

Elements of Social Cognition Hastie & Carlson (1980); Kihlstrom & Hastie (1987)

- Vocabulary to Describe the Social Stimulus
- Description of Perceptual Processes
- Memory
 - Characterization of Encoding Operations
 - Description of Stored Mental Representation
 - Characterization of Retrieval Operations
- Thinking → Action
 - Categorization, Inference
 - Problem-Solving, Judgment and Decision-Making

Where Does Knowledge Come From?

- Nativist View (Descartes)
 - Some Knowledge is Innate or A Priori
 Evolutionary/Genetic Heritage
- Empiricist View (Locke)
 - All Knowledge Comes Through the Senses
 - Experience, Learning
 - Reflections on Experience
- Kantian Synthesis
 - Knowledge Acquired Through Experience
 - Experience Structured by Innate Schemata

Two Views of Perception

- Constructivist View (Helmholtz)
 - Stimulus Inherently Ambiguous
 - Some Inferences Are Unconscious
 - "Beyond the Information Given" (Bruner)

4

5

6

- Ecological View (Gibson)
 Information "In the Light"
 - Perceptual System Evolved to Extract Information
 - No Inferences, Little or No Learning
 - aka Direct Perception (Direct Realism)

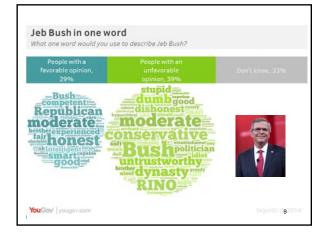
Sensation and Perception

- Sensation
 - Detection
 - Distal Stimulus
 - Transduction
 - Proximal Stimulus into Neural Impulse
 - Transmission
 - From Sensory Receptor to Brain

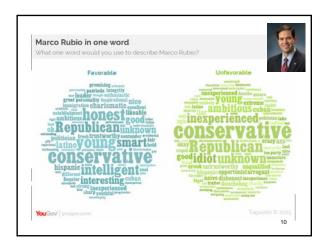
• Perception

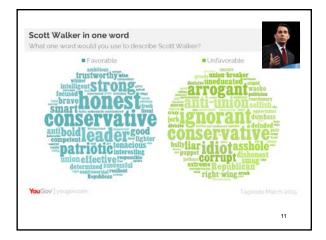
- Mental Representation of Distal Stimulus
 - Form, States, Activity
 - Identification, Categorization
 - "Every Act of Perception is an Act of Categorization"

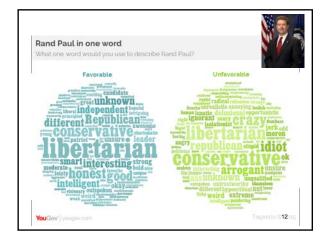
The Task of Perception


- Nonsocial Case
 - Physical Features: Form, Location, Motion
 - Functional Features: Identification, Categorization
- Social Case
 - Personal Identity
 - Physical Appearance: Gender, Race, Size
 - Demographic Features: Socioeconomic Status
 - Mental States: Thoughts, Feelings, Desires
 - Behavioral Dispositions: Personality Traits

Descriptions of Other People Fiske & Cox (1979)


- Physical Attributes – Tall, Dark, and Handsome
- Behavioral Information
 Neurotic Introvert
- Social Relations – Has a Girlfriend
- Characteristic Situations
 Goes To Bars a Lot
- Origins
- 2nd-Generation Norwegian
- Functional Properties
 _ Makes Me Laugh





"Personals" Ads New York Review of Books, 1/20/2000

MJM IN NYC, likes museums, nature, ferry rides, long walks, long talks, sushi, needs a special female friend. Ex-Wall Street, now professional writer. Forty-something, 5'9", fit and muscular, attractive. Creative, playful, irreverent, intense, affectionate, outgoing, smart. Thoroughly analyzed, self-aware, very flexible weekdays. Nonsmokers only please, photo appreciated.

> "Personals" Ads New York Review of Books, 1/20/2000

BEAUTIFUL, LITHE WOMAN in mid-

forties, rare blend of art and intellect, simplicity and elegance, financially and emotionally secure, seeks man equally at home in the world, who knows himself enough to know a good thing when he finds it.

15

Person Perception Bruner & Tagiuri (1954)

16

- Persons as Objects of Perception
- Influences on Perceptual Organization
 - Stimulus Array
 - Selective Attention
 - Linguistic Categories– Internal State of Perceiver
 - Mental Set
 - Emotional, Motivational Context

R

Person Perception as Impression Formation Asch (1946)

[O]rdinarily our view of a person is highly unified. Experience confronts us with a host of actions in others, following each other in relatively unordered succession. In contrast to this unceasing movement and change in our observations we emerge with a product of considerable order and stability.

Although he possesses many tendencies, capacities, and interests, we form a view of *one* person, a view that embraces his entire being or as much of it as is accessible to us. We bring his many-sided, complex aspects into some definite relations....

Person Perception as Impression Formation Asch (1946)

- How do we organize the various data of observation into a single, relatively unified impression?
- How do our impressions change with time and further experiences with the person?
- What effects in impressions do other psychological processes, such as needs, expectations, and established interpersonal relations, have?

Competing Theories of Impression Formation

- Impression is the Sum of Independent Characteristics
- Impression is a Unified Perception
 - Gestalt which Represents Relations Among Characteristics
 - "The Whole is Greater than the Sum of Its Parts"

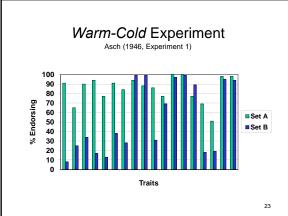
19

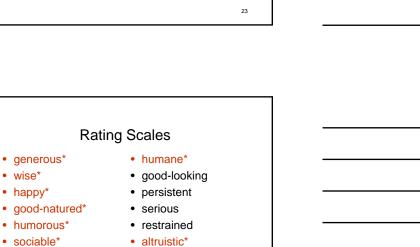
20

21

The Impression-Formation Paradigm

- Study Trait Ensemble – Describing Some Target Person
- Provide Impression of Target
 - Free Description
 - Adjective Checklist
 - Rating Scales


Asch's Experiment 1


Set A	Set B
intelligent	intelligent
skillful	skillful
industrious	industrious
warm	cold
determined	determined
practical	practical
cautious	cautious

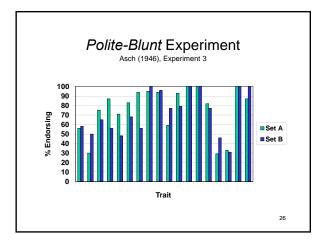
Rating Scales							
generous	generous humane						
wise	good-looking						
happy	persistent						
good-natured	serious						
humorous	restrained						
sociable	altruistic						
popular	imaginative						
reliable	strong						
important	honest						
		22					

• imaginative*

• wise*

• popular*

• reliable

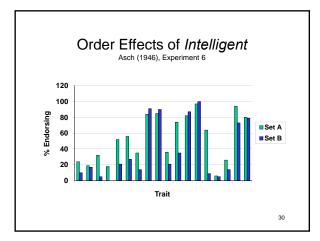

• important

- strong
 - honest

24

Asch's Exp	periment 3
Set A	Set B
intelligent	intelligent
skillful	skillful
industrious	industrious
polite	blunt
determined	determined
practical	practical
cautious	cautious
	25

Central Traits


- Qualities that, When Changed, Alter the Entire Impression of a Person
- Not "Halo Effect" (Thurstone) – Not Undifferentiated
- Change of Meaning Hypothesis
 - Environmental Surround Changes Meaning of Individual Elements
 - Central Traits Alter Meaning of Other Traits

Examples of Central and Peripheral Traits

<u>Central</u> Warm - Cold Intelligent - Unintelligent <u>Peripheral</u> Polite-Blunt

28

Order Effects in Impression Formation Set A Set B intelligent envious industrious stubborn impulsive critical impulsive critical industrious stubborn envious intelligent 29

Order Effects

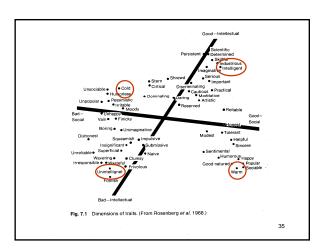
- Initial Terms Set Up a Directed
 Impression
- Later Terms Interpreted Through "First Impression"
- Renders Perception Stable

Features of Impression Formation

- Order Effects
- Central vs. Peripheral Traits

32

31


What Makes a Trait Central?

- Central Traits Carry More Information Than Peripheral Traits
 - Convey More Implications for Unobserved Features
- Change in Central Trait Implies Change in Many Other Traits

Rosenberg's Reanalysis Rosenberg et al. (1968); Rosenberg & Sedlak (1972)

- Factor Analysis of Trait Ratings
- Hierarchical Structure
 - Primary Traits
 - Secondary Traits
 - Tertiary Traits
- Superfactors in Personality Ratings

- Social Good-Bad
- Intellectual Good-Bad

-		

Fi	ske's Restater Fiske et al. (2007)	nent
	Warm	Cold
Competent	"Our IN group" "Us", as opposed to "Them"	"Objects of Envy" Jews Asians "The 1%" Female Professionals
Incompetent	"Mean Well" Elderly Disabled Mentally III	"Society's Outcasts" Poor Homeless Substance Abusers
		36

What Makes a Trait Central? Rosenberg et al. (1968)

- Load Highly on Superordinate Factors
 Intellectual, Social Good/Bad
- Carry More Information than Other Traits – More Implications for Unobserved Features
- Context Matters
 Selection of Rating Scales

Five-Factor Model: A Better Fit? Goldberg (1981)

- Neuroticism
- Extraversion
- Agreeableness
- Conscientiousness
- Openness to Experience
 A Universal Structure of Personality (?)
 Encoded in Language
 Valid Across Cultures
 Valid Across Generations, Developmental Epochs

38

37

The "Big Five" Blind Date Questions

Is s/he Outgoing? Is s/he Crazy? Is s/he Friendly? Is s/he Reliable? Is s/he Interesting?

Markers of the Big Five Norman (1963)

• Extroversion (Surgency)

- Talkative-Silent Frank, Open-Secretive _
- Adventurous-CautiousSociable-Reclusive
- Agreeableness Goodnatured-Irritable
 - Not Jealous-Jealous
 Mild, Gentle-Headstrong

 - Cooperative-Negativistic
- Conscientiousness
 - Fussy, Tidy-CarelessResponsible-Undependable
 - Scrupulous-Unscrupulous -
 - Persevering-Quitting, Fickle
- Emotional Stability
- Poised-Nervous, Tense
 Calm-Anxious
- Composed-Excitable - Not Hypochondriacal-Hypochondriacal
- Culture
 - Artistically Sensitive-Artistically Insensitive

 - Intellectual-Unreflective, Narrow
 Polished, Refined-Crude, Boorish

40

- Imaginative-Simple, Direct

Average Factor Loadings: A Priori Markers of the Big Five Norman (1963); Passini & Norman (1968)

Factor		Study								
	Norman (1963) Sample C ^a	Norman (1963) Sample D ^ь	Passini & Norman (1968) ^c							
Extroversion	.83	.85	.75							
Agreeableness	.75	.77	.67							
Conscientiousness	.74	.39	.63							
Emotional Stability	.70	.69	.62							
Culture	.66	.68	.58							
Note: Values are Unweighted Ave *Fraternity Members ^b Dormitory	-		41							

Perceiving Objects and Their States

- Nonsocial Domain
 - Form
 - Location
 - Motion
- Social Domain
 - Traits
 - Emotions
 - Motives
 - Behaviors

Stimulus Information in Perception

- Nonsocial Domain
 - Energy Radiating from Distal Stimulus
 - Impinging on Sensory Receptors
- Social Domain
 - Linguistic Description
 - Appearance
 - Behavior

Person Perception vs. Impression Formation

- Traits as Linguistic Representations
 Persons
 - Behavior

What *Physical* Features of the Stimulus Give Rise to Language-Based Impressions?

The Ecological View of Social Perception Baron (1980); McArthur & Baron (1983) after Gibson (1959, 1979)

eption aron (1983) 979)

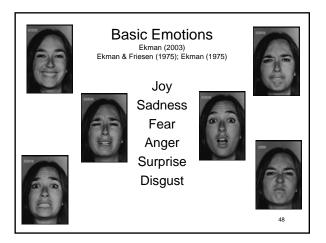
All the Information Needed for Social Perception is Provided by the Stimulus Field

No Need for "Higher" Cognitive Processes No Need for Implicit Theories of Personality

45

43

Stimulus Information in Social Perception Baron (1980); McArthur & Baron (1983)


47

- Facial Expressions
- Bodily Orientation, Movement, Posture
- Vocal Cues
- Interpersonal Distance
- Eye Contact, Touching
- Physical Appearance, Dress
- Local Behavioral Environment
 - Aspects of Situation Under Target's Control $_{_{46}}$

Facial Expressions of Emotion Ekman & Friesen (1975)

- Verbal vs. Nonverbal Communication
- Detection of Deception
 - "Leakage" of Nonverbal Cues
- C. Darwin
 - The Expression of the Emotions in Men and Animals (1872)
- Expression Implies Perception

Facial Cues to Happiness After Tomkins (1962), Ekman & Friesen (1975)

- Smile
- Showing Teeth(?)

Facial Cues to Surprise After Tomkins (1962), Ekman & Friesen (1975)

- Widening of Eyes
- Open Mouth

Facial Cues to Sadness After Tomkins (1962), Ekman & Friesen (1975)

- Eyebrows Lowered - Esp., Outer Corners
- Mouth Closed
- Push Lower Lip Out

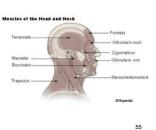
Facial Cues to Fear After Tomkins (1962), Ekman & Friesen (1975)

• Eyebrows Raised

- Eyes Opened Wide
- Head Held Back
- Chin Tucked In
- Mouth Open

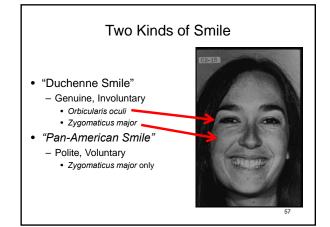
Facial Cues to Disgust After Tomkins (1962), Ekman & Friesen (1975)

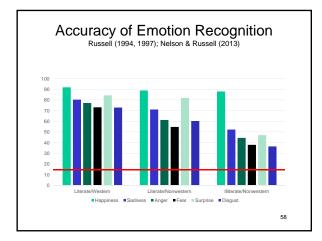
- Eyes Narrow, Squinting
- Upper Lip Raised
- Nostrils Flair


Facial Cues to Anger After Tomkins (1962), Ekman & Friesen (1975)

- Eyebrows Drawn Down and Together
- Raise Upper Eyelid
- Press Lips Together
- Push Lower Lip Up
- Contract Jaw Muscles

Facial Action Coding System Ekman & Friesen (1978); Hager, Ekman, & Friesen (2002), after Hjortsjo (1970)


- 66 Coding Categories
- Muscle Action Units
 - Inner Brow Raiser
 - Lip Corner Puller
 - Jaw Clencher
- Action Descriptors
 - Tongue Out
 - Lip Wipe
 - Head Back



Muscle Actions for Anger Ekman & Friesen (1975)

- Eyebrows Drawn Down and Together
 - Depressor glabellae
 - Depressor superciliiCorrugator
- Raise Upper Eyelid – Levator palpebrae superioris
- Press Lips Together
 Orbicularis oris
- Push Lower Lip Up
 - Mentalis
- Contract Jaw Muscles – Buccinator

The Universality Thesis...

Duchenne (1872); Darwin (1872); Tomkins (1962); Izard (1971); Ekman (1972); Shariff & Tracy (2011)

- Facial Expressions of Basic Emotions are Universally Recognized
- Product of Our Evolutionary Heritage

 Innate
 - Shared with Some Nonhumans (esp. Primates)
- Product of "Bottom-Up" Processing
 - Direct, Automatic Readout from Facial Musculature
- Invariant Across Culture
 - Contact with Western Culture; Literacy, Development

...and Its Discontents

Barrett (2011); Hassin et al. (2013); Nelson & Russell (2013)

- Accuracy Not Constant Across Emotions
- Context is Important
 - Background
 - Bodily Posture
- Methodological Issues
 - Posed vs. Spontaneous
 - Presentation of Multiple Expressions
 - Within-Subjects Design
 - Forced-Choice vs. Free-Response Format

Detection of Deception DePaulo et al. (1996)

Lying a Common Feature of Social Interaction

- Lies Occur on a Daily Basis (1-2/Day)
 - College Students: 1/3 of Social Interactions
 - Community Sample: 1/5 of Social Interactions

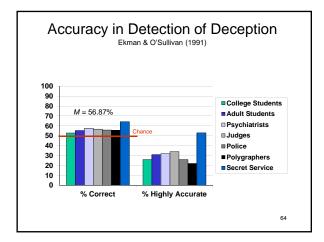
Typical Lie is Trivial

- Self-Oriented

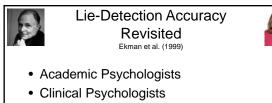
- Enhance Socially Desirable Traits
- Escape Punishment
- Other-Oriented
 - Protect Feelings of Others
 - Protect Relationships

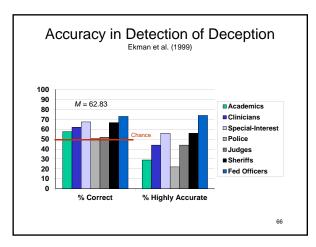
Lie-Detection Accuracy Ekman & O'Sullivan (1991)

- Detection of Deception Measure


 10 1-Second Interview Segments
 Half Truth-Telling, Half Lying
- Full Head-On View of Face and Body
- Target Describes Positive Emotions – Ostensibly Viewing a Nature Scene
 - Half of Targets Viewing Gruesome Scene
- Can Subjects Tell Who is Lying?

62


Lie-Detection Accuracy Ekman & O'Sullivan (1991)


- College Students
- Adult Extension Students
- Psychiatrists
- Judges
- Robbery Investigators
- Federal Polygraphers
- Secret Service Agents

- "Special Interest" Psychologists
- Law-Enforcement Officers
- Federal Judges
- Sheriffs
- Federal Officers (mostly CIA)

P

67

- "Leakage" Through Nonverbal Cues

 Facial
 - "Duchenne" Smiles When Telling Truth
 - "Pan-American" Smiles When Lying
 - Vocal
 - Increase in Fundamental Pitch
- Detected through Special Means
 - Trained Coders, Computer-Based Measures
- Can Also Be Picked Up in Real Time

Problems with "Accuracy"

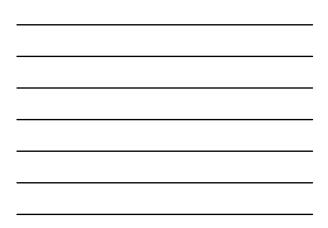
- Only Takes Correct Responses into Account
 True Positives, True Negatives
- Doesn't Take Errors into Account – False Positives, False Negatives
- Precision (Positive Predictive Value)
 PPV = TP / (TP + FP)
- Sensitivity (True Positive Rate)
 S = TP / (TP + FN)

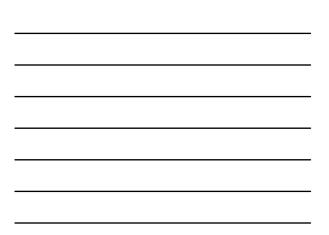
68

R

Signal-Detection Theory Green & Swets (1966), after Tanner & Swets (1954)

- Discriminate between "Signal" and "Noise"
- Components of Decision
 - Sensitivity (Information) d', A'
 Bias-Free
 - Bias (Criterion) β , C, B"
 - Expectation
 - Motivation


The Sigr	nal Detection Green & Swets (1966)	Paradigm
	<u></u>	ignal
	On	Off
<u>Response</u>		(Catch Trials)
"Yes"	HIT	FALSE ALARM
"No"	MISS	Correct
		Rejection
	,	70


Lie Detect	tion as Sigr	al Detection
	Ta	arget
Judgment	Lying	Not Lying
Lying	HIT	FALSE ALARM
Not Lying	MISS	CORRECT REJECTION
		71

Target Judgment Lying Not Lying Lying 80.0 33.9 Not Lying 20.0 66.1
Lying <u>80.0</u> 33.9
-,
Not Lying 20.0 66.1
1101 Lyning 20.0 00.7

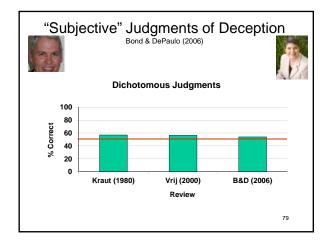
						9): Fe o Sen	deral (sitivity	Officer				
						Hi	ts					
		.01	.10	.20	.30	.40	.50	.60	.70	.80	.90	.99
	.01	0:00	1.05	1.49	1.80	2.07	2.33	2.58	2.85	3.17	3.61	4.65
	.10	-1.05	0:00	.44	.76	1.03	1.28	1.54	1.81	2.12	2.56	3.61
	.20	-1.49	44	0:00	.32	.59	.84	1.10	1.37	1.68	2.12	3.17
s	.30	-1.80	76	32	0:00	.27	.52	.78	1.05	1.37	1.81	2.85
Ē	.40	-2.07	-1.03	59	27	0:00	.25	.51	.78	1.10	1.54	2.58
Als	.50	-2.33	-1.28	84	53	25	0:00	.25	.53	.84	1.28	2.33
False Alarms	.60	-2.58	-1.54	-1.10	78	51	25	0:00	.27	.59	1.03	2.07
ű	.70	-2.85	-1.81	-1.37	-1.05	78	52	27	0:00	.32	.76	1.80
	.80	-3.17	-2.12	-1.68	-1.37	-1.10	84	59	32	0:00	.44	1.49
	.90	-3.61	-2.56	-2.12	-1.81	-1.54	-1.28	-1.03	76	44	0:00	1.05
	.99	-4.65	-3.61	-3.17	-2.85	-2.58	-2.33	-2.07	-1.80	-1.49	-1.05	0:0003

	+=	$\gamma = L$	Ekma iberal	n et al Bias f	. (199 oward	9): Fee 9): Fee d "Yes" rd "No	deral ((Calli	Officer ng Tai	rs Only rgets L	iars)	ellers	
						Hi	its					
		.01	.10	.20	.30	.40	.50	.60	.70	.80	.90	.99
	.01	2.33	1.80	1.54	1.43	1.29	1.16	1.04	.90	.74	.52	.00
	.10	1.80	1.28	1.06	.90	.77	.64	.51	.38	.22	.00	52
False Alarms	.20	1.58	1.06	.84	.68	.55	.42	.29	.16	.00	22	74
	.30	1.42	.90	.68	.52	.39	.26	.14	.00	16	38	90
	.40	1.29	.77	.55	.39	.25	.13	.00	14	29)51	-1.04
Ala	.50	1.63	.64	.42	.26	.13	.00	13	26	42	64	-1.16
alse	.60	1.04	.51	.29	.14	.00	13	25	39	55	77	-1.30
цщ	.70	.90	.38	.16	.00	14	26	39	52	68	90	-1.43
	.80	.74	.22	.00	16	29	42	55	68	84	-1.06	-1.58
	.90	.52	.00	22	38	51	64	77	90	-1.06	-1.28	-1.80
	.99	.00	52	74	90	-1.04	-1.16	-1.29	-1.43	-1.58	-1.80	-2.72

Signa	I-Detection A All Subjects Ekman et al. (1999)	nalysis:	
	Tai	rget	
Judgment	Lying	Not Lying	
Lying	65.5	39.9	
Not Lying	34.5	60.1	1
	<i>d'</i> = .66 <i>C</i> =07	,	
			75

d' Measure of Sensitivity Ekman et al. (1999): All Subjects 0 = No Sensitivity - = Worse Than Chance												
						Hi	ts					
		.01	.10	.20	.30	.40	.50	.60	.70	.80	.90	.99
	.01	0:00	1.05	1.49	1.80	2.07	2.33	2.58	2.85	3.17	3.61	4.65
	.10	-1.05	0:00	.44	.76	1.03	1.28	1.54	1.81	2.12	2.56	3.61
	.20	-1.49	44	0:00	.32	.59	.84	1.10	1.37	1.68	2.12	3.17
Ś	.30	-1.80	76	32	0:00	.27	.52	.78	1.05	1.37	1.81	2.85
False Alarms	.40	-2.07	-1.03	59	27	0:00	.25	(.51	.78)	1.10	1.54	2.58
Ala	.50	-2.33	-1.28	84	53	25	0:00	.25	.53	.84	1.28	2.33
alse	.60	-2.58	-1.54	-1.10	78	51	25	0:00	.27	.59	1.03	2.07
ű	.70	-2.85	-1.81	-1.37	-1.05	78	52	27	0:00	.32	.76	1.80
	.80	-3.17	-2.12	-1.68	-1.37	-1.10	84	59	32	0.00	.44	1.49
	.90	-3.61	-2.56	-2.12	-1.81	-1.54	-1.28	-1.03	76	44	0:00	1.05
	.99	-4.65	-3.61	-3.17	-2.85	-2.58	-2.33	-2.07	-1.80	-1.49	-1.05	0:046

	C Measure of Bias Ekman et al. (1999): All Subjects - = Liberal Bias toward "Yes" (Calling Targets Liars) + = Conservative Bias toward "No" (Calling Targets Truthtellers)											
						Hi	its					
		.01	.10	.20	.30	.40	.50	.60	.70	.80	.90	.99
	.01	2.33	1.80	1.54	1.43	1.29	1.16	1.04	.90	.74	.52	.00
	.10	1.80	1.28	1.06	.90	.77	.64	.51	.38	.22	.00	52
	.20	1.58	1.06	.84	.68	.55	.42	.29	.16	.00	22	74
ŝ	.30	1.42	.90	.68	.52	.39	.26	.14	_00	16	38	90
False Alarms	.40	1.29	.77	.55	.39	.25	.13 (.00	14	29	51	-1.04
Ala	.50	1.63	.64	.42	.26	.13	.00	13	26	42	64	-1.16
alse	.60	1.04	.51	.29	.14	.00	13	25	39	55	77	-1.30
Ë	.70	.90	.38	.16	.00	14	26	39	52	68	90	-1.43
	.80	.74	.22	.00	16	29	42	55	68	84	-1.06	-1.58
	.90	.52	.00	22	38	51	64	77	90	-1.06	-1.28	-1.80
	.99	.00	52	74	90	-1.04	-1.16	-1.29	-1.43	-1.58	-1.80	-2. 33



The Problem of Representativeness

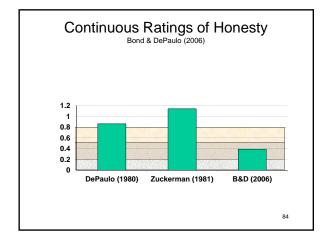
- Detection of Deception Measure (DDM)

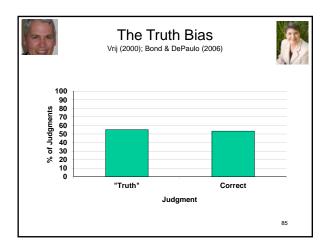
 10 of 31 Targets Who Leaked Cues (32%)
 21 of 31 Targets Did Not Leak (68%)
- DDM Measures Lie-Detecting Ability - When Cues to Lying are Available in the Stimulus
- But Cues to Lying are Not Always Present – Or Even Particularly Often! The Problem with Lie-Detection: Not that People Are Bad Lie Detectors

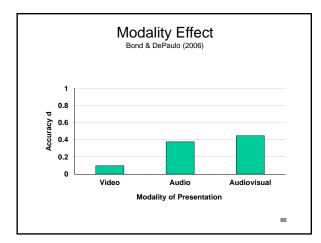
People Are Good Liars!

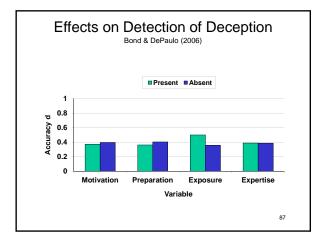
Signal-Detection Analysis: 384 Samples, <i>N</i> = 24,483 Bond & DePaulo (2006)									
	Tar	rget							
Judgment	Lying	Not Lying							
Lying	47	39							
Not Lying	53	61							
	<i>d'</i> = .20 <i>C</i> = .18		_						
			80						

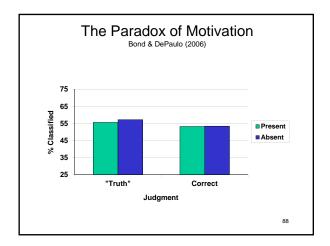
d' Measure of Sensitivity Bond & DePaulo (2006) 0 = No Sensitivity - = Worse Than Chance												
						Hi	ts					
		.01	.10	.20	.30	.40	.50	.60	.70	.80	.90	.99
	.01	0.00	1.05	1.49	1.80	2.07	2.33	2.58	2.85	3.17	3.61	4.65
	.10	-1.05	0:60	.44	.76	1.03	1.28	1.54	1.81	2.12	2.56	3.61
	.20	-1.49	44	0:60	.32	.59	.84	1.10	1.37	1.68	2.12	3.17
s	.30	-1.80	76	32	0.00	.27	52	.78	1.05	1.37	1.81	2.85
False Alarms	.40	-2.07	-1.03	59	27	0:00	.25	.51	.78	1.10	1.54	2.58
Ala	.50	-2.33	-1.28	84	53	25	0.00	.25	.53	.84	1.28	2.33
alse	.60	-2.58	-1.54	-1.10	78	51	25	0:60	.27	.59	1.03	2.07
ц	.70	-2.85	-1.81	-1.37	-1.05	78	52	27	0:00	.32	.76	1.80
	.80	-3.17	-2.12	-1.68	-1.37	-1.10	84	59	32	0.00	.44	1.49
	.90	-3.61	-2.56	-2.12	-1.81	-1.54	-1.28	-1.03	76	44	0:00	1.05
	.99	-4.65	-3.61	-3.17	-2.85	-2.58	-2.33	-2.07	-1.80	-1.49	-1.05	0:00

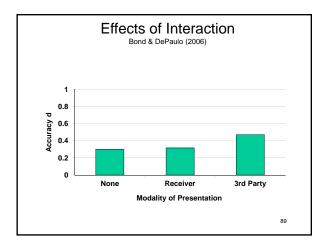

C Measure of Bias Bond & DePaulo (2006) - = Liberal Bias toward "Yes" (Calling Targets Liars) + = Conservative Bias toward "No" (Calling Targets Truthtellers)												
						Hi	its					
		.01	.10	.20	.30	.40	.50	.60	.70	.80	.90	.99
	.01	2.33	1.80	1.54	1.43	1.29	1.16	1.04	.90	.74	.52	.00
	.10	1.80	1.28	1.06	.90	.77	.64	.51	.38	.22	.00	52
	.20	1.58	1.06	.84	.68	.55	.42	.29	.16	90	22	74
s	.30	1.42	.90	.68	.52	.39	.26	14	.00	16	38	90
Ē	.40	1.29	.77	.55	.39	.25	.13	100	14	29	51	-1.04
A	.50	1.63	.64	.42	.26	.13	.00	13	26	42	64	-1.16
False Alarms	.60	1.04	.51	.29	.14	.00	13	25	39	55	77	-1.30
ű	.70	.90	.38	.16	.00	14	26	39	52	68	90	-1.43
	.80	.74	.22	.00	16	29	42	55	68	84	-1.06	-1.58
	.90	.52	.00	22	38	51	64	77	90	-1.06	-1.28	-1.80
	.99	.00	52	74	90	-1.04	-1.16	-1.29	-1.43	-1.58	-1.80	-2.82

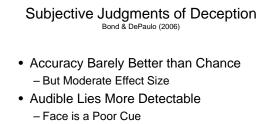

Variables Affecting Detection Accuracy Bond & DePaulo (2006)

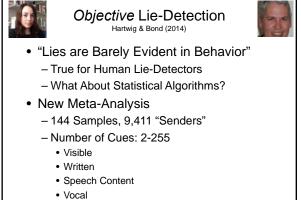

- Scale (Dichotomous vs. Continuous)
- Modality (Auditory, Visual, Both)
- Motivation to be Believed
- Preparation for Deception
- Receiver's Prior Exposure to Sender
- Exposure (Receiver vs. 3rd Party)
- Receiver Expertise

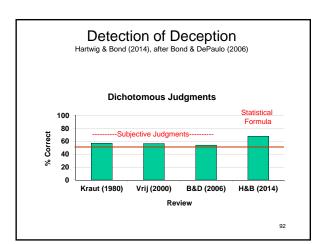


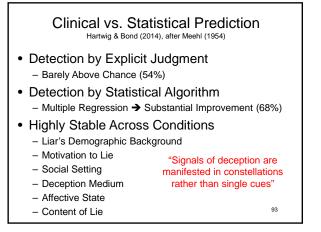


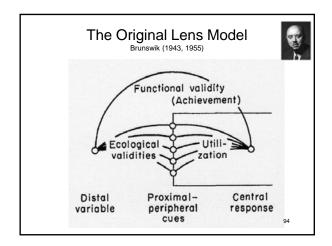




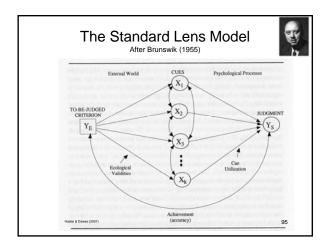


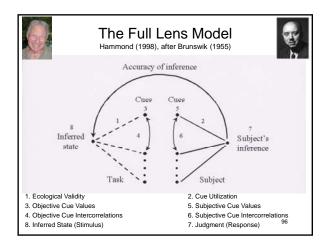

- Gesture Largely Unstudied
- · Paradox of Motivation
- Social Interaction


 Onlookers vs. Receivers



91


Impression

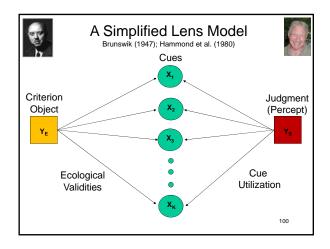


Cues to Deception

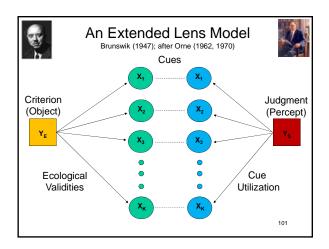
DePaulo et al. (2003); Hartwig & Bond (2011)

- 116 Papers, 120 Samples, 1,338 Effect Sizes
- 158 Cues to Deception in "Ordinary Lies"
 - Less Forthcoming
 - Less Compelling
 - Less Positive/Pleasant
 - More Tense
 - Fewer Imperfections

Cues to Judgments of Deception Hartwig & Bond (2011)

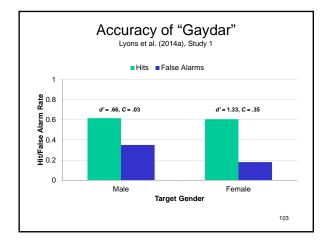

- Cues to Perceived Deception (r > .40)
 - Internal Inconsistencies/Discrepancies
 - Fidgeting
 - Statements Seem Planned/Rehearsed
 - Uncertainty, Insecurity, Lack of Assertiveness
 - Indifference
- Cues to Perceived Truthtelling (r > -.40)
 - Competence
 - Embedding Events in Spatial/Temporal Context
 - RealisticPlausibility
 - Pleasant Face

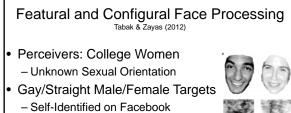
98


97

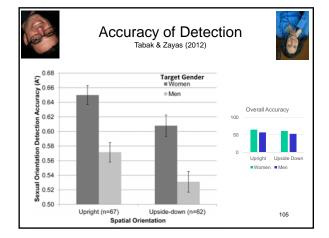
Cues to Actual Deception Hartwig & Bond (2011)

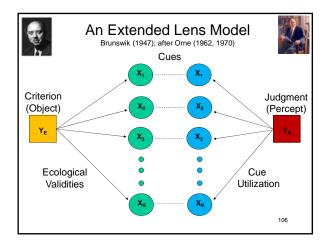
- Cues to Actual Deception (r > .19)
 - Indifference
 - Thinking Hard
 - Internally Inconsistent/Discrepant
 - Statement Seems Planned/Rehearsed
 - Miscellaneous Speech Disturbances
- Cues to Actual Truthtelling (r > -.20)
 - Cooperativeness
 - Vocal Impressions of Directness
 - Sensory Information
 - Embedding Events in Spatial/Temporal Context
 - Number of Behavioral Segments



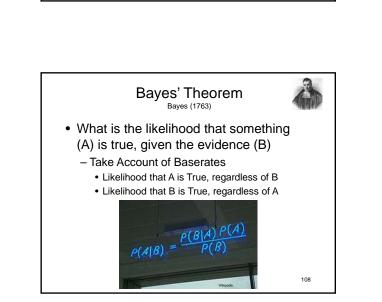

Accuracy of "Gaydar" in Women

- Perceivers: Women
 - Self-Identified Straight/Gay
- Targets: Headshots – Men/Women
- Conducted via Internet
- Classify Target as Homosexual/Heterosexual




- Faces Only
 - Upright
 - Permits Featural and Configural Processing
 - Upside-Down

- Impairs Configural Processing

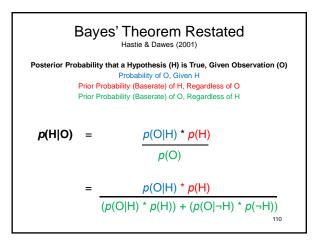


107

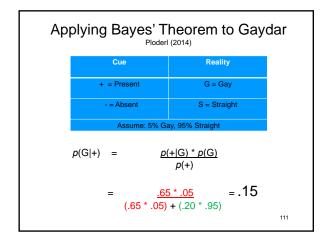
Homosexuals

Elements of Bayes' Theorem

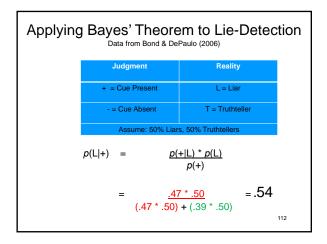
• *p*(H|O)

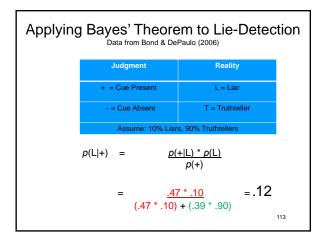


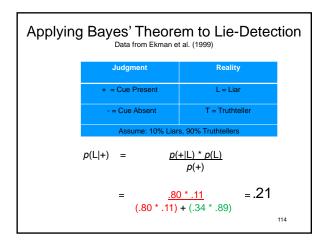
109

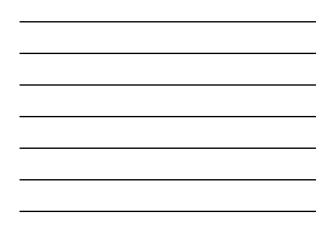

- Updated Posterior Probability of H
 Probability that a Hypothesis is True, Given Observation
- p(O|H)

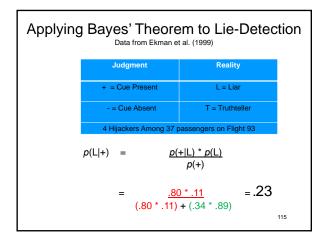
- Probability of Observation, Given Hypothesis

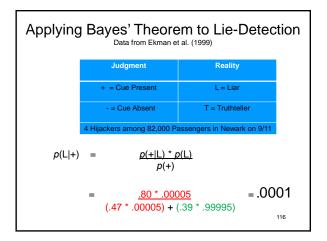

- *p*(H)
- Prior Probability of Hypothesis, Before Observation
- *p*(O)
 - Prior Probability of Observation, Regardless of H

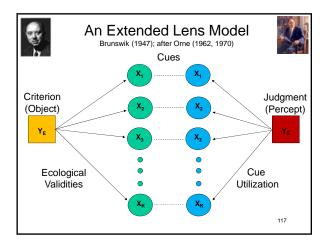












Information for Perception

- Information in the Stimulus
 Physical Features, Configuration
 - Linguistic Description
- Information in the Context (Background) – Broader than Gibsonian Construal
- Knowledge in Memory
 - Semantic, Procedural
 - Expectations
 - Beliefs