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Ultraproducts as directed limits

Given:

An index I

A family of structures (Ai )i∈I
An ultrafilter D on I

consider the following direct system:

Directed set (D,⊇)

Structures (
∏

i∈X Ai )X∈D
Homomorphisms πXY :

∏
X Ai →

∏
Y Ai (natural projections)

Its direct limit is isomorphic to
∏

D Ai .

Problem

Replace:

I with a poset (I ,≤)

D with a prime filter in the lattice Up(I ,≤) of up-sets of (I ,≤)

the products with more general limits (in the category-theoretic sense)
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Prime products

Definition
1 Wellfounded forests are posets whose ppl down-sets are wellordered.

2 A family (hij : Mi → Mj | i ≤ j ∈ I ) of homomorphisms is a “direct
system” if hjk ◦ hij = hik

3 Given:

(I ,≤) a wellfounded forest
F a filter in Up(I ,≤)
(hij : Mi → Mj | i ≤ j ∈ I ) a direct system of homs

M :=

{
a ∈

∏
i∈I

Mi : ∃I ′ ∈ F ∀i ≤ j ∈ I ′ hij(a(i)) = a(j)

}
.

(a ≡F b
def⇐⇒ Ja = bK ∈ F ) is a congruence on the reduct M to the

algebraic sublanguage The filter product
∏

F Mi is the quotient.
Interpret a relation R by

∏
F Ra ⇐⇒ JRaK ∈ F .

If F is prime, we call
∏

F Mi a prime product.
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Examples

1 Every ultraproduct is a prime product ((I ,≤) = (I ,∆I )).

2 Direct limits on any wellorder I is a prime product (F := Up(I ) \ {∅}).

Theorem

Ultraproducts of direct limits of structures along wellorders are filter
products of those structures.

Problem

Does there exist a prime product that is not isomorphic to an ultraproduct
of direct limits?
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Positive logic I

Definition (Ben Yaakov and Poizat (2007))

1 A positive (existential) (or ∃+) formula is a first-order formula built
from atomic formulae (including ⊥) by

2 A basic h-inductive formula is a first-order formula obtained by
universally quantifying, finitely many times, a conditional between ∃+
formulae. An h-inductive (or ∀+2 ) formula is a conjunction of basic
h-inductive formulae.
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Positive logic II

Example

1 The first-order theory of structures in an arbitrary quasivariety is
equivalent to a strict universal Horn theory, which is h-inductive.

2 In the language of unital rings, the field axioms are h-inductive.

Not the zero ring 0 = 1→ ⊥
No zero divisors ∀x ∀y [xy = 0→ x = 0 ∨ y = 0]
Inverses of nonzero elements ∀x [x = 0 ∨ ∃y xy = 1]

etc.
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Positive logic III

Counterparts of model theory à la A. Robinson can be developed for
positive logic.

Definition
1 An immersion is a map preserving and reflecting all positive formulas

2 M is a positively existentially closed (pec) model
⇐⇒ All homomorphism from M to a model of T is an immersion

Theorem (Ben Yaakov and Poizat (2007))

For every model M of an h-inductive model T , there is a pec model M ′ of
T and a homomorphism M → M ′.

etc.
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 Loś

Theorem

Given:

I a wellfounded forest

(hij : Mi → Mj | i ≤ j ∈ I ) a direct system

F a prime filter of Up(I ),

and an arbitrary positive formula φ(x) and a tuple a ∈
∏

F Mi :∏
F

Mi |= φ(a) ⇐⇒ Jφ(a)K ∈ F .

Wellfoundedness is necessary here.
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 Loś-Suszko

Theorem

If φ is merely ∀+2 , under the same assumptions∏
F

Mi |= φ(a)⇐= Jφ(a)K ∈ F .

Theorem

A class of structures is axiomatized by ∀+2 sentences if and only if K is
closed under ultraroots and prime products.
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Keisler-Shelah

A prime power is a prime product solely constructed from endomorphisms.

Theorem

TFAE:

1 A and B have the same positive theory.

2 Some prime product of ultrapowers of A is isomorphic to some prime
product of ultrapowers of B.

If A and B are saturated, then the following condition is also equivalent:
A and B have isomorphic prime powers.
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Remark

1 The saturation requirement is necessary for the simpler statement.

2 In practice, the saturation requirement can often be dispensed with
(especially with algebras).

3 The following conjecture follows from the GCH:

Conjecture

The following condition is also equivalent: Some prime power of an
ultrapower of A is isomorphic to some prime power of an ultrapower of B.

Problem

Does an arbitrary structure have a universal ultrapower?
(M is universal ⇐⇒ M is |M|+-universal)
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Proof

With the saturation assumption:

Since A is universal, there exists h : A→ A that factors through
an immersion from a pec model of the ∀+2 theory T of A.

Let Aω be the direct limit of the ω-sequence A
h→ A

h→ · · · .
Aω is a pec model of T realizing enough types consisting of
∃1 formulas.

Aω and Bω are back-and-forth equivalent.

Apply the original Keisler-Shelah theorem.
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Problems

1 When do we not need the saturation requirement?

2 Can we get rid of the GCH from the clearner version?

3 Are there more applications? (There is one in algebraic logic)
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Counterparts

Example (Welfoundedness is necessary)

Language {P} (unary predicate)

Poset (Z,≤)

Structures Ai := (Z, (−∞, i ])
Homomorphisms Identities

Prime filter F := {Z}
P is interepred by

∏
F Ai as ∅.

Example (No Keisler-Shelah type theorem just with prime powers)

Language Q ∪ {≤}
Structures Q∗ := Q ∪ {∞} (∞ is an upper bound of Q)

They have the same positive theory. Neither Q or Q∗ has nontrivial
endomorphisms. Thus prime powers are reduced powers, so they preserve all
Horn sentences. The existence (or absence) of the maximum is Horn.
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