
Communication Avoiding LU Factorization using

Complete Pivoting

Implementation and Analysis∗

Avinash Bhardwaj
Department of Industrial Engineering and Operations Research

University of California, Berkeley
Berkeley, CA 94704, USA

December 12, 2010

Abstract

Pivoting, in various applications is a challenge for
minimizing communication, since straightforward
implementations of well-known pivoting schemes do
not seem to permit us to attain communication lower
bounds. In the proposed work, we try to implement
and analyze, communication avoiding LU decom-
position with complete pivoting, the communication
bounds for which have already been derived. We
compare the stability and accuracy statistics with re-
spect to existing pivoting schemes, GEPP and GECP.

Keywords: Communication avoiding, Complete
pivoting, Pivoting schemes, LU decomposition.

1 Introduction

Solving linear systems of equations is one of the most
common operation in scientific computing. These
applications frequently lead to solving very large
dense set of linear equations, often with millions of
rows and columns, and solving these problems is
very time consuming.

In this work we present a MATLAB c⃝ implementation
of the communication-avoiding LU factorization
(CALU) algorithm for computing the LU factor-
ization of a dense matrix A distributed in a two
dimensional layout, developed by [DG]. This version
of CALU is based on a complete pivoting strategy,
that we show is numerically stable in practice.
Furthermore, we contrast the results thus obtained

∗Implementation and Analysis based on the algorithm from
a work in progress by Prof. James Demmel and Prof. Ming
Gu.

with classical pivoting schemes GEPP and GECP.

CALU has two main characteristics, first, it is la-
tency avoiding, as it allows for a significant decrease
in the number of messages exchanged during the
factorization relative to conventional algorithms.
Second, unlike conventional algorithms, CALU
allows the usage of the best available sequential
algorithms for computing the LU factorization of
a block submatrix, as for example the recursive
algorithms.

This work is structured as follows, in Section 2 we
provide an overview of the algorithm, followed by a
detailed summary of the implementation in Section
3. Section 4 illustrates the results obtained on the
numerical and stability analysis of the algorithm. We
finally conclude in Section 5, also providing directions
for future extensions and research ideas.

2 The Algorithm

In this section, we provide an overview of the
communication avoiding LU factorization algorithm
with complete pivoting as developed by [DG].

Assume we start with an m × n matrix, and use
panels consisting of b columns. The next b pivot
columns can be chosen in communication-avoiding
way by a reduction operation on panels, analogous
to how CALU [GDX08] uses a reduction operation
on blocks in a panel to choose the next b pivot rows.

Suppose we have a tree, with panels at the leaves.
Each interior vertex of the tree will take b candidate
pivot columns from its left child, b candidate pivot

1



Figure 1: Choosing the best b× b submatrix

columns from its right child, do RRQR [DG] on
the resulting 2b columns, and pass the (indices of
the) first b columns it selects to its parent. The
b columns chosen by the root of the tree are the
actual pivot columns to use. The algorithm then
uses TSLU [GDX08] on these best b columns to pick
their best b rows. The resulting b × b submatrix is
then permuted to the upper left corner of the matrix,
and perform b steps of LU with no pivoting. Then
the process repeats itself on the trailing submatrix
or the Schur’s complement. This same “tournament
pivoting” (Figure 1) has been explored by [GDX08]

The intuition is that by picking the best b columns,
and then the best b rows from these columns, we are

in effect picking the best b×b submatrix overall, which
is then permuted to the left corner. The communica-
tion costs are clearly minimal, since it just uses pre-
viously studied components [DG, GDX08]. To sum-
marize, we present Algorithm 1.

Algorithm 1 To compute the LU factorization of a
matrix A while avoiding communication using com-
plete pivoting.

Input A dense m× n matrix A.
Output The LU decomposition of the matrix A,

PAQ = LDU

.
I Partition the matrix A into m× b column panels.
II Use tournament pivoting (with RRQR) to find
the best b column panel.
III For the m× b column obtained in Step II, use
tournament pivoting (with TSLU) to obtain the
best b rows of this column panel.
IV Pivot this b× b submatrix thus obtained to the
top-left corner.
V Perform a step of LU without pivoting on this
submatrix.
VI Repeat steps I-V on the trailing matrix A =
SchurComplement(A)

Algorithm 1 yields the LU decomposition of the input
matrix A. The output of the algorithm gives the row
permutation matrix P , column permutation Q, the
strict lower and upper diagonal components L and
U , and a diagonal matrix D, which should ideally
contain the singular values of A.

3 Implementation

Algorithm 1 described in Section 2 was implemented
in MATLAB c⃝ . MATLAB c⃝ ’s inbuilt routine qr() was
used in place of RRQR, as it operates in a similar
communication avoiding manner and to enhance the
computational performance for large test matrices.
The tournament pivoting was implemented for both
Steps II and III of the algorithm. MATLAB c⃝ ’s inbuilt
lu() was utilized for Step III instead of TSLU for a
similar reason stated as above. The MATLAB c⃝ code is
not included in this document, however is available
on request.

4 Results and Analysis

We categorized the test matrices while collecting
the statistics for contrasting stability measures for

2



the three pivoting schemes, CALU-CP, GECP, and
GEPP, into the following three categories.

I. Matrices with structures,

A = D1RD2

where D1 and D2 are the diagonal matrices with
large random entries and R is a random matrix
whose entries follow a standard normal distribu-
tion.

II. Matrices with structures,

A = R1DR2

where D is the diagonal matrix with large ran-
dom entries and R1 and R2 are random matrices
whose entries follow a standard normal distribu-
tion.

III. The “Bad Matrix”: A matrix with 1’s on the
diagonal, −1’s on the strict lower diagonal, 1’s
in the last column and zeros elsewhere.

The following statistics were collected for the above
matrices, and were expected to behave as stated be-
low.

i. The condition number of the strict lower diago-
nal matrix L, expected to be of O(n).

ii. The condition number of the strict upper diago-
nal matrix U , expected to be of O(n).

iii. Entries of the diagonal matrix D, should be
sorted in the decreasing order, i.e.∣∣∣∣Di+1

Di

∣∣∣∣ ≤ 1 ∀ 1 ≤ i ≤ n

iv. D should ideally contain the singular values of
the input matrix A, i.e.

max
1≤i≤n

{∣∣∣∣Di

σi

∣∣∣∣ , ∣∣∣∣ σi

Di

∣∣∣∣} ≤ 1

where σi is the i-th singular value of A.

v. The algorithm should be backward stable, i.e.
the relative backward error defined by,

ρ =
||P ∗A ∗Q− L ∗D ∗ U ||2

||A||2
≤ ϵ

where ϵ denotes the machine epsilon (macheps)
(= 2.2204× 10−16 for MATLAB c⃝ )

The algorithm was tested for different values of n
the dimension of the square matrix A, namely n =
{200, 300, 500, 600}. The following plots illustrate the
results obtained for n = 600†

†The results obtained for other values of n are similar and
are available on request.

0 100 200 300 400 500 600

10
2.2

10
2.3

10
2.4

10
2.5

The block size parameter b

C
on

di
tio

n 
nu

m
be

r 
of

 th
e 

m
at

rix
 (

lo
g1

0 
sc

al
e)

(Case I) Variation in condition number of L with block size parameter

 

 
CALU−CP
GEPP
GECP

(a) Case I

0 100 200 300 400 500 600

10
4.4

10
4.5

10
4.6

10
4.7

10
4.8

The block size parameter b

C
on

di
tio

n 
nu

m
be

r 
of

 th
e 

m
at

rix
 (

lo
g1

0 
sc

al
e)

(Case II) Variation in condition number of L with block size parameter

 

 
CALU−CP
GEPP
GECP

(b) Case II

0 100 200 300 400 500 600
10

0

10
20

10
40

10
60

10
80

10
100

10
120

10
140

10
160

10
180

10
200

The block size parameter b

C
on

di
tio

n 
nu

m
be

r 
of

 th
e 

m
at

rix
 (

lo
g1

0 
sc

al
e)

(Case III) Variation in condition number of L with block size parameter

 

 
CALU−CP
GEPP
GECP

(c) Case III

Figure 2: Variation in condition number of L with
block size parameter b, n = 600

3



0 100 200 300 400 500 600
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

10
45

The block size parameter b

C
on

di
tio

n 
nu

m
be

r 
of

 th
e 

m
at

rix
 (

lo
g1

0 
sc

al
e)

(Case I) Variation in condition number of U with block size parameter

 

 
CALU−CP
GEPP
GECP

(a) Case I

0 100 200 300 400 500 600
10

4

10
5

10
6

10
7

The block size parameter b

C
on

di
tio

n 
nu

m
be

r 
of

 th
e 

m
at

rix
 (

lo
g1

0 
sc

al
e)

(Case II) Variation in condition number of U with block size parameter

 

 
CALU−CP
GEPP
GECP

(b) Case II

0 100 200 300 400 500 600
10

0

10
1

10
2

10
3

The block size parameter b

C
on

di
tio

n 
nu

m
be

r 
of

 th
e 

m
at

rix
 (

lo
g1

0 
sc

al
e)

(Case III) Variation in condition number of U with block size parameter

 

 
CALU−CP
GEPP
GECP

(c) Case III

Figure 3: Variation in condition number of U with
block size parameter b, n = 600

0 100 200 300 400 500 600
10

−16

10
−15

10
−14

The block size parameter b

B
ac

kw
ar

d 
E

rr
or

 (
lo

g1
0 

sc
al

e)

(Case I) Variation in backward error with block size parameter

 

 
CALU−CP
GEPP
GECP

(a) Case I

0 100 200 300 400 500 600
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

The block size parameter b

B
ac

kw
ar

d 
E

rr
or

 (
lo

g1
0 

sc
al

e)

(Case II) Variation in backward error with block size parameter

 

 
CALU−CP
GEPP
GECP

(b) Case II

0 100 200 300 400 500 600
10

−40

10
−20

10
0

10
20

10
40

10
60

10
80

10
100

10
120

10
140

10
160

The block size parameter b

B
ac

kw
ar

d 
E

rr
or

 (
lo

g1
0 

sc
al

e)

(Case III) Variation in backward error with block size parameter

 

 
CALU−CP
GEPP
GECP

(c) Case III

Figure 4: Variation in relative backward error with
block size parameter b, n = 600

4



0 100 200 300 400 500 600
10

2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

10
20

10
22

The block size parameter b

M
ax

im
um

 r
at

io
 o

f S
in

gu
la

r 
V

al
ue

s 
to

 D
 (

lo
g1

0 
sc

al
e)

(Case I) Variation in proximity of Singular values to D with block size parameter

 

 
CALU−CP
GEPP
GECP

(a) Case I

0 100 200 300 400 500 600
10

1

10
2

10
3

10
4

The block size parameter b

M
ax

im
um

 r
at

io
 o

f S
in

gu
la

r 
V

al
ue

s 
to

 D
 (

lo
g1

0 
sc

al
e)

(Case II) Variation in proximity of Singular values to D with block size parameter

 

 
CALU−CP
GEPP
GECP

(b) Case II

0 100 200 300 400 500 600
10

0

10
20

10
40

10
60

10
80

10
100

10
120

10
140

10
160

10
180

10
200

The block size parameter b

M
ax

im
um

 r
at

io
 o

f S
in

gu
la

r 
V

al
ue

s 
to

 D
 (

lo
g1

0 
sc

al
e)

(Case III) Variation in proximity of Singular values to D with block size parameter

 

 
CALU−CP
GEPP
GECP

(c) Case III

Figure 5: Variation in proximity of singular values σ
to D with block size parameter b, n = 600

0 100 200 300 400 500 600
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

10
45

index (n)

S
in

gu
la

r 
V

al
ue

(n
) 

an
d 

D
(n

) 
(lo

g1
0 

sc
al

e)

(CALU−CP) Proximity of Singular values to D

 

 
Singular Values
Diagonal Matrix D

(a) CALU-CP

0 100 200 300 400 500 600
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

10
45

index (n)

S
in

gu
la

r 
V

al
ue

(n
) 

an
d 

D
(n

) 
(lo

g1
0 

sc
al

e)

(GEPP) Proximity of Singular values to D

 

 
Singular Values
Diagonal Matrix D

(b) GEPP

0 100 200 300 400 500 600
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

10
45

index (n)

S
in

gu
la

r 
V

al
ue

(n
) 

an
d 

D
(n

) 
(lo

g1
0 

sc
al

e)

(GECP) Proximity of Singular values to D

 

 
Singular Values
Diagonal Matrix D

(c) GECP

Figure 6: Proximity of singular values σ to D, n =
600, b = 50

5



0 100 200 300 400 500 600
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

10
45

index (n)

S
in

gu
la

r 
V

al
ue

(n
) 

an
d 

D
(n

) 
(lo

g1
0 

sc
al

e)
(CALU−CP) Proximity of Singular values to D

 

 
Singular Values
Diagonal Matrix D

(a) CALU-CP

0 100 200 300 400 500 600
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

10
45

index (n)

S
in

gu
la

r 
V

al
ue

(n
) 

an
d 

D
(n

) 
(lo

g1
0 

sc
al

e)

(GEPP) Proximity of Singular values to D

 

 
Singular Values
Diagonal Matrix D

(b) GEPP

0 100 200 300 400 500 600
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

10
45

index (n)

S
in

gu
la

r 
V

al
ue

(n
) 

an
d 

D
(n

) 
(lo

g1
0 

sc
al

e)

(GECP) Proximity of Singular values to D

 

 
Singular Values
Diagonal Matrix D

(c) GECP

Figure 7: Proximity of singular values σ to D, n =
600, b = 150

Discussion of Results

The condition numbers of L and U in Case I and
Case II are comparable and of linear order for all
CALU-CP and GECP, wherein GEPP performs the
worst of the three. In Case III, a little thought yields
that partial pivoting will have a condition numbers
of O(2n), which explains the erratic behavior from
GEPP in Case III, where condition numbers are
∼ 10180 ≈ 2600.

The new algorithm is numerically stable as evi-
dent from the plots corresponding to the relative
backward errors (Figure 4). The only inconsistent
behavior is in Case II, for b = 600, i.e. when the
entire matrix can be accommodated in the system
cache. The reason this possibly can be attributed to
might be that we do LU without pivoting in this case.

The accuracy of the results is further strengthened
by the results obtained for the proximity ratio of the
singular values σ and the diagonal matrix D. The
results are consistent and as expected. Again, partial
pivoting is the worst performer here. We also look
closely at the individual singular values, in Figures
6 and 7 for b = 50 and b = 150, from which it is
clear that CALU-CP and GECP more or less imitate
the behavior of singular values, whilst GEPP’s erratic
behavior is unexplained.

5 Concluding Remarks

From the results obtained the following conclusions
can be drawn:

i. The condition numbers for L and U obtained
were observed to be of linear order for the tested
cases (n = 200, 300, 500, 600).

ii. The Diagonal matrix D does proximate the sin-
gular values of the original matrices in the tested
cases (n = 200, 300, 500, 600).

iii. The relative backward errors observed in for the
test cases were of the order of machine epsilon
(2.2204× 10−16 in case of MATLAB c⃝ )

iv. The algorithm for Communication avoiding LU
decomposition with complete pivoting was seen
to be computationally and numerically stable for
the tested cases (n = 200, 300, 500, 600).

v. The algorithm when compared to the classical
GECP algorithm was stable at par, wherein the
GEPP algorithm, was the worst of the lot, and

6



behaved erratically for most of the test cases as
expected.

Scope for future work

i. Theoretical bounds can be derived for the statis-
tics observed in the work, namely the condition
numbers of L and U , the relative backward error
ρ, and the proximity ratio of the singular values
to the diagonal matrix D.

ii. Parallel implementations can be done and tested
for computational performance.

References

[DG] James Demmel and Ming Gu.
Communication-avoiding pivoting.

[GDX08] Laura Grigori, James W. Demmel, and
Hua Xiang. Communication avoiding gaus-
sian elimination. In Proceedings of the
2008 ACM/IEEE conference on Supercom-
puting, SC ’08, pages 29:1–29:12, Piscat-
away, NJ, USA, 2008. IEEE Press.

7


