Generalized ultraproducts for positive logic

Tommaso Moraschini¹ Johan J. Wannenburg² Kentaro Yamamoto³

¹University of Barcelona

University of Pretoria

³Czech Academy of Sciences

January 19, 2023

T.M., J.J.W., K.Y. (UB, UP, CAS)

Ultraproducts & positive logic

January 19, 2023 1/15

Ultraproducts as directed limits

Given:

- An index *I*
- A family of structures $(A_i)_{i \in I}$
- An ultrafilter D on I

consider the following direct system:

Directed set (D, \supseteq) Structures $(\prod_{i \in X} A_i)_{X \in D}$ Homomorphisms $\pi_{XY} : \prod_X A_i \to \prod_Y A_i$ (natural projections) Its direct limit is isomorphic to $\prod_D A_i$.

Problem

Replace:

- I with a poset (I, \leq)
- D with a prime filter in the lattice $Up(I, \leq)$ of up-sets of (I, \leq)
- the products with more general limits (in the category-theoretic sense)

Prime products

Definition

• Wellfounded forests are posets whose ppl down-sets are wellordered.

A family (h_{ij} : M_i → M_j | i ≤ j ∈ I) of homomorphisms is a "direct system" if h_{jk} ∘ h_{ij} = h_{ik}

Given:

• (I, \leq) a wellfounded forest

•
$$F$$
 a filter in Up (I, \leq)
• $(h_{ij}: M_i \to M_j \mid i \leq j \in I)$ a direct system of homs
 $M := \left\{ a \in \prod_{i \in I} M_i : \exists I' \in F \ \forall i \leq j \in I' \ h_{ij}(a(i)) = a(j) \right\}.$

 $(a \equiv_F b \stackrel{\text{def}}{\longleftrightarrow} [\![a = b]\!] \in F)$ is a congruence on the reduct M to the algebraic sublanguage The filter product $\prod_F M_i$ is the quotient. Interpret a relation R by $\prod_F R\overline{a} \iff [\![R\overline{a}]\!] \in F$. If F is prime, we call $\prod_F M_i$ a prime product.

T.M., J.J.W., K.Y. (UB, UP, CAS)

- Every ultraproduct is a prime product $((I, \leq) = (I, \Delta_I))$.
- ② Direct limits on any wellorder *I* is a prime product $(F := Up(I) \setminus \{\emptyset\})$.

Theorem

Ultraproducts of direct limits of structures along wellorders are filter products of those structures.

Problem

Does there exist a prime product that is **not** isomorphic to an ultraproduct of direct limits?

Definition (Ben Yaakov and Poizat (2007))

- A positive (existential) (or ∃⁺) formula is a first-order formula built from atomic formulae (including ⊥) by
- A basic h-inductive formula is a first-order formula obtained by universally quantifying, finitely many times, a conditional between ∃⁺ formulae. An h-inductive (or ∀⁺₂) formula is a conjunction of basic h-inductive formulae.

Example

- The first-order theory of structures in an arbitrary quasivariety is equivalent to a strict universal Horn theory, which is h-inductive.
- In the language of unital rings, the field axioms are h-inductive. Not the zero ring 0 = 1 → ⊥
 No zero divisors ∀x ∀y[xy = 0 → x = 0 ∨ y = 0]
 Inverses of nonzero elements ∀x[x = 0 ∨ ∃y xy = 1]
 etc.

Counterparts of model theory à la A. Robinson can be developed for positive logic.

Definition

- An immersion is a map preserving and reflecting all positive formulas
- M is a positively existentially closed (pec) model
 - \iff All homomorphism from M to a model of T is an immersion

Theorem (Ben Yaakov and Poizat (2007))

For every model M of an h-inductive model T, there is a pec model M' of T and a homomorphism $M \to M'$.

etc.

Theorem

Given:

- I a wellfounded forest
- $(h_{ij}: M_i \rightarrow M_j \mid i \leq j \in I)$ a direct system
- F a prime filter of Up(I),

and an arbitrary positive formula $\phi(\overline{x})$ and a tuple $\overline{a} \in \prod_F M_i$:

$$\prod_{F} M_{i} \models \phi(\overline{a}) \iff \llbracket \phi(\overline{a}) \rrbracket \in F.$$

Wellfoundedness is necessary here.

Theorem

If ϕ is merely \forall_2^+ , under the same assumptions

$$\prod_{F} M_i \models \phi(\overline{a}) \Leftarrow \llbracket \phi(\overline{a}) \rrbracket \in F.$$

Theorem

A class of structures is axiomatized by \forall_2^+ sentences if and only if K is closed under ultraroots and prime products.

A prime power is a prime product solely constructed from endomorphisms.

Theorem
TFAE:
A and B have the same positive theory.
2 Some prime product of ultrapowers of A is isomorphic to some prime
product of ultrapowers of B.

If A and B are saturated, then the following condition is also equivalent: A and B have isomorphic prime powers.

- The saturation requirement is necessary for the simpler statement.
- In practice, the saturation requirement can often be dispensed with (especially with algebras).
- The following conjecture follows from the GCH:

Conjecture

The following condition is also equivalent: Some prime power of an ultrapower of A is isomorphic to some prime power of an ultrapower of B.

Problem

Does an arbitrary structure have a universal ultrapower? (M is universal $\iff M$ is $|M|^+$ -universal) With the saturation assumption:

- Since A is universal, there exists h : A → A that factors through an immersion from a pec model of the ∀⁺₂ theory T of A.
- Let A_{ω} be the direct limit of the ω -sequence $A \xrightarrow{h} A \xrightarrow{h} \cdots$.
- A_{ω} is a pec model of T realizing enough types consisting of \exists_1 formulas.
- A_{ω} and B_{ω} are back-and-forth equivalent.
- Apply the original Keisler-Shelah theorem.

- Ben Yaakov, I. and Poizat, B. (2007). Fondements de la Logique Positive. *The Journal of Symbolic Logic*, 72 (**4**), 1141–1162.
- Poizat, M. and Yeshkeyev, A. (2018), Positive Jonsson Theories, Logica Universalis, 12, 101-127

- When do we not need the saturation requirement?
- ② Can we get rid of the GCH from the clearner version?
- Are there more applications? (There is one in algebraic logic)

Counterparts

Example (Welfoundedness is necessary)

Language $\{P\}$ (unary predicate) Poset (\mathbb{Z}, \leq) Structures $A_i := (\mathbb{Z}, (-\infty, i])$ Homomorphisms Identities Prime filter $F := \{\mathbb{Z}\}$ P is interepred by $\prod_F A_i$ as \emptyset .

Example (No Keisler-Shelah type theorem just with prime powers)

Language $\mathbb{Q} \cup \{\leq\}$

Structures $\mathbb{Q}^* := \mathbb{Q} \cup \{\infty\}$ (∞ is an upper bound of \mathbb{Q})

They have the same positive theory. Neither \mathbb{Q} or \mathbb{Q}^* has nontrivial endomorphisms. Thus prime powers are reduced powers, so they preserve all Horn sentences. The existence (or absence) of the maximum is Horn.

T.M., J.J.W., K.Y. (UB, UP, CAS)