that are specific to particular control
requirements. They are specific in that they may be acti-
vated by one kind of context, or one kind of surprise, but
not by another. Indeed, some control signals may com-
pensate for the loss of others. In the end, Brown and
Alexander argue that it may be simplistic to argue for a
single control function in the dACC and that we should
consider the richness of the signals.
Vassena, Deraeve, and Alexander (2017) adopt an em-

pirical perspective, translating existing computational
models of pFC function to the domain of motivation
and effort-based decision-making and task performance.
Wide empirical evidence assigns a key role to medial pFC
(including dACC) in computing predictions regarding
stimulus–outcome associations and updating these pre-
dictions according to prediction error signals (discrep-
ancy between predicted and actual outcome; Jahn, Nee,
Alexander, & Brown, 2014; Vassena, Krebs, Silvetti, Fias,
& Verguts, 2014). The PRO model (Alexander & Brown,
2011) formalizes this in a computational framework, able
to account for an extensive amount of empirical data.
However, this framework in its current version cannot ac-
commodate effects of motivation and effort-based behav-
ior that are also reliably found in dACC (Botvinick &
Braver, 2015; Vassena, Silvetti, et al., 2014). In this article,
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the authors reframe behavioral problems involving effort
allocation in terms of prediction and prediction error and
test the validity of the original PRO model in this new
context. Model-based simulations reveal behavioral pat-
terns consistent with participants’ behavior and generate
novel predictions regarding dACC activity in this context.
Furthermore, the same framework is used to suggest
how behavior and brain activity in psychiatric disorders
characterized by motivational impairments, such as de-
pression, may be altered. Novel model-based behavioral
and neural predictions are generated, to be tested in clin-
ical populations. This approach might shed light on the
neural mechanism underlying motivational impairments.
More recent computational work by Alexander and

Brown (2015a) extended the explanatory scope of the
PRO model using a hierarchical structure, still based on
the principles of prediction and prediction error. The re-
sulting hierarchical error representation (HER) model
includes dorsolateral pFC (DLPFC) and accounts for
empirical effects measured in this area. However, this
framework has also not been translated to the domain
of effort-based behavior, while situations that require
cognitive effort typically result in increased DLPFC activ-
ity (Vassena et al., 2014). In this article, the authors dis-
cuss the application of the HER model in effort-based
behavior. Novel behavioral predictions are generated that
suggest that order of presentation of motivational infor-
mation influences DLPFC coding and, when manipulated,
might affect decision-making as well as performance ac-
curacy. Furthermore, the authors discuss the relevance of
these predictions for clinical contexts. Overall, this article
underlines the importance of testing theoretical frame-
works beyond the scope they were conceived for, which
comes with two main advantages: testing the validity and
generalizability of a theory of brain function and provid-
ing theory-based qualitatively and quantitatively precise
predictions for further empirical testing.
Alexander, Vassena, Deraeve, and Langford (2017) take

the central proposal of the PRO model that dACC com-
putes a multidimensional prediction and error signal, as a
general role of cingulate, and examine how elaborating
on this role may provide a foundation by which the orga-
nization and function of additional regions of the brain
might be understood. In the previous two contributions,
the focus on particular and unique functions of dACC in
specific tasks is discarded in favor of examining how the
principal signals of prediction and prediction error may
be broadly applied over various forms of control and
across different experimental contexts, thus removing
the need for additional, functionally specific modules that
must be added to the list of dACC functions. Here,
Alexander et al. describe how prediction and error signals
generated by dACC provide critical constraints on how
the region might interact with additional areas in the
brain underlying behavior and how these constraints in-
formed the development of additional computational
models describing the function of DLPFC in supporting

sophisticated cognitive behaviors (Alexander & Brown,
2015a). Together, these models provide a uniquely com-
prehensive account of the function and organization of
large regions within pFC at multiple levels of description.
The authors suggest how the PRO and HER models pro-
vide further constraints on future integrative models of
pFC based on the computation and manipulation of pre-
diction error representations. The proposed framework in-
cludes dACC as one region among many involved in
processing quantities related to error and thus removes
the cingulate as the focus of control and decision-making.

Collins’ (2017) contribution to this special issue moves
away from the specific role of ACC to look more broadly
at the contributions of fronto-BG networks to learning
and how executive functions contribute to flexible hierar-
chical reinforcement learning. Previous work showed
that the hierarchical organization of lateral and medial
pFC plays an important role in using reward prediction
errors to update representations at multiple abstraction
levels (Alexander & Brown, 2015a; Donoso, Collins, &
Koechlin, 2014; Collins & Koechlin, 2012), affording
simultaneous learning of simple stimulus–action contin-
gencies and more complex context–rule associations
(Collins & Frank, 2013; Frank & Badre, 2012). This ability
often allows us to simplify an existing problem by finding
structure in the environment that allows information to
be generalized. However, we also showed that humans
engage in structure learning proactively, even in environ-
ments where this does not provide a learning benefit
(Werchan, Collins, Frank, & Amso, 2015; Collins & Frank,
2012, 2013).

Here, Collins extends this finding to show that hu-
mans’ tendency to build structure is not only present
when such involvement of executive functions is unhelp-
ful but that it carries heavy behavioral costs. Indeed, par-
ticipants exhibited significantly slower RTs and worse
performance when learning a problem that could be hi-
erarchically structured, compared with a problem of
matched difficulty that could not be structured. Thus,
as predicted by computational models, structure learning
occurred in the absence of any benefit to learning and in
the presence of a strong behavioral cost. Furthermore,
repeated exposure to this lack of benefit and cost did
not decrease participants’ tendency to create structure.
Collins argues that this highlights the strength of our
prior study for structure learning, putatively reflecting
the fact that our environment is overwhelmingly struc-
tured, and thus affords opportunities for generalizing
knowledge when we do structure our learning into hier-
archical rules. This benefit might be general enough that
the structure of hierarchical fronto-BG networks reflects
this bias (Collins & Frank, 2016), as might be inferred by
the fact that 8-month-old infants exhibit similar structure
learning (Werchan et al., 2015), dependent on pFC func-
tion (Werchan, Collins, Frank, & Amso, 2016). Thus,
our ability to overcome initial lack of benefit and
behavioral costs would reflect an adaptive process in
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our environment where generalizing our behavior in dif-
ferent contexts is usually a good strategy.

Taken together, the contributed articles suggest how
the obsessive–compulsive cycle that has led to a profu-
sion of specific functional roles for subregions of pFC,
and the attendant debates in the literature, might be
halted. First, although dACC may indeed be a region crit-
ical for cognitive control, it is by no means the only re-
gion involved in control. Hence, attempts to pack every
control-related behavior into a single area may be coun-
terproductive and overlook regions that may also be im-
plicated in control. Second, roles proposed for the
function of neural regions should look beyond the details
of a single study or paradigm. pFC is implicated in a vast
range of behaviors, from simple stimulus–response con-
tingencies to complex decision-making involving multi-
ple dimensions and stages; however, the diversity of
function need not imply a diversity of mechanisms. Gen-
eral mechanisms that can account for the involvement of
subregions of pFC in both simple and complex contexts
are more parsimonious and elegant than accounts that
invoke specialized operating modes. Finally, our under-
standing of the brain, both at the microlevel of individual
neurons and the macrolevel of the behaviors to which
they contribute, depends on the development of theoret-
ical accounts of pFC function and its subregions that are
capable of generating precise, testable predictions.

Reprint requests should be sent to Eliana Vassena, Donders In-
stitute for Brain Cognition and Behaviour, Radboud Universi-
teit, Montessorilaan 3, Nijmegen, Gelderland, The Netherlands
6525 EN, or via e-mail: e.vassena@donders.ru.nl.
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