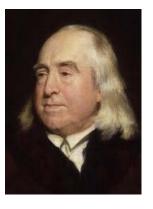
Are We Rational?

Lecture 23

"To Err is Human"

Alexander Pope, An Essay on Criticism (1711)

Categorization


Proper Sets vs. Prototypes and Exemplars

- Judgment and Decision-Making Algorithms vs. Heuristics
- Hypothesis-Testing
 Disconfirmatory vs. Confirmatory Strategies
- Conditional Reasoning
 Denying the Antecedent, Affirming the Consequent
 Prescription vs. Description
 ₂

Normative Model of Judgment and Reasoning

- Principles of Logic, Probability
- Self-Interest
- Optimality
- Utility (Efficiency)

Rational Choice

Rational Choice Defined

Bentham (1789) von Neumann & Morgenstern (1947)

- Based on Current Assets
- Based on Possible Consequences
- Uncertain Consequences Evaluated by Probability Theory
- Adaptive within Constraints of Probabilities and Values Associated with Each Possible Consequence

Homo Economicus

The Concert and the Scalper

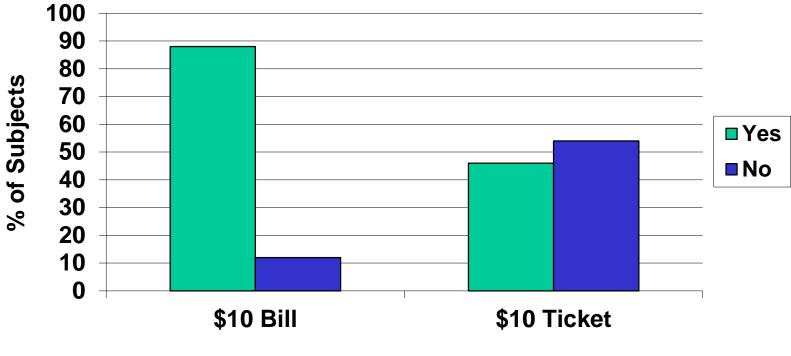
- Two People Attend a Concert
 - A Bought a Regular Ticket for \$75
 - B Bought from a Scalper for \$200
- Tickets are Nonrefundable
- Concert is Terrible

lehwego.com

Who is More Likely to Leave at Intermission?

The Lost-Ticket Scenario

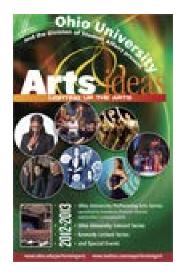
Tversky & Kahneman (1981)


- Two People Decide to See a Play
- Tickets Cost \$10
- As A Approaches the Ticket Booth, He Discovers that He Has Lost a \$10 Bill
 Will He Still Buy the Ticket?
- B Buys a Ticket, but Loses It Before He Enters the Theater
 - Will He Buy Another Ticket?

lascrucesblog.com

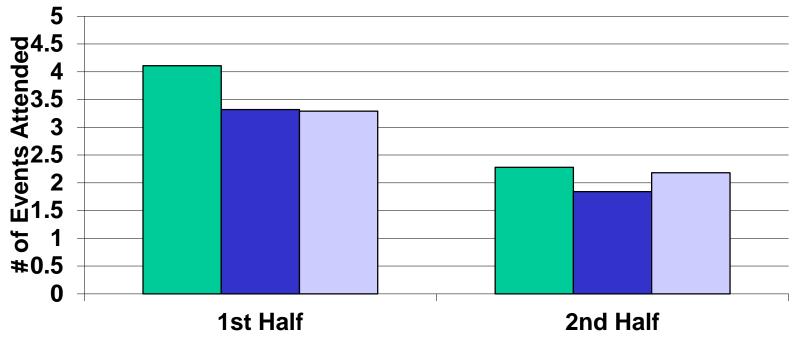
A Preference Reversal

Tversky & Kahneman (1981)



Loss

No-Shows at the Theatre


Arkes & Blumer (1985)

- Subscriptions to Ohio University Theater
 - Regular Price: \$15
 - Discount: \$13
 - Deep Discount: \$8
- Random Assignment
 First 60 Purchasers
- Attendance at Performances
 -> 6 Months After Purchase

Attendance at Performances

Arkes & Blumer (1985)

Ticket Price

The Problem with Sunk Costs


- Sunk Costs Have Already Been Incurred
 Cannot be Recovered
- Rational Choices Based on Current Assets
 Should Ignore Sunk Costs
- Sunk Costs are Part of the Contextual Frame for Decision-Making

Sunk Costs in Public Policy

"To terminate a project in which \$1.1 billion has been invested represents an unconscionable mishandling of taxpayers' dollars."

Jeremiah Denton (R-Alabama), 1981

"Completing Tennessee-Tombigbee is not a waste of taxpayer dollars Terminating the project at this late stage of development would, however, represent a serious waste of funds already invested"

sam.usace.army.mil

James Sasser (D-Tennessee), 1981

Common Violations of Rational Choice

Hastie & Dawes (2001)

- Choosing out of Habit
- Choosing on the Basis of Conformity
- Choosing on the Basis of Authorities

Conditions of Uncertainty

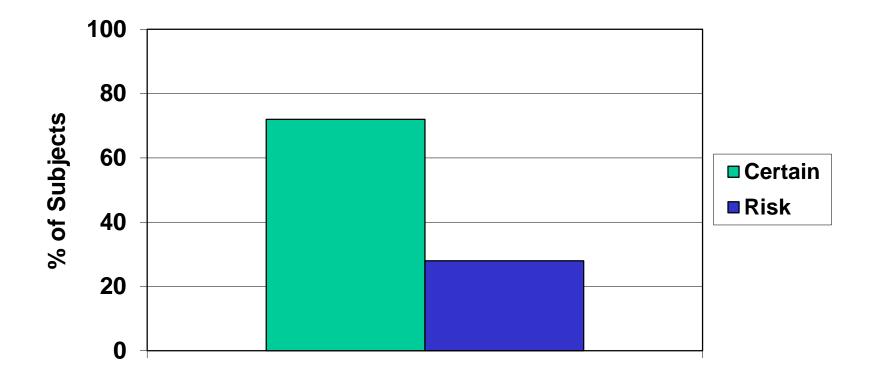
- III-Defined Problem
- Algorithm Unknown
- Insufficient Information
- Insufficient Opportunity
 - Time
 - Motivation

Framing in the Disease Problem Tversky & Kahneman (1981)

- Imagine that You are a Public Health Official Facing the Impending Outbreak of a Deadly Disease
- Based on Past Experience, the Disease is Expected to Kill 600 People
- Two Alternative Programs Available...

semissourian.com

The Disease Problem (1)


Tversky & Kahneman (1981)

- Certainty: If A is Adopted
 200 People Will Be Saved
- Risky Prospects: If **B** is Adopted
 - 1/3 Probability that All Will Be Saved
 - 2/3 Probability that None Will Be Saved

Which Program Do You Choose?

Choices in the Disease Problem (1)

Tversky & Kahneman (1981)

Evaluating the Choices with Rational Choice Theory

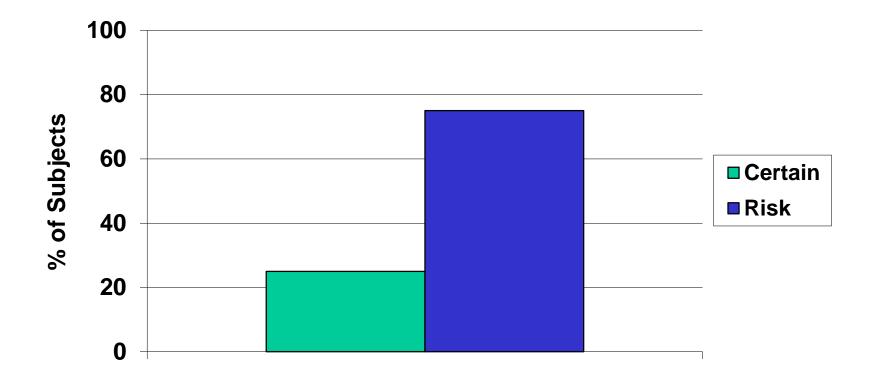
- Expected Value of a Choice
 Outcome x Probability
- Program A: Certain that 200 Will Be Saved
 Value = 1 x 200 = 200
- Program B: Chance that All Will Be Saved
 Value = 1/3 x 600 = 200

Viewed Rationally, the Outcomes are Identical

Explaining the Effect (1)

- People are Risk-Averse
 Prefer "Sure Thing" to Any Risk
- But People are Not Necessarily Risk-Averse
 Will Accept Risks Under Certain Circumstances

Risky Prospects (2)


Tversky & Kahneman (1981)

- Certainty: If C is Adopted
 400 People Will Die
- Risky Prospects: If **D** is Adopted
 - 1/3 Probability that None Will Die
 - 2/3 Probability that All Will Die

Which Program Do You Choose?

Choices in the Disease Problem (2)

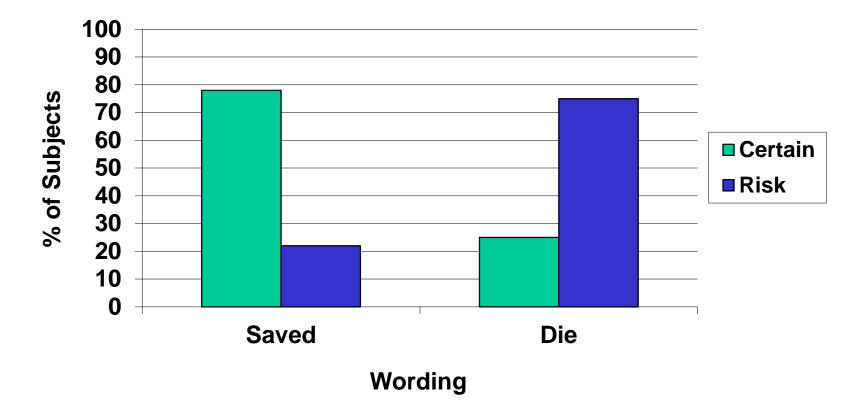
Tversky Kahneman (1981)

Evaluating the Choices with Rational Choice Theory

- Expected Value of a Choice

 Outcome x Probability
- Program C: Certain that 400 Will Die
 Value = 1 x 400 = 400
- Program D: Chance that All Will Die
 Value = 2/3 x 600 = 400

Viewed Rationally, the Outcomes are Identical


Expected Values of the Programs

Program	Saved	Lost
Α	200	(400)
B	200	(400)
С	(200)	400
D	(200)	400

The Four Programs Are Normatively Equivalent Why Do People Prefer One Over the Other? 22

Choices in the Disease Problem

Tversky & Kahneman (1981)

23

Framing the Disease Problem

- Programs A and B Focus on Gains

 People's Lives to be Saved
 Prefer Sure Gain, Averse to Risk
- Programs C and D Focus on Losses
 - People's Lives to be Lost
 - Avoid Sure Loss, Seek Risk

People Are Not Always Risk-Averse

Framing Effects

- Judgment is Not Invariant Over Different Descriptions of a Problem
 - Depends on How Problem is Framed

- Violates Normative Rationality
 - Rational Choice Determined by Abstract Representation of Problem
 - Values, Utilities are a Matter of Algebra
 - Judgment Should Not Depend on Wording of Problem

Expected Value Theory

Bentham (1789); von Neumann & Morgenstern (1947)

Value = Outcome x Probability

- Gamble A: 1/3 chance of winning \$75

 Expected Value = \$75 x 1/3 = \$25
- Gamble B: 1/2 chance of winning \$40

 Expected Value = \$40 x 1/2 = \$20

Violations of Expected Value Theory

- Lottery
 - -1 in 1,000,000 Chance of Winning \$1,000,000
 - Expected Value: \$1
 - But People Buy Lottery Tickets Anyway
- Choice Between Gambles

- 1/3 Chance of \$75 vs. 1/2 Chance of \$40
- Choose Gamble with Highest Odds
- Choose the Gamble with the Highest Utility
 - Surplus Value

Expected Utility Theory

Bernoulli (1738); von Neumann & Morgenstern (1947)

- Determinants of Utility
 - Value = Outcome x Probability
 - Risk Aversion
 - Assets and Preferences
- Problems
 - Preference Reversals
 - Utilities Depend on Probability
 - Framing Effects

Subjective Expected Utility Theory

Prospect Theory

Kahneman & Tversky (1979)

Framing as Perception

- People Base Decisions on Subjective Utilities
 Not Objective Values
- Anomalies of Expected-Utility Theory
 - Losses Loom Larger than Gains
 - First Impressions Shape Final Judgments
 - Anchoring and Adjustment
 - Vivid Examples Overshadow Statistical Summaries
 - Representativeness

Prospect Theory Kahneman & Tversky (1979)

- People Base Decisions on Subjective Utilities
 Not Objective Values
- Don't Multiply Utilities by Objective Probability
 - Rather, Psychological (Subjective) Probability
 - Overweight Very High, Very Low Risks
- Don't Evaluate Utilities in Absolute Sense
 - Rather, Against Background or Reference Point
 - Framing Alters Reference Point
 - Makes Prospects Appear Better or Worse Than They Really Are
 ³⁰

The "People Are Stupid" School of Psychology

Kihlstrom (2004)

- People are Fundamentally Irrational
 - Don't Follow Logical Principles
 - Don't Think Very Hard About Anything
 - Let Feelings, Desires Get In the Way of Thinking
- People Usually Operate on "Automatic Pilot"
 - Swayed by First Impressions, Immediate Responses
 - Don't Pay Too Much Attention to Anything
- People Usually Don't Know What They Are Doing
 - Behavior is Mostly Unconscious
 - "Reasons" are Post-Hoc Rationalizations
 - Consciousness Gets in the Way of Adaptive Behavior 31

Normative Rationality as Idealization

 Unrealistic

Bounded Rationality

Simon (1955, 1983)

- Real World is Uncertain
 - Problems Not Well Defined
 - Information Available but Uneconomical
 - Algorithm Available but Uneconomical
- Limited Information-Processing Capacity
 - Cannot Attend to All Relevant Information
 - Cannot Perform Complex Computations

- Decision-Makers Do Not Optimize
 - Maximize Gains, Minimize Losses
- Rather, Satisfice
 - Evaluate Alternatives
 - Identify Those Whose Outcomes are Satisfactory
- Among Satisfactory Outcomes
 - Choose First Available (or Cheapest)
 - Choose Arbitrarily
 - Choose on Basis of Other (Noneconomic) Policy

Bounded Rationality is Based on "Fast and Frugal" Heuristics Gigerenzer et al. (1999); Gigerenzer (2000)

- Heuristics Are Often the Best Approach
 - Many Problems are III-Defined
 - Many Algorithms are Uneconomical
- It is Rational to Inject Economies into Decision-Making
 - So Long as We Can Pay the Price of Error
- Reduce Errors
 - Understanding Normative Principles
 - Understanding Liabilities of Heuristics