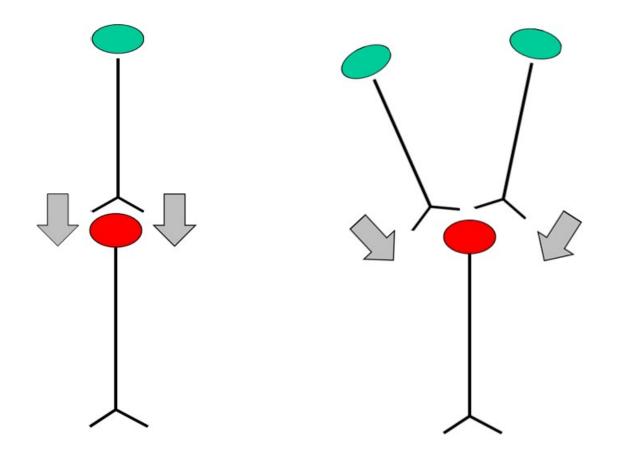
Sensory Thresholds and Signal Detection

Lecture 13

Qualities of Sensation

Boring (1953)

- Modality-Specific
 - Vision: Hue, Saturation
 - Audition: Pitch, Timbre
 - Olfaction: Odor
 - Gustation: Flavor
 - Touch: Roughness, Wetness
 - Pain: Sensory Pain (Fast/Slow), Suffering
- General: Intensity
 - Vision: Brightness
 - Audition: Loudness

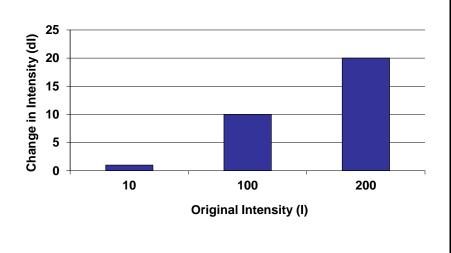


Thresholds for Conscious Awareness

- Absolute
 - Weakest Detectable Stimulus
- Relative
 - Smallest Detectable Change
 - "Just-Noticeable Difference"
 - Absolute Threshold a Special Case
- Isomorphism
 - Physical Intensity
 - Sensory Intensity

Neural Coding of Intensity The "All or None" Law

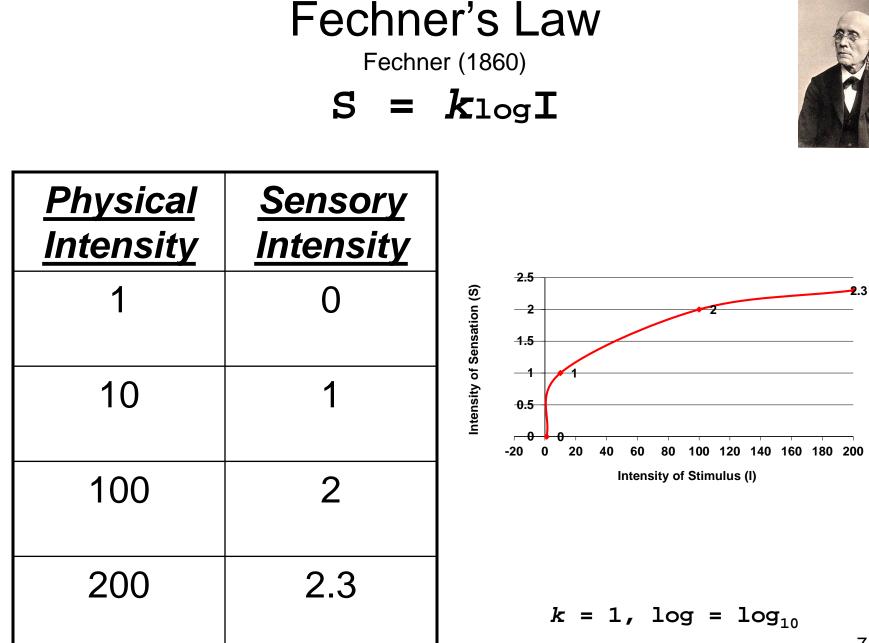
Temporal and Spatial Summation



Weber's Law

Weber (1846)

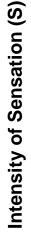
dI/I = C

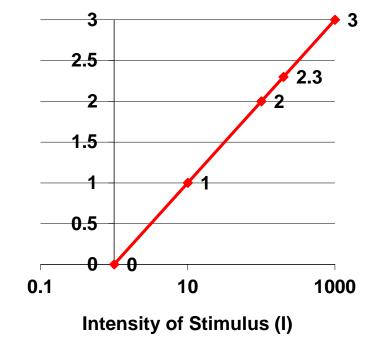

c = 1/10

<u>Original</u> Intensity	<u>Noticeable</u> <u>Change</u>
10	11
100	110
200	220

Representative Weber Fractions for Human Sensation

Geldard (1962)


Modality С Visual Brightness (White) 1/60 Lifted Weight 1/50**Thermal Pain** 1/301/10Auditory Loudness **Cutaneous Pressure** 1/7Smell of Rubber 1/4 Taste of Salt 1/3



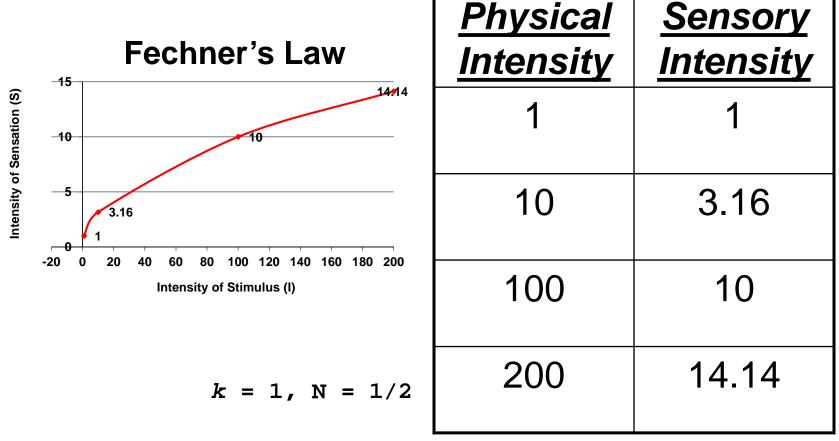
Fechner's Law as Logarithm

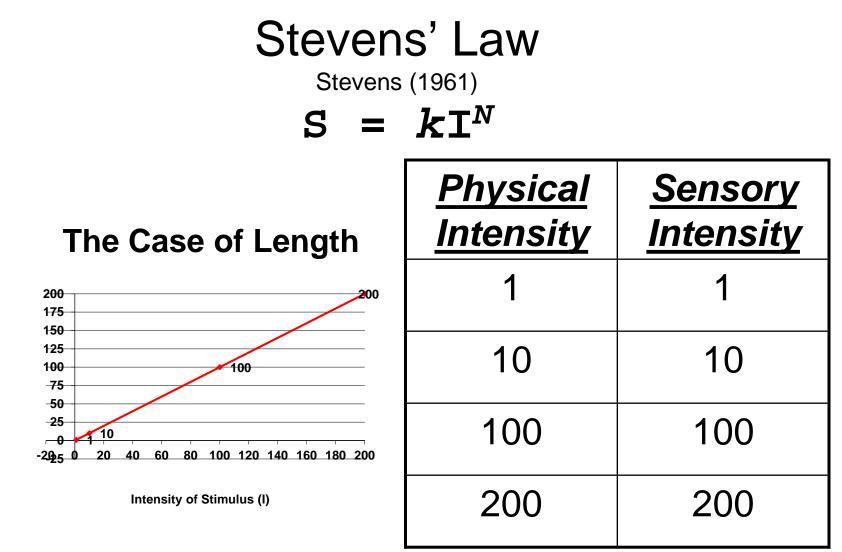
Fechner (1868)

 $S = k_{\log}I$

<u>Physical</u> <u>Intensity</u>	<u>Sensory</u> Intensity
1	0
10	1
100	2
200	2.3
1000	3

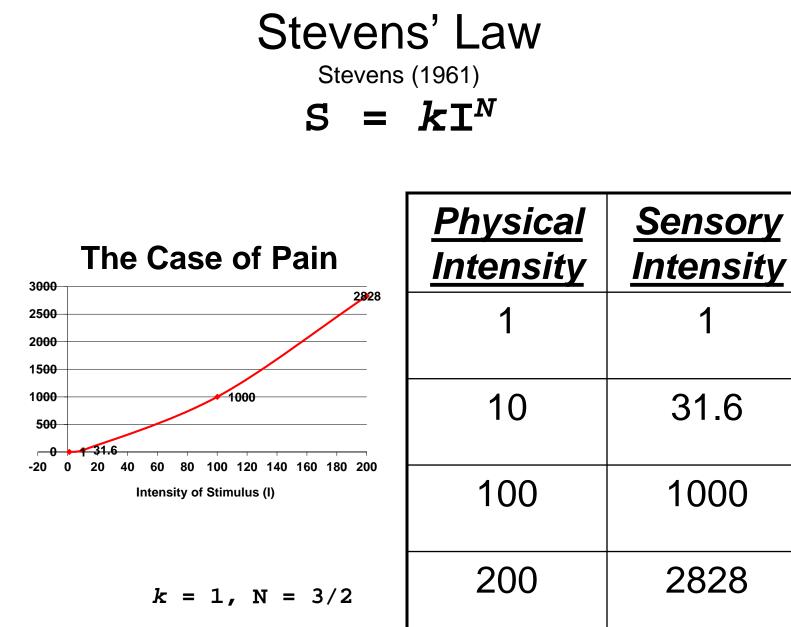
Fechner's Law Fechner (1868) $S = k_{\log}I$


- Sensation Grows More Slowly Than Stimulation
 - Sensory Receptors Compress Stimuli
- Exceptions
 - Perceived Length
 - Perceived Pain



Stevens' Law

Stevens (1961)


 $S = kI^N$

$$k = 1, N = 1$$

11

12

Stevens' Law

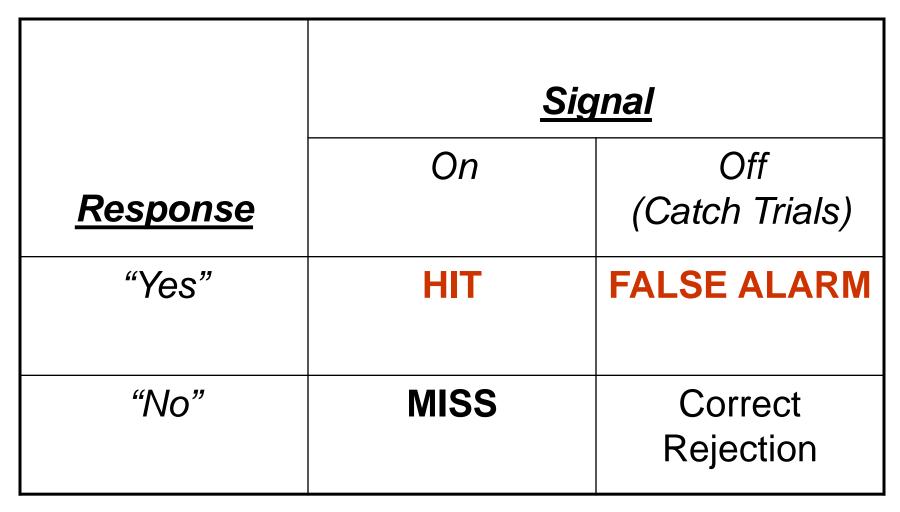
Stevens (1961)

- A General Psychophysical Law: $S = kI^n$
- Operating Characteristic of Receptors
 - Most Compress Stimulation: n < 1
 - Some Expand Stimulation: n > 1

Representative Exponents (n)

Viscosity of silicone Fluid: 042 Brightness of Point Source: 0.5 Loudness of Pure Tone: 0.67 Area of Square 0.70 Length of Line: 1.00 Pressure on Palm: 1.10 Taste of Saccharin: 0.8 Taste of Sucrose: 1.3 Heaviness of Lifted Weight: 1.45 Electric Shock to Fingers: 3.50

Signal-Detection Theory


Green & Swets (1966), after Tanner & Swets (1954)

- Discriminate between "Signal" and "Noise"
- Components of Decision
 - Sensitivity (Information) d'
 - Bias (Criterion) β
 - Expectation
 - Motivation

The Signal Detection Paradigm

Green & Swets (1966)

An Observer with High Sensitivity Hit Rate = 100%; False Alarm Rate = 0%

	Stim	nulus	
Response	<u> </u>	Off	
"Yes"	50%	0%	50%
"No"	0%	50%	50%
	070	0070	5070
	50%	50%	
			16

An Observer with Less Sensitivity Hit Rate = 80%; False Alarm Rate = 0%

Stimulus Off Response On 40% "Yes" 40% 0% 50% **60%** "No" 10% 50% 50%

"Liberal" Bias toward Yes Hit Rate = 80%; False Alarm Rate = 80%

	<u>Stimulus</u>		
<u>Response</u>	On	Off	
"Yes"	40%	40%	80%
"No"	10%	10%	20%
	50%	50%	

"Conservative" Bias toward No Hit Rate = 30%; False Alarm Rate = 30%

	Stim	nulus	
Response	<u>Still</u> On	Off	
"Yes"	15%	15%	30%
"No"	35%	35%	70%
	50%	50%	

Sensitivity + "Liberal" Bias Hit Rate = 80%; False Alarm Rate = 40%

	<u>Stimulus</u>		
<u>Response</u>	On	Off	
"Yes"	40%	20%	60%
"No"	10%	30%	40%
	50%	50%	

Sensitivity + "Conservative" Bias Hit Rate = 50%; False Alarm Rate = 10%

	<u>Stimulus</u>		
<u>Response</u>	On	Off	
"Yes"	25%	5%	30%
"No"	25%	45%	70%
	50%	50%	

Inducing Liberal Response Bias by Decreasing Catch Trials

	<u>Stimulus</u>		
<u>Response</u>	On	Off	
"Yes"	52%	18%	70%
"No"	18%	12%	30%
	70%	30%	100%

Inducing Conservative Response Bias by Increasing Catch Trials

	<u>Stimulus</u>		
<u>Response</u>	On	Off	
"Yes"	18%	12%	30%
"No"	12%	58%	70%
	30%	70%	100%

A Balanced Payoff Matrix

	<u>Stimulus</u>		
<u>Response</u>	On	Off	
"Yes"	+25¢	-25¢	0
"No"	-25¢	+25¢	0
	0	0	

A Payoff Matrix Inducing "Liberal" Bias

	<u>Stimulus</u>		
<u>Response</u>	On	Off	
"Yes"	+25¢	-10¢	+15¢
"No"	O¢	O¢	O¢

A Payoff Matrix Inducing "Conservative" Bias

	<u>Stimulus</u>		
<u>Response</u>	On	Off	
"Yes"	+10¢	-25¢	-15¢
"No"	O¢	O¢	O¢

Signal Detection as Decision Under Uncertainty

- Detection not simply a matter of intensity
 Judgment Under Uncertainty
- Example: Mammography
 - Family History
 - Cost/Benefit Analysis
- Determinants of Decisions
 - Expectations
 - Motives

Radiological Society of N.A.

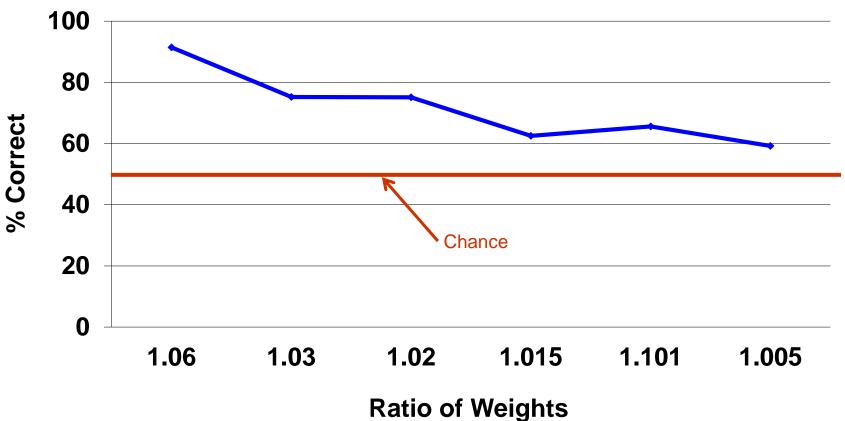
Implications of Signal Detection Theory

- Detection Not a Simple Matter of Intensity
- Passive vs. Active Observer
 - Expectations, Motives
- "Lower" vs. 'Higher" Mental Processes
 - Proximity to Physical Stimulus
 - Ties to Sensory Physiology
- Sensory Detection as Judgment
 - Decision-Making

Subliminal Perception?

Herbart (1819); Kihlstrom et al. (1992)

- Threshold = *Limen*
- Conscious Perception


- Conscious Awareness of Distal Stimulus

- Subliminal Perception
 - Change in Experience, Thought, or Action
 - Attributable to Stimulus
 - No Conscious Awareness of Stimulus
 - Perception Implied by Changes in Task
 Performance

Judgment Accuracy at Zero Confidence

Peirce & Jastrow (1884)

Scope of Subliminal Perception

Kihlstrom et al. (1992)

- Methodological Variations
 - Weak Intensity
 - Short Duration
 - "Masking"
 - Unattended
- Not Simple Guessing
 Hits > False Alarms
- Analytic Limitation
 - Exaggerated Claims for Subliminal Influence

Prof. Gil Einstein, Furman U.