
Psychological Methods
Troubleshooting Bayesian Cognitive Models
Beth Baribault and Anne G. E. Collins
Online First Publication, March 27, 2023. https://dx.doi.org/10.1037/met0000554

CITATION
Baribault, B., & Collins, A. G. E. (2023, March 27). Troubleshooting Bayesian Cognitive Models. Psychological Methods.
Advance online publication. https://dx.doi.org/10.1037/met0000554

Troubleshooting Bayesian Cognitive Models

Beth Baribault and Anne G. E. Collins
Department of Psychology, University of California, Berkeley

Using Bayesian methods to apply computational models of cognitive processes, or Bayesian cognitive mod-
eling, is an important new trend in psychological research. The rise of Bayesian cognitive modeling has been
accelerated by the introduction of software that efficiently automates the Markov chain Monte Carlo sam-
pling used for Bayesian model fitting—including the popular Stan and PyMC packages, which automate
the dynamic Hamiltonian Monte Carlo and No-U-Turn Sampler (HMC/NUTS) algorithms that we spotlight
here. Unfortunately, Bayesian cognitive models can struggle to pass the growing number of diagnostic
checks required of Bayesian models. If any failures are left undetected, inferences about cognition based
on the model’s output may be biased or incorrect. As such, Bayesian cognitive models almost always require
troubleshooting before being used for inference. Here, we present a deep treatment of the diagnostic checks
and procedures that are critical for effective troubleshooting, but are often left underspecified by tutorial
papers. After a conceptual introduction to Bayesian cognitive modeling and HMC/NUTS sampling, we out-
line the diagnostic metrics, procedures, and plots necessary to detect problems in model output with an
emphasis on how these requirements have recently been changed and extended. Throughout, we explain
how uncovering the exact nature of the problem is often the key to identifying solutions. We also demon-
strate the troubleshooting process for an example hierarchical Bayesian model of reinforcement learning,
including supplementary code. With this comprehensive guide to techniques for detecting, identifying,
and overcoming problems in fitting Bayesian cognitive models, psychologists across subfields canmore con-
fidently build and use Bayesian cognitive models in their research.

Translational Abstract
Cognitive models may be used to quantitatively express a proposed cognitive process as a computational
model that, when applied to behavioral data, can infer parameters with rich psychological interpretations.
When cognitive models are developed in a hierarchical Bayesian framework, they can capture significantly
more nuanced and complex theories about the nature of latent cognitive processes, while inheriting all of the
benefits of Bayesian analyses. There has recently been a marked increase in the use of the Bayesian cognitive
modeling approach, but these models can be difficult to apply properly: They frequently encounter signifi-
cant computational problems, and hierarchical priors that meaningfully reflect domain knowledge about
each parameter are often challenging to specify. This makes it incredibly important for practitioners of
Bayesian cognitive modeling to be able to recognize and overcome these problems, as conclusions about
cognition based on a model’s output risk being deeply flawed if problems are left unresolved. In this tutorial,
we offer detailed and comprehensive guidance on how to detect, characterize, and resolve problems with
Bayesian cognitive models through the process of troubleshooting. After a conceptual introduction to
Bayesian cognitive modeling and state-of-the-art Bayesian sampling methods, we outline the diagnostic
checks, procedures, and plots necessary to detect problems in model output, and explain how uncovering
the exact nature of the issue can naturally lead to solutions. With this accessible guide to the most essential
techniques for troubleshooting problems in fitting Bayesian cognitive models, psychologists across subfields
can more confidently build and use Bayesian cognitive models in their research.

Keywords: cognitive modeling, Bayesian methods, computational models, Hamiltonian Monte Carlo

Beth Baribault https://orcid.org/0000-0001-7370-2183
Wewould like to thankMichael Lee for his generous comments, which helped

to substantively improve the manuscript. We also wish to thank our reviewers for
their perspectives and comments, as well as AspenYoo, AmyZou,Milena Rmus,
Gaia Molinaro, and Soobin Hong for their comments on an earlier draft.
This work was supported by NIH Grant #R01MH119383.
The code has been made publicly available as part of the matstanlib

library and can be accessed at https://github.com/baribault/matstanlib.

Beth Baribault contributed toward writing–original draft, writing–
review and editing, software, and visualization. Anne G. E. Collins
contributed toward writing–review and editing, supervision, and funding
acquisition.

Correspondence concerning this article should be addressed to
Beth Baribault, Department of Psychology, Helen Wills
Neuroscience Institute, University of California, Berkeley, 2121
Berkeley Way, Berkeley, CA 94720, United States. Email: baribault@
berkeley.edu

Psychological Methods
© 2023 American Psychological Association
ISSN: 1082-989X https://doi.org/10.1037/met0000554

1

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://orcid.org/0000-0001-7370-2183
https://orcid.org/0000-0001-7370-2183
https://orcid.org/0000-0001-7370-2183
https://github.com/baribault/matstanlib
https://github.com/baribault/matstanlib
https://github.com/baribault/matstanlib
baribault@berkeley.edu
baribault@berkeley.edu
baribault@berkeley.edu
https://doi.org/10.1037/met0000554
https://doi.org/10.1037/met0000554
https://doi.org/10.1037/met0000554

The Bayesian revolution of the last few decades (S. P. Brooks,
2003) has enabled a much larger pool of psychologists than ever
before to apply Bayesian methods in their work (Andrews &
Baguley, 2013; van de Schoot et al., 2017). Thanks to tutorial
books and papers targeted at psychologists (e.g., Rouder et al.,
2009; Kruschke, 2014), it is no longer rare to see Bayesian hypothesis
tests and Bayesian linear models reported in psychological research.
However, Bayesian data analysis is not the only approach to using
Bayesian methods in psychological research: In this paper, we will
discuss a different approach, Bayesian cognitive modeling, in which
Bayesian methods are used to implement cognitive process models
(Lee & Wagenmakers, 2013; not to be confused with Bayesian mod-
els of mind1). Process models are increasingly being used (Jarecki et
al., 2020) to provide formal, testable accounts of the possible psycho-
logical mechanisms underlying observed behavior (Navarro, 2021).
Using hierarchical Bayesian methods for cognitive modeling confers
many benefits, such as the ability to quantify uncertainty in parameter
estimates while simultaneously accounting for individual differences
and other meaningful structures directly in a model (Lee, 2011).
Bayesian cognitive modeling is a principled and coherent approach
to the quantitative evaluation of psychological theory.
While using Bayesian methods for cognitive modeling had long

been the province of mathematical psychologists, as it required com-
fort with mathematical statistics and statistical programming (Gilks
et al., 1995; Gelman et al., 2013; for an example, see Rouder &
Lu, 2005), this has changed with the maturation of software that
automates the Markov chain Monte Carlo (MCMC) methods
(S. Brooks et al., 2011) most popularly used for Bayesianmodel fitting2

(such as JAGS: Plummer, 2003; and Stan: Carpenter et al., 2017)
and software that likewise automates Bayesian model specification
(for linear models: Bürkner, 2017; and for select cognitive models:
Ahn et al., 2017). These developments have made Bayesian cogni-
tive modeling accessible to psychologists across subfields, including
cognitive psychologists (e.g., Donkin et al., 2016; Navarro et al.,
2016; Westfall & Lee, 2021), cognitive neuroscientists (e.g., Frank
et al., 2015; Nunez et al., 2019; Peters & D’Esposito, 2020), clinical
psychologists (e.g., Haines et al., 2020; Brown et al., 2021; Lasagna
et al., 2022), and social psychologists (e.g., Pleskac et al., 2018;
Golubickis et al., 2018; Schaper et al., 2019).
However, while linear statistical models (e.g., multilevel regression

models) can be relatively easy to implement in a Bayesian framework,
Bayesian implementations of cognitive models tend to require more
careful testing and tweaking before they may be confidently applied
to data. This is because most Bayesian cognitive models have charac-
teristics that are known to pose challenges for Bayesian model fitting,
even for the dynamic Hamiltonian Monte Carlo (HMC) algorithms
(e.g., Hoffman & Gelman, 2014) that we restrict our attention to
here. In order to quantitatively express cognitive mechanisms,
Bayesian cognitive models often require complicated, nonlinear like-
lihood functions. In order to incorporate relevant domain knowledge,
nonconjugate priors over restricted domains are often used. In some
families of cognitive models, correlations among model parameters
are closer to the rule than the exception (Turner et al., 2013;
Krefeld-Schwalb et al., 2022). Hierarchical model structures are com-
mon, if not universally encouraged (Boehm et al., 2018), as they allow
for the simultaneous account of group- and individual-level effects
(among other meaningful dependencies; Lee, 2011; Scheibehenne
& Pachur, 2015). These features all tend to produce posterior geome-
tries that are challenging for MCMC algorithms to navigate, and

therefore heighten the risk of computational failures. If active steps
are not taken to conduct computational checks for such failures, as
well as consistency checks of other key assumptions about model
behavior, then any inference based on model output risks being fun-
damentally flawed.

As such, the ability to detect, diagnose, and remedy problems—via
procedures which we collectively call troubleshooting—is essential
for practitioners of Bayesian cognitive modeling. Unfortunately, trou-
bleshooting seems to be a blind spot in the didactic literature on
Bayesian methods aimed at cognitive scientists. Of these past tutorial
papers and books, those that introduce the core concepts of Bayesian
data analysis often do not cover Bayesian cognitive modeling (e.g.,
Etz & Vandekerckhove, 2018; Kruschke, 2014). Those that focus
on Bayesian cognitive model implementation, design, and develop-
ment (e.g., Rouder & Lu, 2005; Lee, 2008; Shiffrin et al., 2008;
Vanpaemel, 2010; Lee & Wagenmakers, 2013; Heathcote et al.,
2015; Annis & Palmeri, 2018; Lee, 2018; Heathcote et al., 2019;
Schad et al., 2021; Greene & Rhodes, 2022) tend to underspecify
the model-checking steps required before a model may be used for
inference.3 This is complicated by the fact that model-checking tech-
niques have evolved and improved over time, such that failure modes
that were not previously able to be detected may now be reliably
exposed.

Specifically, recent advances in Bayesian statistical practice have
amended and broadened the suite of diagnostic checks of Bayesian
model output that are deemed necessary. Consider for a moment
that the most familiar convergence diagnostic, R̂ ≤ 1.1, has been con-
sidered standard since the 1990s (Gelman & Rubin, 1992; Gelman et
al., 1995). In just the past couple of years, the computation of R̂ has
been made markedly more sensitive, such that R̂ values must now
meet the far more stringent criterion of being ≤ 1.01 (Vehtari et al.,
2021; Gelman et al., 2020). As we will discuss in detail here, recent
developments have mandated other significant changes, the collective
effect of which is that some previously sufficient model output will
now fail convergence checks. Other changes are a result of the collec-
tive shift away from previously preferred MCMCmethods, including
Gibbs sampling (via JAGS: Plummer, 2003), toward a newer, more
efficient, and more robust method, HMC (via Stan: Carpenter et al.,
2017; and PyMC: Salvatier et al., 2016). The increasingly popular
class of HMC sampling algorithms (Duane et al., 1987; Neal,
2011), including the No-U-Turn Sampler (NUTS; Hoffman &

1 It is important to note that Bayesian cognitive modeling is also distinct
from a Bayesian theory of mind approach (which is sometimes termed
“Bayes in the head”; e.g., Griffiths et al., 2008). Bayesian models of mind
view Bayes’ theorem as a cognitive mechanism in and of itself that is capable
of capturing how one might rationally update their beliefs about the world in
light of their experiences. In contrast, Bayesian cognitive models are used to
express a wide variety of other candidate cognitive mechanisms and pro-
cesses (which are not required to be rationaland as such, models may even
be explicitly designed to capture nonoptimal behavioral patterns; e.g.,
Busemeyer et al., 2011); Bayesian methods are only used as the technique
for parameter estimation.

2 Although other state-of-the-art methods including variational Bayes (Blei
et al., 2017; Galdo et al., 2020) and Sequential Monte Carlo (Dai et al., 2022;
Gunawan et al., 2020) are also used,MCMCmethods remain the most widely
used family of algorithms for Bayesian cognitive model fitting.

3 Some of these sources also use linear models as their guiding example,
rather than cognitive process models. It is important to distinguish between
the two, as some techniques for the testing and development of linear models
are of limited use or importance for cognitive models, and vice versa.

BARIBAULT AND COLLINS2

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Gelman, 2014) and the advanced dynamic HMC sampler imple-
mented in Stan (Stan Development Team, 2022)—which we collec-
tively call HMC/NUTS, and focus on exclusively here—requires
that multiple additional diagnostic quantities are checked as a matter
of course (e.g., Bayesian fraction of missing information [BFMI];
Betancourt, 2016). Despite the sharp rise in the use of Bayesian cog-
nitive modeling and HMC/NUTS, these notable changes to the core
practices of Bayesian model fitting are still somewhat unfamiliar in
the Bayesian cognitive modeling literature.
As such, the primary purpose of this tutorial is to present a current,

thorough treatment of the computational and model consistency
checks required for proper use of Bayesian cognitive models fit via
HMC/NUTS sampling (see Figure 1), including clear guidance on
what to do when model output fails one or more checks. Because
some of the topics we cover here can seem arcane to psychological
researchers who are not conincidentally also Bayesian statistical
researchers, we have taken care to provide conceptual explanations
of all procedures, and to make connections to principles from cogni-
tive science, if not actively demonstrating by example, where possible.
To this end, we begin with an overview of the Bayesian cognitive

modeling approach so as to build the conceptual groundwork that is
prerequisite for successful troubleshooting. Then, we explain how
to check for computational and other problems using computational
diagnostics, consistency checks, and diagnostic plots, while offering
remedies for simpler issues along the way. Next, we explain how
thornier issues related to parameterization and posterior geometry
can be elucidated through the use of additional plots and other tech-
niques. Throughout, we offer guidance on how to better utilize and
triage among the many techniques for identifying the exact nature
of the problem, and how this characterization can naturally lead to
solutions. Finally, we review more application-dependent methods,
including posterior predictive checks, that assess how capable and
useful a model is (or is not) for a given research context.

Troubleshooting can be an exceptionally challenging stage within a
larger Bayesian cognitivemodelingworkflow, as it is often an iterative,
looping process through a sequence of steps that are rarely done in
sequence. As the selection of techniques is part of troubleshooting,
we make explicit note of many useful pathways among the diverse
steps of troubleshooting. We also make explicit notes on what compu-
tations, plots, and procedures are expected to bemanually programmed
versus automated by publicly available code libraries that support
Bayesian model evaluation. Using these support libraries, as we will
call them, is now both expected and encouraged (Gabry et al.,
2019). Currently, the most widely used support libraries are the
bayesplot package in R (Gabry & Mahr, 2021), the ArviZ pack-
age in Python (Kumar et al., 2019), and the matstanlib library in
MATLAB (which includes the scripts and Stan files for our example
models; Baribault, 2021). In the Appendix, we offer a brief overview
of how to use these libraries and include Table A1 for quick reference
of the commands needed in each library to automate many of the trou-
bleshooting techniques recommended in this tutorial.

Above all, it is the conceptual principles and processes of trouble-
shooting that we seek to emphasize here. We intend that this paper
will serve as a general reference for how to detect, diagnose, and cor-
rect many of the problems that are most frequently encountered in the
construction and development of Bayesian cognitive models, partic-
ularly when they are implemented with state-of-the-art HMC/NUTS
sampling methods.

Bayesian Cognitive Modeling

We begin with a review of the Bayesian cognitive modeling
approach, with an emphasis on the specific Bayesian techniques
and methods that are currently most commonly used in Bayesian
cognitive model fitting. While we assume a general familiarity
with Bayesian principles (see Etz et al., 2018 for a first introduction,
or Gelman et al., 2013 for a deeper treatment) and computational
cognitive modeling (e.g., Wilson & Collins, 2019; Farrell &
Lewandowsky, 2018), we include this overview to establish concep-
tual ideas and terminology that we rely on throughout the tutorial.

The Bayesian Framework

All Bayesian analysis derives from Bayes’ theorem:

p(u|x) = p(x|u) p(u)
�
p(x|u′) p(u′)du′

and Bayesian cognitive modeling, of course, is no exception. Bayes’
theorem tells us how the prior probability, p(θ), of an unobserved

Figure 1
An Abbreviated Representation of the Bayesian Cognitive
Modeling Workflow

Note. An abbreviated representation of the Bayesian cognitive modeling
workflow that emphasizes the subset of steps most relevant to troubleshoot-
ing. Model output that does not pass through the filter (representing the req-
uisite computational and consistency checks) must be rejected. A
troubleshooting process should be used to improve the model specification
such that the output might ultimately pass through all checks. Then, and
only then, may the Bayesian cognitive model output be used as the basis
for inference. (Note that the model-checking techniques listed in the figure
need not be performed in the order in which they appear. Prior predictive
checks, for example, would ideally be performed before model fitting;
see Gelman et al., 2020 for an exhaustive, ordered list.) See the online arti-
cle for the color version of this figure.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 3

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

parameter or set of parameters, θ, and the likelihood, p(x|θ), of
the observed data, x, may be used to derive the posterior probability,
p(θ|x), of the parameters in light of the data.
In a Bayesian cognitive model, the likelihood is specifically

used to express the cognitive process or mechanism theorized to
have produced the behavioral data. Cognitive model likelihoods
are typically nonlinear and may be rather complex, as in an evidence
accumulator model of response times (Ratcliff & McKoon, 2008;
Vandekerckhove et al., 2008), a cumulative prospect theory-based
model of decisions (Nilsson et al., 2011), or a reinforcement learning
(RL) model of action selection (Sutton & Barto, 2018; Dearden et
al., 1998). This assumed distribution of the data is conditional on
the unobserved parameters, which in a cognitive model will have
meaningful psychological interpretations as they are intended to cap-
ture one aspect or shape one dynamic of the cognitive process
expressed in the model. For example, in the respective aforemen-
tioned models, we interpret ν as the speed of evidence accumulation,
λ as the relative weighting of losses and gains, and α as the learning
rate. Bayesian analysis requires that each parameter has an associated
prior distribution, which should be defined over all conceivably pos-
sible values. In a cognitive model, these priors are often seen as an
opportunity to incorporate domain knowledge relevant to each of the
parameterized cognitive dynamics. In mature subfields, this knowl-
edge can be considerable, especially when a particular model has
been long used successfully (Tran et al., 2021). (For a worked exam-
ple of how to use domain expertise to support prior elicitation for
cognitive models, see Vanpaemel, 2010.)
The various dependencies among the parameters and data are

called the structure of the model. It is common for Bayesian cogni-
tive models to incorporate hierarchical structure in order to instanti-
ate theoretically meaningful dependencies among the parameters
and/or data (Lee, 2011; Scheibehenne & Pachur, 2015). For exam-
ple, a hierarchical structure may be used to simultaneously account
for data from multiple participants, groups, conditions, and so on,
at advanced levels of abstraction (Lee, 2011). A hierarchical exten-
sion of a Bayesian cognitive model over participants might specify
that each participant is allowed a unique set of parameter values
(e.g., in a RL model, their own learning rate, α), but all instances
of each parameter (e.g., all participants’ α parameters) are assumed
to be drawn from a common group-level hyperprior distribution. (In
other words, Bayesian cognitive models can be multilevel models.)
This example hierarchical extension confers dual benefits of sharing
informative power, which can be helpful in small-data situations,
and regularizing parameter estimates across participants, which
engenders more reliable estimates (Gelman & Hill, 2006;
Scheibehenne & Pachur, 2015; Katahira, 2016). Hierarchy is also
commonly used to enable Bayesian cognitive models to capture
how multiple cognitive processes simultaneously contribute to
behavior, or how the same cognitive process is responsible for per-
formance in multiple tasks. In the context of troubleshooting, it is
important to keep the structure of the model in mind—especially
hierarchical prior structure—as it is often the necessary context for
diagnostic interpretation.
Taken together, the likelihood and all priors compose a Bayesian

model specification. Because deriving the exact posterior analyti-
cally is feasible only for the simplest of models, virtually all
Bayesian cognitive model fitting relies on methods to approximate
the joint posterior distribution, including MCMC sampling algo-
rithms. MCMC algorithms allow for samples to be drawn from the

joint posterior in such a way that each possible value of a given
parameter should be drawn with a probability proportional to its
posterior density:

p(u|x)/ p(x|u)p(u).

If an infinite number of samples were to be collected, one would be
guaranteed to recover the true posterior (among other mathematical
guarantees; Gilks et al., 1995; S. Brooks et al., 2011; Gelman et al.,
2013). The finite number of posterior samples collected in practice
serves to approximate the true posterior in much the same way that
one might use a histogram of collected scores as an approximation
of the true distribution of scores in the population.

Ultimately, the goal is to use these posterior samples as the basis
for inference about the nature of the cognitive process or processes
the model was designed to capture. A wide variety of posterior esti-
mates may be computed, but most frequently, the mean or median of
the posterior samples for a given parameter will serve as its point
estimate, and a credible interval, such as a 90% highest-density
interval, will be used to express the posterior uncertainty in that esti-
mate. The exact estimates, analyses, and tests that are of greatest
interest will depend on the capabilities of your model as well as
your research goals.

An Example Bayesian Cognitive Model

As an example of a Bayesian cognitive model, we consider a hierar-
chical Bayesian implementation of an RLmodel (that wewill reference
throughout the paper aswe explain various troubleshooting techniques).
The model will be applied to simulated data, assuming an experimental
design inwhich each of the 30 “participants” completes four blocks of a
probabilistic three-armed bandit task. In each block, the simulated par-
ticipant sees the bandit stimuli 20 times and must learn from the results
of their choices, over time, which arm is most likely to give a point
reward (see Figure 2a). Across the trials within each block, the partici-
pant should more and more often select the bandit with the highest
reward probability. If this choice of bandit is considered correct, then
we will expect accuracy to start at chance (13), rise, and asymptote, in
a classic learning curve (as seen in Figure 2b).

Our RL model (Sutton & Barto, 2018) captures participants’
learning process by allowing for each stimulus to be assigned a sep-
arate value. At the start of each block, we assume that every partic-
ipant begins by assigning each stimulus the same starting value, such
as Q0= [0, 0, 0]. Then, on every trial, t, the values, Q, are scaled by
an inverse temperature parameter, β, and run through a softmax func-
tion to determine the probability of selecting each stimulus, π. The
participant then makes a choice, c, according to those probabilities:

pt i =
ebQt i

∑3
j=1 e

bQt j
∀i,

ct � Categorical (pt).

The difference between the reward resulting from that choice, r, and
the current value of the chosen stimulus constitutes a prediction
error, δ. The prediction error is used to update the chosen stimulus’
value according to a learning rate, α:

dt = rt − Qt(ct),

Qt(ct) = Qt(ct)+ adt.

BARIBAULT AND COLLINS4

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Finally, to capture how participants may forget over time, all
Q-values are subject to decay with rate w before the next trial
begins:

Qt+1 = Qt + f(Q0 − Qt).

Together, the action selection, value updating, and forgetting
mechanisms describe the cognitive process of learning over
time. As the exact dynamics of the process will be unique to
each individual, each participant p is allowed to have a different
value for β, α, and w. However, we also assume that all participants
come from a group4 that shares common cognitive processes. To
express this knowledge in the model, we incorporate a hierarchy
over participants, and we set participant-level priors for each
parameter:

bp � Normal (mb, sb)T [0,]

ap � Normal (ma, sa)T [0,1]

fp � Normal (mf, sf)T [0,1]

that is dependent on group-level hyperparameters, with associated
hyperpriors:

mb � Normal (10, 5)T [0,]

sb � Normal (0, 5)T [0,]

ma � Uniform (0, 1)

sa � Normal (0, 0.5)T [0,1]

mf � Uniform (0, 1)

sf � Normal (0, 0.5)T [0,1]

(The subscript T indicates a truncation of the distribution between
the specified bounds or bound.)

We selected this simple delta-rule learning model because it has
many of the features common to Bayesian cognitive models that
are known to pose problems for MCMC algorithms, such as the
aforementioned nonlinear and complicated likelihood and the hierar-
chical model structure. In addition, its parameters require restricted
ranges (α, w∈ [0, 1], b [R+, exclusive of 0), are decidedly not nor-
mally distributed (e.g., the empirical distribution for β is positively
skewed), and are well-known to be correlated (in some RL experi-
ments and models, though certainly not all). As such, this popular
cognitive model presents good opportunities for demonstrating the
principles of troubleshooting.

In fact, while the model specification above may appear sufficient
at first glance, it will reliably fail most of the required computational
and consistency checks (as described in the next section). As a
supplement to this tutorial, we include a MATLAB script,
example_RL.m, available in the examples folder of the mat-
stanlib library, that will specify, apply, and troubleshoot this
model. The script will run both this initial, flawed version of the
model and a final, improved version of the model. For readers
who are not MATLAB users but wish to follow along, we also
include standalone files containing Stan code for each version of
the model (as RL_broken.stan and RL_fixed.stan, respec-
tively)—but the model specification detailed above is sufficient to
implement the model in PyMC or any other HMC/NUTS sampling
package.

Running the RL model script and another example script, exam-
ple_funnel.m, will collectively reproduce many of the figure
panels in the remainder of this paper (all of which present real
Bayesian cognitive model output).

A Brief Introduction to Sampling Algorithms

By fitting or running a model, we specifically mean usingMCMC
sampling to estimate the joint posterior of the model (see Van
Ravenzwaaij et al., 2018, for an accessible introduction to MCMC
sampling that emphasizes many core principles). In practice, this
entails submitting the model specification and the data—whether
experimentally collected or simulated—to software designed to
automate MCMC sampling, via an interface specific to the program-
ming language used.

For the remainder of this tutorial, our discussion of MCMC sam-
pling will implicitly assume the use of HMC/NUTS sampling, as

Figure 2
Simulating Behavior From Our Example Reinforcement
Learning Model

Note. Many figures throughout this paper present output from our hier-
archical Bayesian implementation of a classic delta-rule reinforcement
learning model (detailed in text). When behavioral data for a probabilistic
3-armed bandit task (a) was simulated according to the model specifica-
tion, characteristic learning curves (b) are seen in the simulated data at the
group level (thick black line) and for individual subjects (lighter gray
lines), which are all above chance (dotted line) by the final trials. See
the online article for the color version of this figure.

4 Humans.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 5

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

currently HMC/NUTS algorithms represent the state-of-the-art in
MCMC methods (Gelman et al., 2020), and are immensely popular
due to their automation in the well-supported Stan and PyMC soft-
ware packages. However, we wish to note that much of this concep-
tual introduction—and a majority of the troubleshooting procedures
we discuss beginning in the next section—will also apply to other
MCMC sampling algorithms (for overviews, see Robert &
Casella, 2011; Van Ravenzwaaij et al., 2018). It is important to
build intuition for how posterior samples are generated in order to
understand the computational diagnostics, as failed diagnostic
checks will motivate many of the troubleshooting techniques we
recommend.
To begin, the sampler is initialized at a random point in the param-

eter space as defined by the model. This place and every subsequent
place the sampler visits in the posterior parameter space is recorded
as a sample from the joint posterior. From the random initial posi-
tion, the sampling algorithm is used to compute a trajectory within
the parameter space from the current position to the next, and
again from there to another position, and so on, until a prespecified
number of joint posterior samples have been collected. These sam-
ples, in order, are called a chain. Because the first few samples or
iterations in the chain will usually be more representative of the ini-
tializing value than of the true posterior (called the target distribu-
tion), the first handful or more of iterations in a chain are
discarded. In modern sampling software, this warmup period (or
burn-in, in older sources) is also used for adaptation of the sampler
itself. For example, roughly how big of a step in the joint parameter
space is taken with each successive iteration is a tuning parameter
that is adjusted during warmup (for a review of HMC/NUTS sam-
pler dynamics, see Betancourt, 2018).
In practice, multiple chains are run simultaneously, because with-

out multiple chains we cannot perform some of the computational
checks required to assess the quality of the sampling (Gelman &
Rubin, 1991)—in addition to saving precious time. A good expecta-
tion for Bayesian cognitive model applications is to collect at least
2,000 total iterations per each of four chains, with at least the first
500 apportioned for warmup, and the remaining 1,500 kept and
used for inference.5 Ultimately, the warmup period should be long
enough that the chains have converged (or agreed) on a stationary
distribution and the subsequent period of collecting kept iterations
should be sufficient both to pass the computational checks and to
support all planned uses of the marginal posteriors for inference.
However, when one is first beginning to work with a model, we rec-
ommend starting by collecting only 50 warmup and 50 kept itera-
tions, just to ensure the model runs. Then, we recommend
observing whether shorter runs of the model, such as 150 warmup
and 500 kept iterations, might reveal problems. These abbreviated
runs will allow one to begin the iterative process of troubleshooting
(which requires repeated model runs) without spending as much
time waiting for failures (Gelman et al., 2020). A high-level view
of the Bayesian cognitive modeling approach that emphasizes the
iterative nature of model testing and troubleshooting is presented
in Figure 1.

Sampler Output

The output of a Bayesian cognitive model is a collection of sam-
ples from the marginal posterior distribution for every parameter of
the model, as well as various diagnostic quantities from the

computation the sampler used to generate each iteration within
each chain. One should be mindful that which chain a sample was
collected in, and the order in which the samples were collected
within each chain is crucially important information. As such, one
should never engage a “permute” option during sample extraction:
Scrambling the iteration order and chain identity will prevent the use
of multiple required model-checking diagnostics, and as such, will
make your output unusable.

In the Appendix, we explain in more detail how the libraries men-
tioned earlier—including bayesplot in R, ArviZ in Python, and
matstanlib in MATLAB—are not only useful for extracting
samples, but are critical to facilitate many of the troubleshooting pro-
cedures we now describe. We recommend using Table A1 to check
the command needed to facilitate each troubleshooting procedure we
discuss as you work through the rest of the tutorial.

Detecting Problems

After the Bayesian cognitive model finishes running and posterior
samples and sampler diagnostics have been extracted, we first must
check whether we can detect any problems in the output, and if so,
initiate a troubleshooting process to identify a potential underlying
cause. For a Bayesian cognitive model, these checks will likely be
performedmany times. At an absolute minimum, they should be per-
formed twice: first, after applying the model to simulated data, and
again after applying the model to experimentally collected data.
The model will tend to be run many more times as the troubleshoot-
ing process is iterative: Each time a check fails, one should investi-
gate the output, tweak the model setup, and run the model again.

In the simulation study, data should be simulated according to the
data distribution in the model specification, using known or true
parameter values. While these values may be hand-selected, it is bet-
ter to randomly generate the true values directly from the prior dis-
tributions and to let new values be drawn each time the simulation
study script is called. The simulated data should also mimic the
experimental design as closely as possible (e.g., a similar
number of participants, similar stimulus sequences, etc.). Once the
troubleshooting process is complete for the simulation study, we
can progress to troubleshooting the model’s performance with
experimentally collected data (as needed).

In both applications, problems can be detected using the recom-
mended suite of computational checks and consistency checks to
probe, respectively, whether the HMC/NUTS sampling and the
model itself have functioned as intended. The computational checks
are primarily concerned with evaluating the computational diagnos-
tics for HMC/NUTS sampling, including R̂, divergences, BFMI, and

5 If you are familiar with Gibbs sampling, then you may notice that the rec-
ommended numbers of kept (and burned) iterations are far lower than the
number of iterations recommended for Gibbs sampling. With HMC/NUTS,
fewer posterior samples are required due to the much higher efficiency per
iteration, especially with respect to the ability of HMC/NUTS to move
throughout the kinds of correlated and high-dimensional parameter spaces
that are common in Bayesian cognitive modeling (Turner et al., 2013),
which greatly hinder Gibbs sampling (but not HMC/NUTS; Neal, 2011;
Hoffman & Gelman, 2014). As a result, where Gibbs sampling via JAGS
might require 10,000–100,000 samples, HMC/NUTS sampling via Stan or
PyMC might require only 1,000–2,000 samples. You may also notice that
we do not mention thinning samples. Thinning samples is no longer recom-
mended (Link & Eaton, 2012).

BARIBAULT AND COLLINS6

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

effective sample size (ESS; as discussed in detail below). Other
quantities, such as R∗ (a multivariate convergence metric for the
entire model; Lambert & Vehtari, 2022) and k̂ (which is computed
as part of Bayesian cross-validation; Vehtari et al., 2017), are diag-
nostically useful, but as they are not currently recommended default
diagnostics, and some require a deeper technical understanding, we
consider them to be beyond the scope of the present paper. The
assessments that we call consistency checks are a necessary comple-
ment to the computational checks, as they are designed to evaluate
key assumptions and expectations about model behavior, including
whether the model might be misspecified given the research context.
These computational and consistency checks (or collectively, diag-
nostic checks) all have associated visualizations, which we call diag-
nostic plots.
Each diagnostic check presents a different opportunity for trouble-

shooting a Bayesian cognitive model, as each is geared toward the
detection of different types of problems. It is intuitive to see these
diagnostic checks in terms of the questions they are most helpful
in answering. These questions are:

1. Is there any evidence that the chains disagree about any of
the marginal posteriors?

2. Is there any evidence that the posterior distribution was not
fully explored?

3. Is there any evidence that sampling was not efficient enough
to support good posterior estimates?

4. Is the model failing to generate coherent parameter
estimates?

5. Is the data the model expects to encounter unreasonable or
otherwise inconsistent with my domain expertise?

If the diagnostics suggest that the answer to any of these questions
is “yes,” then there is a problem with the model setup that absolutely
must be corrected. By understanding what each diagnostic metric,
plot, and procedure is designed to measure or assess, one can
begin to identify the problem and, accordingly, a solution.

Computational Checks

Convergence and Divergence

The most familiar MCMC diagnostic is R̂ (which is sometimes
called the “Gelman-Rubin statistic” in older sources; Gelman &
Rubin, 1992). If all of the chains have converged on the target dis-
tribution, then the chains should agree so strongly that they are func-
tionally identical, in which case R̂ will be close to 1. For each
parameter, the chains should specifically agree with respect to
both the location and spread of the marginal posterior distribution.
Furthermore, there should be no remaining influence of any chain’s
starting value and, over the full range of the kept iterations, all chains
should appear stationary. In this ideal case, R̂ will be exactly 1; a
value of R̂ that is meaningfully . 1 suggests that the chains have
failed to converge (Gelman et al., 2013; Vehtari et al., 2021).
Understanding how R̂ is computed can build intuition for what

kinds of problems can be detected by high R̂ (as we review
below). After splitting the chains (such that the first and second
half might temporarily be considered as separate chains), the base
R̂ computation essentially compares the between-chain variance to
the within-chain variance. R̂will be high if the chains are not mixing
(meaning failing to sample from similar ranges of values), or if any

of the chains are not stationary (meaning that a notably different
range of values is sampled over time), as in both cases the between-
chain variance will be disproportionately high (Gelman et al., 2013).
In the most recent reformulation of R̂ (Vehtari et al., 2021), the sam-
ples are converted to ranks and (approximately) inverse normal
transformed before the base R̂ formula is applied. The combined
effect of this transformation and a few other adjustments is that the
new and improved R̂ is simultaneously more robust (to monotone
transformations) and more sensitive (to some instances of poor mix-
ing that were not able to be detected by previous formulations;
Vehtari et al., 2021). (In other words, the Type I and Type II error
rates are both lower for convergence checks with the new formula-
tion of R̂; when viewed in this light, it is less surprising that the cri-
terion has been tightened from 1.1 to 1.01.)

As such, R̂ may be interpreted as the degree to which the chains
disagree, and a value of R̂ ≤ 1.01 is required for every instance of
every parameter in the model (Vehtari et al., 2021; Stan
Development Team, 2022). While high R̂ values do not suggest a
remedy in and of themselves, with the assistance of trace plots,
we can begin to understand why the chain disagreement flagged
by R̂ might be occurring. Trace plots visualize chain behavior by
plotting the sequence of parameter values sampled at each iteration
in each chain, in order, as a line (called the chain trace). In some sup-
port libraries, it is possible to include a histogram of the samples
across all chains alongside the chain traces; this summary represen-
tation of the marginal posterior is often helpful to interpret the trace
plot. Some classic examples of ideal, acceptable, and unacceptable
chain behavior are presented in Figure 3.

In an ideal situation where R̂ is close to 1 and the chains are sta-
tionary andmixing well, the chain traces will tend to appear in a trace
plot as they do in Figure 3a; this appearance has been said to resem-
ble a fuzzy caterpillar or the flower of a bottlebrush plant. More com-
monly in Bayesian cognitive models, there will be some degree of
autocorrelation within each chain, meaning a tendency for more
similar values to be sampled in successive iterations versus distant
iterations (as seen in Figure 3b). Unless R̂ or other diagnostics
have failed their check (or ESS, as discussed below, is undesirably
low), a mild amount of autocorrelation is not of concern, and the
model may simply be run for more kept iterations (Link & Eaton,
2012). Extreme autocorrelation, on the other hand (as in
Figure 3c), should be investigated further. This behavior can indicate
that some feature of the parameter space defined by the model is—
directly or indirectly—making it difficult for the chains to move effi-
ciently. ESS plots (discussed in the next subsection) will likely be of
help in searching for the specific underlying issue.

Another unacceptable chain behavior that may be recognized in a
trace plot is chain drift (Figure 3d). This may occur if the starting
points of one or more chains are still exerting an influence on the
sampled values. Alternatively, this may occur if the drifting chain
was in a local posterior maximum, and is (somewhat slowly) transi-
tioning to a higher-density region of the posterior space. Regardless
of the cause, R̂will be high in cases of drift because one (or more) of
the chains is not stationary. The first remedy to try in this situation is
to run the model again with a longer warmup period (e.g., twice the
number of warmup iterations) to give the chains more time to find a
stationary distribution.

Amore challenging pattern to resolve is when each individual chain
is stationary and moving well, but collectively the chains fail to mix,
as they disagree on the location of the posterior distribution (as in

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 7

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Figure 3e). This kind of confident disagreement is common to see
when a cognitive model is insufficiently identified. For example, in
a latent mixture model, behavior may be modeled as a weighted com-
bination of two or more cognitive processes. If these component pro-
cesses predict similar behavior, then the mixture parameter may only
be weakly identified, and different chains may settle on different val-
ues of the mixture proportion (Jasra et al., 2005). This phenomenon,
known as label-switching, can also occur inmodels where two param-
eters are directly multiplied, but the priors and data are insufficient to
identify more than the parameters’ product. In both cases, the first
remedy is to make the priors more informative. However, if domain
knowledge is not available or appropriate to incorporate, and the com-
ponent processes or parameters cannot be distinguished in another
way, then the experiment in which the behavioral data was collected
may simply not be sufficient to distinguish the processes intended
to be captured by the model.
The last pattern that may be signaled by high R̂ is when a chain

will sample the same value over and over for an extended period
of time (as in Figure 3f). When this sticking behavior occurs, it is
often a result of the sampler trying and failing to reach a nearby
area in the joint parameter space. A common scenario in which
this might be observed is in a hierarchical model, where a chain
for the hyper-level dispersion parameter gets stuck near(-ish) to 0
(due to a hierarchical funnel, as we will fully explain in the
Posterior geometry subsection; Betancourt & Girolami, 2015).
Most of the time, when sticking behavior is seen in a trace plot for
one parameter, it will be seen for others as well. Unfortunately,
this can sometimes make it challenging to identify the true culprit,
but if divergences (which we discuss in a moment) occur whenever
the chain sticks (as they often do), the divergences will likely be
more useful to investigate.

In some situations, trace plots can be exceptionally difficult to
interpret. For example, when a very high number of samples
have been collected, cramming the long traces into a standard-sized
plot can hide some problematic chain behaviors, and the traces will
spuriously appear good (see Figure 4). Trace plots can also be dif-
ficult to judge when distributions are highly skewed and/or fat-
tailed, in which case the stereotypical bottlebrush pattern
(Figure 3a) would not be expected even when the chains have con-
verged and are mixing well (for examples of how these chain traces
can look, see Vehtari et al., 2021). For these reasons, it is now rec-
ommended to use rank plots in addition to, if not in place of, trace
plots, so that any differences in the values being sampled by each
chain can be more reliably recognized (Vehtari et al., 2021). Rank
plots are a new diagnostic plot that is generated by ranking the sam-
ples pooled across all chains, then presenting a histogram of the
ranks originating from each chain separately. If the chains have per-
fectly converged, then the distribution of ranks for each chain
should approximate a uniform distribution (as in Figure 4a).
Deviations from uniformity can indicate a wider variety of conver-
gence issues. Two examples of problems that are more easily
detected in rank plots are presented in Figure 4b & c (for additional
examples, see Vehtari et al., 2021).

A relatively recent addition to the suite of computational checks is
divergences (or divergent transitions), which are specific to the
HMC family of algorithms. For each posterior sample generated
through HMC/NUTS sampling, whether the numerical trajectory
diverged is recorded as an indicator (1 or 0). The divergent iterations
occur when a chain has attempted to travel to a point in the joint pos-
terior, but failed to do so as it was unable to navigate the high cur-
vature in that region (Livingstone et al., 2019; Betancourt, 2018).
Divergences are a critically important diagnostic because they signal

Figure 3
Trace Plots for Troubleshooting High R̂

Note. Trace plots can be used to visualize chain (dis)agreement, and support troubleshooting of convergence issues signaled by high R̂. Only the chain traces
in (a) and (b) are acceptable; the traces in (cf) each have a common yet serious problem. Extreme autocorrelation (c), drift (d), label-switching (e), and sticking
(f), all tend to cause high R̂, and all are unacceptable. Troubleshooting techniques are necessary to identify the root of these problems. See the online article for
the color version of this figure.

BARIBAULT AND COLLINS8

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

that part of the posterior distribution could not be explored, and as
such, the available posterior samples are known to be biased (as is
demonstrated in Figure 5; Betancourt & Girolami, 2015;
Betancourt, 2018; Monnahan et al., 2017).
As such, when using an HMC/NUTS sampler, it is required to

check that no divergences occurred (Betancourt, 2018; Stan
Development Team, 2022). If there were any divergences, the sam-
ples cannot be trusted (Gelman et al., 2020) and should not be used
for parameter estimation, model comparison, or any other type of
inference (Betancourt, 2018; Stan Development Team, 2022).
Instead, the output should be investigated in order to determine
what parameter or part of the model specification might be inducing
the unnavigable posterior geometry.6

Admittedly, in very rare cases, the sampler may record a diver-
gence when the trajectory did not in fact diverge. While some
sources note that divergences may be disregarded in special cases
(Gabry et al., 2019; Schad et al., 2021), we find it important to
note that these sources are universally written in the context of stat-
istical linear models. In the context of Bayesian cognitive modeling,
we do not recommend ever disregarding divergences. Unlike linear
models, which have been used for more than a century and are
exceptionally well-understood, cognitive models are fundamentally
bespoke things: They are continually being customized, tweaked,
and extended, and entirely novel models are regularly designed. In
our experience, even established cognitive models can suddenly
fail when applied to a new dataset (as in a case where a participant
is not performing the task and produces a series of nonsensical
responses that “break” the model). For these reasons, we recommend
that practitioners of Bayesian cognitive modeling always work from
the assumption that divergences are genuine, and consider their
diagnostic potential.7

The simplest strategy to use in investigating the cause of diver-
gences is to generate trace plots with divergence indicators included.
In each support library, there is an optional input that will tell the

trace plot command to include a rug plot of divergences at the bot-
tom of the trace plot (wherein each iteration for which a divergence
was observed for any chain is marked by a red tick). Often if the
aforementioned sticking behavior is seen in a trace plot, then for
each chain, this sticking will correspond directly with the occurrence
of divergences (as seen in Figure 5a & b). However, if a chain
appears to stick in one parameter’s trace, this often constrains sam-
pling for other parameters such that the same chain may appear to
stick over the same iterations in their traces as well.

To be sure of which parameter is driving the divergences, one
should also visualize bivariate marginal densities with indicators
for divergent samples overlaid. For example, in Figure 5c, the

Figure 4
Rank Plots for Troubleshooting High RR̂

0 500 1000 1500
iteration

chain 1 chain 2

chain 3 chain 4

chain 1 chain 2

chain 3 chain 4

0 200 400 600 800 1000
iteration

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1500 3000 4500 6000 0 1500 3000 4500 6000

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1500 3000 4500 6000 0 1500 3000 4500 6000

chain 1

0 1000 2000 3000 4000 0 1000 2000 3000 4000

0 1000 2000 3000 4000

chain 3

0 1000 2000 3000 4000

chain 2

chain 4

0 200 400 600 800 1000
iteration

1

ba c

Note. Rank plots are a newway to visualize chain (dis)agreement, and support troubleshooting of convergence issues signaled by high R̂. In some cases, rank
plots can expose problems that were not visible in a classic trace plot. While all three trace plots look acceptable, the corresponding rank plots of the same
chains reveal that this impression is only genuine for (a), where the ranks for all chains appear roughly uniformly distributed. In (b), the sticking behavior
is hidden under the bulk of the chain traces, but is readily apparent from the peak in chain 1’s rank plot. Similarly, the lower variance of one chain in (c)
is not discernible in the trace plot, but the skewed rank plot for chain 3 clearly suggests that this chain is sampling a restricted range of values relative to
the others. See the online article for the color version of this figure.

6 Veteran practitioners of Bayesian cognitive modeling who migrate their
modeling pipelines from JAGS to Stan, for example, may experience that
model specifications that previously passed convergence checks may sud-
denly fail due to the detection of divergences. While it is tempting to imme-
diately conclude that Gibbs sampling is more capable of estimating such a
model, this is unlikely to be the case, as HMC/NUTS is a more efficient sam-
pler that circumvents many limitations of Gibbs sampling (such as being
challenged by correlated parameters, high dimensionality, etc.; Neal, 2011;
Hoffman & Gelman, 2014). Rather, it is more likely that the Gibbs sampler
was silently failing to explore the posterior distribution fully, and these fail-
ures only became detectable with the advanced diagnostics of HMC/NUTS.
Some cognitive models may have defining features that are ultimately unable
to be implemented with HMC/NUTS samplers, but this determination should
be made after troubleshooting and other inquiries.

7We offer supplementary code to demonstrate exactly this issue. The
example_funnel.m script (included in the examples folder of mat-
stanlib; Baribault, 2021) implements a toy model (adapted from
Betancourt & Girolami, 2015) that was written to demonstrate a serious struc-
tural problem common in hierarchical models that is often signaled exclu-
sively by divergences. We encourage you to run this script a few times:
You may notice that on some runs, only a small number, or even 0 diver-
gences occur. Consider whether a couple of divergences can be disregarded,
given that even this model which is designed to fail does not reliably throw
divergences.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 9

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

divergences are concentrated at the bottom of the joint distribution,
where the sigma parameter takes lower values. After using repara-
meterization to fix this model, it is apparent that a considerable por-
tion of the joint distribution (nearby to the divergences) was
previously inaccessible, but is now able to be sampled.
Reparameterization is often a successful approach to overcome the
problems flagged by divergences, by enabling the sampler to more
easily navigate the posterior geometry (without otherwise changing
the model, as we discuss in the Reparameterization subsection later
on). As such, the goal of investigating divergences is simply to iden-
tify which parameters or part of the model specification is the best
candidate for this reworking. We will return to problems indicated
by divergent transitions in the next section, Identifying the root issue.
Another recently introduced diagnostic that is specific to HMC/

NUTS sampling is the estimated Bayesian fraction of missing infor-
mation, BFMI (Betancourt, 2016). BFMI is computed from the
energy diagnostic that is recorded during the generation of each iter-
ation within each chain. It is a metric of the HMC/NUTS algorithm’s
accuracy at a much deeper computational level than the other diag-
nostics we discuss here. Nonetheless, the interpretation of BFMI is
clear: When the BFMI value for a given chain is extremely low, it
indicates that the chain was unable to fully explore the posterior dis-
tribution, and as such, the samples we do have are insufficient and
likely biased (Betancourt, 2016).
It is currently required that BFMI is≥ 0.2 for all chains (Betancourt,

2016; Stan Development Team, 2022). If BFMI is , 0.2 for one or
more chains, the output should not be used as the basis for inference
(Stan Development Team, 2022) as the posterior estimates will be
biased (Betancourt, 2016). Most often, when the BFMI check is failed,
other computational checks will be failed also; in this case, the other
diagnostics are more targeted, and so should be investigated first.
However, sometimes only the BFMI computational check will fail. In
this more difficult scenario, an energy diagnostic plot (Figure 6a & b)

should be used to visualize the energy distribution differences
for each chain, and a plot of multiple bivariate densities that includes
the energy diagnostic (as in Figure 6c) should be inspected. If one or
more parameters’ marginal posterior samples appear to correlate
with energy, then tweaking the places in the model specification
that most directly involve those parameters is most likely to help.

A third diagnostic that is specific to HMC/NUTS sampling is the
treedepth of the trajectory computation used to generate each sam-
ple. If the maximum treedepth was reached, it does not signal either
failure or bias as the other diagnostics do. Rather, it may be inter-
preted as an indicator that the sampler is taking too long to compute
each sample, and so maximum treedepth warnings are generally not
of as much concern (Livingstone et al., 2019; Stan Development
Team, 2022). If the maximum treedepth is being reached for a con-
siderable proportion of samples, there might be a problem—but as
this is very infrequently encountered in Bayesian cognitive model-
ing, we do not discuss treedepth or other advanced topics related
to sampler tuning dynamics here (but see Betancourt, 2018 or
Hoffman & Gelman, 2014 for an introduction).

Sampling Efficiency

The final computational check that the model output must pass is
related to sampling efficiency. Before the model output is used for
inference, one should check that the samples offer enough informa-
tion to support the specific sample-based estimates one intends to
use as the basis for inference (Gelman et al., 2013; Vehtari et al.,
2021). (While this concept is superficially similar to the idea of stat-
istical power, whereas power is considered a priori, sampling effi-
ciency is assessed posthoc. This is because the sampling
efficiency check depends not just on the number of samples one
set out to collect, but on the sequence of samples that were actually
collected.) Sometimes low-sampling efficiency is obvious, as in

Figure 5
Diagnostic Plots for Troubleshooting Divergences

Note. (a) In these rug plots, a red tick marks each iteration within a given chain where a divergence occurred. (b) It is useful to include a similar rug plot of
divergences (collapsed across chains) at the bottom of a trace plot. In this case, the divergences correlatewith the sticking behavior (seen for chain 1, dark green,
over iterations 650–800); the sampler is likely struggling to sample values near 0 for this parameter. (c) If univariate plots are insufficient to localize the issue, a
bivariate density plot can demonstrate whether divergent samples (in red) are randomly distributed or are concentrated in one area. Here, the divergences con-
centrate at the tip of this funnel, where lower values of sigma, a standard deviation hyperparameter, increasingly constrain the values for mu, a mean hyper-
parameter. (d) This common problem for hierarchical models is overcome by reparameterizing the model (see Reparameterization subsection for details). See
the online article for the color version of this figure.

BARIBAULT AND COLLINS10

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

cases of significant autocorrelation (see Figure 3c), where it appears
that effectively fewer places were visited in the posterior space than
we would expect considering the actual number of samples we
collected.8

Estimates of effective sample size. ESS (previously called the
number of effective samples, Neff) get at exactly this issue, by quan-
tifying sampling efficiency in a reliable way. When sampling effi-
ciency is poor, ESS will be much lower than the actual number of
samples collected. For all Bayesian models, it is now required that

the ESS is at least 100× the number of chains (i.e., ESS ≥ 400,
assuming four chains) for all parameters (Vehtari et al., 2021). By
default, the current implementation of ESS quantifies the sampling
efficiency in both the bulk and tails of the posterior distribution,
but ESS estimates can also be computed for other applications,
such as for specific quantiles and small intervals of quantiles, as
well as for the posterior mean, median, standard deviation, and
mean absolute deviation (Vehtari et al., 2021). Before reporting
credible intervals for Bayesian cognitive model parameters, one
should ensure that the ESS estimates for the relevant quantiles are
likewise above the criterion.

When ESS estimates are low, trace and rank plots may again be
used to probe whether this could be the result of mild autocorrela-
tion. If no other computational problems were detected and the
chain traces appear autocorrelated, then one may simply run the
model again with an increased number of kept iterations in
hopes of a proportional increase in the relevant ESS estimates.
(While past sources may recommend thinning the samples by a fac-
tor of n—meaning discarding all except every nth iteration—to
reduce autocorrelation posthoc, thinning is no longer recommended,
except in cases of severe computer memory constraints, as it
degrades the precision of posterior estimates; Link & Eaton,
2012.) In many cases, however, the poor sampling efficiency indi-
cated by low ESS estimates is signaling a deeper problem with the
model. In particular, low ESS may suggest that one or another factor
is making it difficult for the sampler to move through the posterior
space.

Diagnostic ESS plots (introduced very recently in Vehtari et al.,
2021) may be used to clarify whether low ESS is indicative of any
systematic sampling inefficiencies and biases. The first such plot
visualizes the efficiency over subsets of iterations (Figure 7a).
This plot is particularly useful as some sampling inefficiencies
may only become evident when sufficiently long chains are run.
Ideally, the sampling efficiency should be such that ESS estimates
grow linearly with the number of samples. One should be wary if
ESS estimates level off or decrease, as this suggests those periods
of sampling were relatively less efficient; this metric should be sta-
ble over time.

The other diagnostic ESS plots both help to visualize whether dif-
ferent values for a given parameter are being more or less efficiently
estimated. Visualizing whether ESS estimates are notably lower for
some quantiles (Figure 7b) or regions of quantiles (Figure 7c), espe-
cially if those quantiles seem to correlate with divergences or hitting
maximum treedepth, can help to identify what areas of the marginal
posterior are driving the low ESS. For example, while ESS might be
somewhat lower for extreme quantiles, if it is so markedly lower in
one region that it is below the ESS criterion, it may suggest that that
area of the parameter space was unable to be efficiently explored. If
this is the case, it might help to explain other diagnostics, such as
divergences, by isolating which part of the posterior is problematic.

In this way, diagnostic ESS plots can be helpful to distinguish
cases of too few samples due to an acceptable amount of autocorre-
lation (in which case the model may simply be run again to collect a
greater number of samples) from deeper, more fundamental prob-
lems with a model (in which case the model specification should
be improved). While the latter is more challenging to correct, we

Figure 6
Diagnostic plots for troubleshooting low BFMI

2niahc1niahc

chain 2

E - E

mu_beta

2 4 6 8

sigma_beta

0.
1

0.
15

0.
2

0.
25

mu_phi

0.
06

0.
1

0.
14

0.
18

sigma_phi

18
00

18
50

6

8

10

12

14

2

4

6

8

0.1

0.15

0.2

0.25

0.06
0.08
0.1
0.12
0.14
0.16
0.18

energy__

 marginal energy, π
 change in energy, π�E

E

chain 1

-20 -10 0 10 20

BFMI = 0.875

-20 -10 0 10 20

BFMI = 0.849

-40 -20 0 20 40

BFMI = 0.212

-40 -20 0 20 40

BFMI = 0.147

c

b

a

Note. (a) In an energy diagnostic plot, every chain’s marginal and transi-
tional energy distributions should overlap. (b) If they do not and the BFMI
is ≤ 0.02 (as seen for chain 2), the discrepancy suggests that this chain has
likely failed to efficiently explore the posterior distribution. (c) Including
the energy diagnostic in a grid of bivariate densities may be used to identify
which parameters are the most likely contributors to this inefficiency as
their samples will tend to correlate with the energy history. (None of the
parameters in this plot are suspicious.) See the online article for the
color version of this figure.

8While this is technically an oversimplification, it is the correct intuition.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 11

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

will discuss techniques to target and address these issues also in the
next section, Identifying the root issue.

Consistency Checks

Because the computational checks described in the previous sec-
tion were designed only to assess the quality of the HMC/NUTS
sampling, additional checks are necessary to assess whether the
model itself is behaving in a way that is consistent with our inten-
tions and assumptions. For example, whether the model—as it is
currently implemented—is able to capture the kind of behavior
that we expect to observe is acutely important to check, as this
directly bears on whether the model is appropriate for the research
context.
The two consistency checks that we discuss here are essential tech-

niques for detecting these sorts of problems with Bayesian cognitive
model behavior and should be seen as of equal importance to the
computational checks.

Prior Predictives

Even before the simulation study is performed, prior predictive
checks should be used to check whether the patterns of behavior pre-
dicted by the model specification are sensible, given the research
context (Box, 1980; Gelman et al., 2013; Lee & Vanpaemel,
2018). The first step is to generate the prior predictive distribution

by sampling a large number of datasets from the model specification.
To sample a dataset, hyperparameter values are drawn from the
hyperpriors, which are subsequently used to draw parameter values
from the priors, which are used to simulate data from the model’s
data distribution, given the experimental design (i.e., in the exact
same way that a dataset is generated for a simulation study). Next,
we simply visualize the distribution of this data or, more usefully,
of a meaningful summary statistic of the data (Lee & Vanpaemel,
2018).

This is called a prior predictive check, as it allows one to observe
the distribution of behavioral data that is implied by the model a pri-
ori (i.e., before any data is seen by the model), and evaluate whether
it is reasonable and consistent with your domain knowledge, theory,
the experimental design, and so on (Lee, 2018; Lee & Vanpaemel,
2018; Kennedy et al., 2019). If the prior predictive is inconsistent
with these expectations, it can reveal both subtle and deep problems
with a model specification. For example, even if each individual
prior seemed reasonable, a failed prior predictive check indicates
that the joint behavior of all priors in the context of the likelihood
is unreasonable (for a discussion, see Gelman et al., 2017).

The key to a useful series of prior predictive checks is the careful
selection of quantities to visualize. While a simple histogram of the
prior predictive data can be a good check for some linear models, for
a Bayesian cognitive model, it is far more common (and informative)
to select a variety of performance metrics and patterns of behavior,
each of which is meaningful within the specific research context. For

Figure 7
Diagnostic Plots for Troubleshooting Low Effective Sample Size (ESS)

1000 2000 3000 4000

total number of draws

0

500

1000

1500

2000

2500

E
S

S

bulk tail

0 0.2 0.4 0.6 0.8 1
quantile

0

1000

2000

3000

4000

E
S

S
 fo

r
qu

an
til

es

0 0.2 0.4 0.6 0.8 1
quantile

0

1000

2000

3000

4000

E
S

S
 fo

r
lo

ca
l i

nt
er

va
ls

1000 2000 3000 4000
0

500

1000

1500

2000

E
S

S

0 0.2 0.4 0.6 0.8 1

0

1000

2000

3000

4000

E
S

S
 fo

r
qu

an
til

es

0 0.2 0.4 0.6 0.8 1

0

1000

2000

3000

4000

E
S

S
 fo

r
lo

ca
l i

nt
er

va
ls

total number of draws quantile quantile

a b c

Note. Ideally, ESSwill grow linearly with the total number of samples (pooled across chains) in the efficiency per iteration plot (a), and all ESS estimates will
be above the dashed line representing the minimum ESS in the efficiency of quantile estimates plot (b) and the local efficiency of small-interval estimates plot
(c). While these patterns are seen for the well-behaved model (top), they do not hold for the problematic model (bottom), where tail ESS crashes as more
samples are collected and other ESS measures are often below the criterion. Troubleshooting techniques are necessary to identify the root of these problems.
See the online article for the color version of this figure.

BARIBAULT AND COLLINS12

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

example, in the context of a RL task, prior predictive checks of the
learning curves and asymptotic means would be essential. In the
context of a decision-making task, prior predictive checks might
include the participant-level overall accuracy, their rates of a subop-
timal behavior, or specific error type distributions.
In Figure 8, we present a prior predictive check for three different

specifications of our example RL model of the bandit task. By visu-
alizing the prior predictive accuracy distribution across trials, we can
understand what range of learning curves (as in Figure 2b) are more
or less likely under each RL model specification—and evaluate
whether the predictions of each model are reasonable and consistent
with our expectations.
If the prior predictive check reveals that too much probability has

been placed on grossly unrealistic data, it strongly suggests a prob-
lem with the model as specified (Lee & Vanpaemel, 2018). For
example, if an inappropriately wide swath of behavioral patterns is
predicted (e.g., if a model of response times predicted that, for an
easy 2AFC task, response times of 5 ms, 500 ms, and 5000 ms
were equally likely), it may suggest that the parameters of the
model are too loosely constrained; in this case, more informative pri-
ors may help. Unfortunately, another issue of this kind is evident
in the prior predictive for the initial RL model specification that
we outlined earlier in the tutorial (and have implemented in
RL_broken.stan). In Figure 8a, the prior predictive check has
revealed that the model considers it most likely for participants to
have accuracy near chance across all trials. As this is seemingly non-
sensical for a model of learning to predict, and fundamentally incon-
sistent with the gradual learning behavior we expect to observe, this
version of the RL model specification has failed the prior predictive
check and is unacceptable as a model of the bandit task.
It is also a problem if a severely restricted range of behavior is pre-

dicted, as in Figure 8b, where a significantly smaller range of learning
curves is implied by the model than we might observe in the lab. Even
though the most weight is given to the more commonly observed pat-
terns of behavior in the bandit task, this second version of the RL
model specification has also failed the prior predictive check because
it is too tightly constrained, most likely as a result of priors that are

excessively informative. Altering the priors and/or structure of the
model specification in a way that alleviates these sorts of imbalances
may not only lead to a more suitable prior predictive, but sometimes
may be sufficient to resolve some computational and recovery failures
by changing the posterior geometry.

Ideally, a prior predictive distribution will encompass a suffi-
ciently broad range of possible behavior such that any possible pat-
tern of behavior that we could potentially observe should be given a
nonzero amount of probability by the prior predictive, and the typi-
cal range of behavior we are expecting to observe will be given just
moderately more weight. After developing a third and final version
of the RL model specification (implemented in RL_fixed.stan),
the posterior predictive matches this ideal description (Figure 8c).

In general, whether a prior predictive check might be character-
ized as wholly unrealistic, overly broad, excessively constrained,
or reasonable, will be intensely dependent on the particular behavio-
ral pattern being predicted, the cognitive model, the research context,
and so on. However, a number of illustrative examples are available
in the Bayesian cognitive modeling literature, such as the effect of
vague versus informed priors on a psychophysical model offered
by Lee (2018; see also the examples in Kennedy et al., 2019; Lee
& Vanpaemel, 2018). Even when problems are not revealed, per-
forming a series of prior predictive checks is an excellent way to bet-
ter understand the behavior and capabilities of a model.

Parameter Recovery

Another way to assess the behavior of a Bayesian cognitive model
is to perform a parameter recovery check. After running a simulation
study, it can be informative to assess the correspondence between the
posterior estimates and the true values, especially with assistance
from recovery plots (see Figure 9). Before we outline three ways
in which we recommend using parameter recovery checks to facili-
tate troubleshooting, we will first review how parameter recovery
checks are most commonly used in Bayesian cognitive modeling.

In the Bayesian cognitive modeling literature, the quality of
parameter recovery is often rather loosely defined as (a) whether

Figure 8
Prior Predictive Check for the Example RL Model

4 8 12 16 20
trial

0

0.2

0.4

0.6

0.8

1

pr
op

or
tio

n
co

rr
ec

t

4 8 12 16 20
trial

0

0.2

0.4

0.6

0.8

1

pr
op

or
tio

n
co

rr
ec

t

4 8 12 16 20
trial

0

0.2

0.4

0.6

0.8

1

pr
op

or
tio

n
co

rr
ec

t

a cb

Note. Prior predictive checks assess whether the model specification is consistent with one’s expectations about behavior. Here, for three versions of our
example reinforcement learning (RL) model, prior predictive learning curves are plotted as a probability density over the proportion correct relative to
each pair of trials (where darker colors indicate higher density). The prior predictive should not place excessive weight on unlikely patterns of behavior
(a), nor should it place too little weight on patterns of behavior that could possibly be observed (b). The ideal prior predictive for our RL model example
(c) is consistent with the range of behaviors that are reasonably expected, but is diffuse enough to include all possible behavioral patterns. In practice, one
should use multiple prior predictive checks to evaluate a model, each of which visualizes a different quantity that is meaningful within the research context.
See the online article for the color version of this figure.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 13

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

each true parameter value is contained within the corresponding
95% credible interval for ≈95% of the parameters in the model
(Rubin, 1984; or a generalized version of this criterion if multiple
simulation studies are considered, as in Heathcote et al., 2019),
and (b) whether the recovery plots, which visualize the correspon-
dence between the true parameter values and the model-derived
estimates for each parameter, appear satisfactory. When recovery
is very good, the point estimates will all be sprinkled closely
along the diagonal unity line (representing perfect recovery),
the credible intervals will be small (suggesting the model is cer-
tain in its estimates), and no bias will be evident across the esti-
mates (i.e., the estimates will not appear to be consistently
concentrated either above or below the unity line). With this
description in mind, we might classify the quality of the recovery
in Figure 9a as strong, and the recovery in Figure 9b as relatively
weak.

However, one must be careful in interpreting the results of these
recovery checks. While parameter recovery is frequently presented
as a means to evaluate the accuracy and reliability of posterior esti-
mates (e.g., Heathcote et al., 2015), this would be an overzealous
interpretation of a single simulation study. Rather, each parameter
recovery simulation is simply a snapshot of a model’s performance
in the context of a single dataset. There is no guarantee that the cur-
rent pattern of parameter recovery will generalize to other possible
datasets (Talts et al., 2020), and the expectation to recover true val-
ues is different than the expectation of coherent inference (for a con-
cise discussion, see Lee, 2018). Parameter recovery checks are
ultimately heuristic, qualitative assessments based on brief looks
at model behavior.

Performing a formal, quantitative assessment of the internal con-
sistency of parameter estimates for a Bayesian model requires
simulation-based calibration (SBC; Talts et al., 2020; Cook et al.,

Figure 9
Parameter Recovery Plots

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

true value

es
tim

at
ed

 v
al

ue

es
tim

at
ed

 v
al

ue

true value

es
tim

at
ed

 v
al

ue

true value
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.8 1.2 1.6 20.6 1 1.4 1.8 2.2 2.4
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

es
tim

at
ed

 v
al

ue

0.1 0.2 0.3 0.4 0.5 0.6

true value

0.1

0.2

0.3

0.4

0.5

0.6

es
tim

at
ed

 v
al

ue

true value

es
tim

at
ed

 v
al

ue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

true value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ed f

ba c

Note. When recovery is strong (a), the 95% credible intervals (vertical lines) for approximately 95% of all parameters will include (i.e., recover) the true value
and the point estimates (markers) will cluster nicely around the unity or “perfect recovery” line (diagonal); very few 95% credible intervals exclude the true
value (red lines and x’s). The quality of recovery in (a–c) is all potentially acceptable: Depending on the context, the weaker recovery in (b) and mild flattening
of point estimates in (c) that is characteristic of over-shrinkage in hierarchical models may or may not be sufficient. The quality of recovery in (d–f) is generally
unacceptable. The extreme uncertainty in (d, main panel), which would fail to be detected if the credible intervals are omitted (inset), could signal that this
parameter is insufficiently identified. The consistent overestimation bias in (e) and abject failure to recover in (f) may indicate more severe problems with the
model. (Note that recovery plots should be square in order to support the consistent recognition of such archetypal patterns of recovery.) See the online article
for the color version of this figure.

BARIBAULT AND COLLINS14

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

2006). As wewill discuss in detail later on (in an eponymous subsec-
tion), SBC is the correct way to test, on a parameter-by-parameter
basis, whether the posterior estimates are systematically biased or
overly wide or narrow across the entire prior predictive distribution
of data. Unfortunately, the large number of small simulations
required makes the procedure rather time-intensive, and sometimes
impractical. As such, while SBC is an ideal capstone to the trouble-
shooting process, we still recommend parameter recovery checks—
conscientiously interpreted—as a quick-and-dirty check of Bayesian
cognitive model behavior at the end of every simulation study (as the
regular exploration of estimates is an important support to iterative
model evaluation processes, Box, 1980).
Specifically, we recommend using recovery checks in three infor-

mal, yet informative, ways to support troubleshooting for Bayesian
cognitive models. The first way is as a means to detect problems by
highlighting major points of failure. Any extreme and obvious prob-
lems are useful to investigate, especially in the earliest stages of trou-
bleshooting. For example, if a parameter is being estimated in a way
that demonstrates no relationship to the true values whatsoever (as
with the collapsed estimates in Figure 9f), or if data do not seem to
have distinguished the posterior in any way from the prior (as the sim-
ilar estimates in Figure 9d could suggest, depending on the prior spec-
ification), these major failures can be important clues to the root of
computational and other problems. Other times, these most extreme
modes of recovery failure can happen for a much simpler reason:
They may be the result of a garden-variety implementation error in
the model specification. (Figure 9f was actually the result of inadver-
tently commenting out a line in the data simulation code, such that the
parameter in question had no influence on the likelihood.) Other
times, such an abject lack of ability for the model to recapture one
or more dynamics of the proposed cognitive process will suggest a
deeper problem with the model, which should be investigated further.
Later in troubleshooting, recovery checks may also be used to bet-

ter understand important dynamics of model behavior through the
descriptive characterization of patterns in recovery plots. For exam-
ple, when the hierarchical prior structure is unduly constraining
lower-level parameter estimates, this can sometimes be evident
from a recovery plot. While the regularizing influence of the hyperp-
rior on lower-level estimates is decidedly a feature of hierarchical
models (Lee, 2011; Scheibehenne & Pachur, 2015), it can become
a bug if this influence is pulling or shrinking (Efron & Morris,
1977) the estimates toward the hyper-level mean to the extent that
genuine differences are suppressed. If the true and estimated values
appear correlated, but also flattened (as in Figure 9c), such that
higher true values are underestimated while lower true values are
overestimated, then it could suggest that such an excessive degree
of shrinkage (or over-shrinkage, as in Rouder & Lu, 2005) is occur-
ring. While a mild squashing of posterior estimates may be accepted
in some cases, extreme over-shrinkage, seen as nearly flat estimates,
indicates that the parameter estimates are being excessively con-
strained by the prior; this pattern is crucial to detect—and subse-
quently resolve—when individual differences are of interest. This
can occur if the hyperpriors are too strongly informative, or if the
data is not sufficient to meaningfully inform the individual parame-
ters (i.e., the realized likelihood is too flat).
It is important to note that recovery plots can easily be mischarac-

terized if credible intervals are omitted, as the degree of uncertainty
can substantively change the interpretation of a recovery plot. The
omission of credible intervals can be particularly detrimental to

the detection of weakly identified and unidentified parameters. For
example, Figure 9d presents two versions of the same recovery
plot for the mixture proportion in a hierarchical latent mixture
model. When the credible intervals are included, it is readily appar-
ent that the most pressing issue is the extreme uncertainty, which
should certainly be investigated. However, this important pattern
would have been impossible to glean from the point estimates
alone. Only the complete plot could lead us to correctly characterize
this mixture parameter as being weakly informed, which suggests
that either not enough data is available to update this parameter’s
value, or the data that is available is not informative enough. The
omission of uncertainty can also make it challenging to recognize
some hallmarks of structurally unidentified parameters. For example,
the posteriors for instances of an unidentified parameter might
appear quite certain about estimates that fail to meaningfully corre-
spond to the true values; recognizing this unusual pattern of confi-
dently incorrect recovery relies on the availability of information
about the posterior certainty (for an example, see Spektor &
Kellen, 2018).

Another important pattern that recovery plots may reveal is bias,
such that a parameter is being consistently over- or underestimated
(as in Figure 9e). This can occur if the prior places most of its weight
on values that are far from the values it would otherwise infer;
depending on the model and data, this can sometimes bias all esti-
mates in the same direction. Prior simulation (introduced later on
in the Parameterization subsection) is a good approach to investigate
this possibility, especially in hierarchical models when hyperpriors
can be challenging to specify. This kind of consistent bias may
also occur when two or more parameters are trading off, in which
case a pathological inverse coupling is observable each time the
model is fit. While this behavior is sometimes just a structural fact
of some cognitive models (e.g., Turner et al., 2013; Krefeld-
Schwalb et al., 2022), in other cases, it can be ameliorated bymaking
the priors for the relevant parameters more informative. That these
two rather different issues can cause the same pattern in a recovery
plot raises an important point: While Figure 9 showcases some clas-
sic recovery patterns, these are not uniquely mapped to a singular
underlying problem (e.g., while shrinkage often causes estimates
to appear squashed as in Figure 9c, the converse is certainly not
always true).

Finally, recovery checks can be an excellent tool to explore how
different design choices might change these patterns of parameter
recovery (Apgar et al., 2010; Lee, 2018). For example, if the
decay rate parameter in our example RL model seemed to be weakly
informed, we could perform additional simulation studies to explore
how increasing the number of participants, the number of bandit
problems per participant, and the number of trials per bandit problem
each might affect the strength of recovery differently. These sorts of
informal simulation-based investigations can be particularly useful
toward the end of the troubleshooting process, at which point the
model specification may be in good shape but whether the planned
experimental design would yield data that is sufficiently informative
for the parameters of interest may yet be unclear. Additional simula-
tion studies can shed much-needed light on whether the final exper-
imental design will strike a good balance between informativeness
and efficiency—which is particularly important in research contexts
where every data point is at a premium (Gluth and Jarecki, 2019).
While this is currently a less common application of parameter
recovery checks (but for a recent example, see Danwitz et al.,

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 15

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

2022), it is likely to be one that will increase in prevalence and
importance as the use of Bayesian cognitive models continues to
broaden.

Identifying the Root Issue

While some problems that have been detected by the computa-
tional and consistency checks will be easier to identify, other prob-
lems will require a longer and more investigative troubleshooting
process before the nature of the problem—and therefore a candidate
solution—can be identified. In many cases, visualizing the posterior
samples for multiple parameters simultaneously, with key diagnos-
tics included, will be a fruitful approach to understanding the root
cause of the detected problems.

Posterior Geometry

These visualizations are especially important tools when attempt-
ing to identify the cause of issues related to posterior geometry, such
as the regions of extreme curvature that HMC/NUTS samplers will
loudly struggle to traverse. As mentioned earlier, whenever the sam-
pler reports divergences, it indicates that an unnavigable region of
high posterior curvature was encountered. The goal is to uncover
where exactly in the joint posterior space that region is located,
and which parameters are most directly implicated in creating the
high curvature, so that the relevant section(s) of the model specifica-
tion might be reparameterized or otherwise improved.
Grids of many bivariate marginal posterior densities (as in

Figure 10) are often the most useful diagnostic visualizations in
this pursuit as they allow one to simultaneously search for concentra-
tions of divergences as well as posterior dependencies among pairs
of parameters that signal specific problems. This style of plot (which
is available in all support libraries; see Table A1) makes it readily
apparent when parameters are correlated, as their joint density will
appear as an oblong shape. While parameter correlations are well-
known to harm the quality of Metropolis and Gibbs sampling
(e.g., Turner et al., 2013), parameter correlations in and of them-
selves are rarely a cause for concern for HMC/NUTS sampling,
due to HMC algorithms’ avoidance of random walk behavior
(Neal, 2011). However, extreme correlations that seem to approach
collinearity, or appear as strange shapes such as bananas, will require
investigation. These features can suggest nonidentifiability with
respect to that pair of parameters, or other some other degenerate
model configuration, may be the root of the issue.
One should also be suspicious of bivariate densities with a funnel

shape, as is commonly observed in models with hierarchical prior
structure. For example, when setting priors directly on mean and
standard deviation hyperparameters, progressively smaller values
of the standard deviation hyperparameter will increasingly constrain
the range of the lower-level parameter values, which in turn con-
strain the value of the mean hyperparameter. This can induce the
progressively narrow funnel shape in the bivariate density. If the
“tip” of the funnel takes on a much higher curvature than the rest
of the posterior, then the sampler will struggle to access this region,
leading to a concentration of divergences close by (as is seen at the
bottom of the joint distribution in Figure 5c). If this scenario is rec-
ognized, the issue is often easy to correct by converting to a noncen-
tered parameterization (as demonstrated at the conclusion of this
section), which enables the funnel to be fully explored by breaking

the dependency between the relevant parameters (Betancourt &
Girolami, 2015).

Other potentially difficult-to-navigate posterior regions can occur
at parameter boundaries, especially when the boundary was intro-
duced via truncation. For example, a Normal prior that has been

Figure 10
Plots for Troubleshooting Problems Related to Posterior
Geometry

mu_beta

sigma_beta

mu_phi

sigma_phi

mu_alpha

sigma_alpha
-4

-3

-2

-1

z = 0

1

2

3

4

5

mu_beta

2

4

6

8

0.05

0.1

0.15

0.2

0.25

6

10 14 18

0.02
0.04
0.06
0.08

0.1
0.12

2 4 6 8

sigma_beta

2 4 6 8

0.
05

0.
1

0.
15

0.
2

0.
25

mu_phi

0.
05 0.

1

0.
15 0.

2

0.
25

0.
02

0.
04

0.
06

0.
08

0.
1

0.
12

6
8
10
12
14
16
18

2

4

6

8

0.05

0.1

0.15

0.2

0.25

sigma_phi

a

b

Note. Visualizing the posterior samples for multiple parameters simulta-
neously using (a) grids of bivariate marginal densities with diagnostic over-
lays and (b) parallel coordinate plots are both are useful to search for
problems related to posterior geometry. In the grid of densities, one should
look for parameters where divergences (red x’s) are not randomly distrib-
uted, but rather are clustered together. In the (z-scored) parallel coordinate
plot, where each line represents a joint posterior sample, one should look
for where the red lines representing divergent samples seem to “pull
together.” Both of these plots loudly suggest that the root of the issue is
an unnavigable region of high posterior curvature at the lower bound for
sigma_phi. See the online article for the color version of this figure.

BARIBAULT AND COLLINS16

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

truncated to create a lower boundary at −1 should not pose a prob-
lem except if the highest density in the target distribution is very
close to −1. For computational reasons that are beyond our scope,
this can make it challenging for the sampler to both enter and exit
this region, leading to a variety of problems. If it is at all possible
for such a prior to be adjusted while still respecting the relevant
domain knowledge or original theoretical justification, moving the
truncation further out or, preferably, choosing an alternative prior
that does not require truncation (as discussed in the next subsection)
should help to resolve these issues.
Unfortunately, when a very high proportion of the posterior sam-

ples are the result of divergences, it can be difficult to use the bivari-
ate density plots for troubleshooting as the densities can all seem to
be thoroughly covered in the red divergence indicators. In these
cases, a bivariate density plot can still be useful as a quick way to
view many univariate marginal densities (as shown along the diag-
onal of Figure 10a). If bumps or multimodality are observed in the
univariate distribution, this may suggest a place where the diver-
gences are more highly concentrated, even when it is not otherwise
apparent.
We can also search for concentrations of divergences with paral-

lel coordinate plots (as in Figure 10b). In this diagnostic plot, for a
given subset of model parameters, each joint posterior sample is pre-
sented as a separate line, with divergent samples shown in red. If the
divergent sample lines appear to “pull together” for one of the
parameters (while appearing randomly distributed across the values
of other parameters), it indicates that this parameter may be respon-
sible for the unnavigable curvature signaled by the divergences, and
naturally highlights the range of values that might be inaccessible.
How this issue should be resolved will depend on that parameter’s
role in the model specification.
A challenge in using either of these plots as diagnostic tools is that

there will almost always be too many parameters to include on the
plot at once. A strategy that we have found useful is to begin with
the parameters at the highest levels of hierarchy in the model, inves-
tigating all possible pairs, then working downward. At lower hierar-
chical levels where there are many parameter instances, including
one or two instances each of multiple parameters is generally more
useful than visualizing many instances of the same parameter.
However, in some cases, neither the parallel sample plots nor the
bivariate density plots, nor any other previously discussed diagnostic
techniques will clearly implicate any particular part of the model
specification. If the nature of the issue is still unclear after a thorough
troubleshooting process, a critical review of the model specification,
combined with exploratory changes, may prove more worthwhile.

Parameterization

When the troubleshooting process has led to the identification of a
parameter or segment of the model specification that is problematic,
one or more strategies to adjust this portion of the model specifica-
tion may be used to attempt to resolve the model’s issues. Here,
we review a number of useful techniques to change the parameter-
ization of the model, which may have small or large consequences
for the expression of domain knowledge through the priors and
the theoretical implications of the model overall. If the questionable
part of the model specification cannot be altered without severe
undesirable consequences for the interpretation of a key parameter,
or the model’s ability to instantiate a specific cognitive process,

one should instead try to reparameterize the model, as we discuss
in the next subsection.

In Bayesian cognitive models, it is not uncommon to use noncon-
jugate, nonnormal priors, nor is it uncommon to include hierarchical
structure in the model. Unfortunately, the conjunction of these two
design decisions can make it exceptionally difficult to specify
good hyperpriors. For example, while one may have an intuition
for what a good participant-level Gamma prior distribution would
be, onemay feel at a loss in determining suitable group-level hyperp-
riors for the shape and rate hyperparameters of that Gamma prior. In
this scenario, using prior simulation to visualize the distribution of
priors implied by different hyperpriors, and their collective effect
on the distribution of prior probability across the domain of a
given parameter, can offer the support needed to specify reasonable
hyperpriors.

In Figure 11, we demonstrate how prior simulation can be used to
both identify problems and investigate solutions. Given the specified
hyperprior distributions (top left in each panel), random samples
from each distribution (or function(s) of them; top right) are used
to define a random selection of priors (bottom). If prior simulation
reveals that extremely undesirable priors are being selected too
often, prior simulation should continue to be used to explore alterna-
tive hyperpriors. In these subsequent simulations, it can sometimes
be useful to constrain or transform the hyperparameters in such a
way that the unsuitable priors are no longer possible.

For example, in our efforts to improve the specification of our
example RL model, we used prior simulation to help specify a dif-
ferent prior and hyperprior for the learning rate parameter, α. In
place of the truncated Normal prior (that was likely unsuitable in
light of the failed prior predictive check), we decided to use a
Beta prior, as it is naturally defined over the same (0, 1) interval
as the learning rate. Our goal was to set hyperpriors that would
imply a distribution over Beta priors that is not unduly biased toward
any part of the parameter space (and so is lightly informative, given
the research context). In Figure 11a, our initial choice of Gamma
(1,1) hyperpriors was revealed to lead to the overselection of priors
that placed infinite weight over 0 and/or 1 (approximately 40% of
priors!), which is inconsistent with our intentions (represented by
the Beta(2,2) distribution) and unreasonable for a learning rate
(a prior that suggests no learning and perfect learning are both more
likely than gradual learning is silly). After we enforced a minimum
value of 1 for each hyperparameter, as shown in Figure 11b, horse-
shoe priors were no longer possible, and a more reasonable distribu-
tion over priors was achieved. In our final, corrected specification of
the example RL model (see RL_fixed.stan), we used exactly this
specification for the prior and hyperpriors for the learning rate, and a
similar setup for the decay rate, w (but with slightly different hyperp-
rior distributions, so that more prior weight is allocated to lower
values).

These sorts of bounding tricks are especially useful when there is
a need to exert control over the prior near a boundary to avoid model
misspecification (as for parameters whose values cannot conceiv-
ably be 0 and sufficient domain knowledge is available to further
specify what parameter values should qualify as “near 0” or “practi-
cally equivalent to 0”). In our example RLmodel, an inverse temper-
ature of β= 0 breaks the model (i.e., leads to a degenerate model
configuration), as the learned Q values will have no bearing on
action selection (and so α and w will be unidentified). As such, a
prior for β that apportions most of the prior probability to 0 and

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 17

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

values near 0 is effectively a model misspecification, as the most
prior weight is not just given to the least likely values, but to values
that are so inappropriate that one would conclude the model is mal-
functioning rather than accept the estimates. One approach to cope
with exactly this scenario is to use a boundary-avoiding prior
(Gelman et al., 2013; Chung et al., 2013). These parameterizations
should be approached with caution for dispersion parameters in hier-
archical models, where reparameterization may be preferable (as dis-
cussed at the end of this section), and in Bayesian linear statistical
models, where recommendations may be entirely different (for a
recent account, see Röver et al., 2021). However, for parameters in
Bayesian cognitive models, boundary-avoiding priors are sometimes
not only permissible, but more appropriate than alternative prior
specifications. In our final, corrected specification of the example
RLmodel, we use a Gamma prior for the inverse temperature param-
eter where the shape hyperparameter is required to be . 1; this cre-
ates a zero-avoiding prior by ensuring the Gamma distribution
allocates zero probability to a value of 0. In our earlier prior simula-
tion example, in which we set lower bounds on both hyperpara-
meters of a Beta distribution, you may notice that the revised prior
simultaneously avoids both the lower bound and the upper bound
(0 and 1; see Figure 11).
Prior simulation is often a critical support to prior predictive

checks and vice versa. While prior predictive checks may reveal
implications of the model that are inconsistent with one’s expecta-
tions, they rarely also reveal the exact cause of that inconsistency:
In these cases, prior simulation can be used to understand why a
prior predictive check failed, and therefore help to isolate the root
of the problem. However, good prior simulation results alone are
likewise insufficient: Prior predictive checks must be used to

demonstrate that all priors make sense collectively in the context
of the likelihood (from which they cannot be divorced; Gelman et
al., 2017).

If one is still struggling to simulate a sensible apportionment of
probability across the distribution of priors, then changing the distri-
butional form of the prior can open up additional opportunities for
model improvement. In particular, changing the form of a prior
may help in cases where one or more features of the model specifi-
cation are known to induce posterior geometries that are challenging
for HMC/NUTS algorithms to navigate. For example, prior distribu-
tions with fat tails, such as the Cauchy and Student’s t distributions,
can lead to divergences and an overwhelming number of maximum
treedepth warnings when sampling in the tails. If this occurs, using a
lighter-tailed alternative, such as a Normal distribution, is a good
alternative (although reparameterizing is also an option).

Changing the form of the prior is especially likely to help in cases
where the cognitive model demands that a parameter’s values be
restricted to just a subset of the reals and truncation is currently
being used to effect the domain constraint. In some cases, selecting
an alternative prior form that is naturally defined on the desired
domain only may help to resolve a variety of issues (as demonstrated
in our revised specification of the example RL model). For example,
rather than truncating a distribution supported over the entire real
line to over just the positive reals, one might use a distribution that
is already bounded to the positive reals, such as an Exponential or
Lognormal distribution. In a similar fashion, rather than doubly trun-
cating a distribution when both a lower and upper bound is needed,
one should select a distribution that is already supported on a
bounded interval, such as a Beta distribution (support over [0, 1])
or generalized Beta distribution (meaning, a Beta distribution that

Figure 11
Prior Simulation as a Tool for Prior Specification in Hierarchical Models

Note. Prior simulationmay be used to check whether the priors and hyperpriors imply an allocation of prior density that is consistent with domain knowledge
and other expectations. In this example, a Gamma hyperprior is specified for each hyperparameter of a Beta prior, and the goal is to evaluate whether the
implied distribution of prior weight over parameter values is compatible with our intentions for the parameter (represented by the dashed line). (a) The original
hyperpriors lead to undesirably high prior weight at the extreme values of the parameter of interest. (b) Enforcing a minimum value of 1 on both hyperpara-
meters (by specifying�Beta(1 + a, 1 + b) instead of�Beta(a, b)) prevents the selection ofU-shaped priors, allowing for a more appropriate distribution over
priors that, on average, allows for a more even spread of prior weight across thewhole range of the parameter value, excluding the bounds. See the online article
for the color version of this figure.

BARIBAULT AND COLLINS18

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

has been scaled and/or shifted such the support interval is the orig-
inally desired truncation bounds).9

If such a change of prior leads to less interpretable hyperpara-
meters, one can often use known formulae to derive more useful
quantities (e.g., samples for a Gamma prior’s shape and rate hyper-
parameters may be used to compute, sample by sample, the hyper-
level mean and standard deviation). These kinds of posthoc repara-
meterizations are straightforward to implement (and may be auto-
mated; e.g., the MATLAB support library matstanlib can
apply to select commonly used transformations, see Table A1).
Some priors with less-easily interpreted hyperparameters also have
established alternative parameterizations that are more intuitive to
work with and may greatly facilitate the setting of hyperpriors in
hierarchical models. Not all alternative parameterizations are inter-
esting: For example, the Gamma distribution may be parameterized
by a shape parameter, α and a rate parameter β (as in Stan), or in
terms of a shape and scale parameter u (as in MATLAB) where

the scale is simply the inverse of the rate (u = 1
B
)—but a more useful

alternative parameterization of the Gamma distribution is in terms of
its mean. As the mean of a Gamma distribution is the ratio of its
hyperparameters, m = a

b, a simple variable substitution permits the

alternative parameterization Gamma(a a
m), and the opportunity to

specify a prior for the hyper-level mean directly. Many other distri-
butions have known alternative parameterizations in terms of their
mean and/or variance; we have found these to be helpful to strike
an easier balance between sampler-friendly geometry and parameter
interpretability in a variety of contexts.

Reparameterization

While each technique discussed in the previous subsection
required changing the model, in some cases, one may need to
strictly preserve the model to protect the psychological interpreta-
tion of one or more model parameters, or to ensure your implemen-
tation of a particular established cognitive model retains its identity
as such. In cases such as this, the preferred approach would be rep-
arameterization, which allows for a part of the model specification
to be converted to a form that is more computationally efficient, but
ultimately mathematically equivalent (Gelman, 2004; Gelman &
Hill, 2006). The goal of many reparameterization techniques is to
permit easier sampling and faster convergence by reducing corre-
lations or other dependencies, with the end result that posterior
exploration is both more reliable and efficient (Gelman et al.,
2008).
Some reparameterization techniques are quite tailored to one par-

ticular Bayesian cognitive model or group of models (for a recent
example, see Park et al., 2021 for a reparameterization of a cognitive
model of the Balloon Analogue Risk Task introduced to distinguish
the role of two key parameters). Other reparameterization techniques
might apply to any Bayesian cognitive model where a certain struc-
ture is incorporated. For example, order constraints may be repara-
meterized such that the same idea is reexpressed as a
multiplicative scaling between independent parameters (Knapp &
Batchelder, 2004); while this technique is very commonly used
with multinomial processing tree models (Batchelder & Riefer,
1999; Klauer et al., 2015), it might be more broadly applied to
other models with the same issue.

There are a number of other general-purpose reparameterization
techniques (Gelman, 2004), including many that are of special use
for hierarchical models (for an in-depth discussion with specific
techniques and examples, see Gelman & Hill, 2006). Many such
approaches rely on the inclusion of independent redundant parame-
ters which, while perhaps not identified, are often very effective in
facilitating sampling for the parameters of interest. These additive
or multiplicative parameter expansion techniques are well-known
for their ability to improve the quality sampling and recovery
(Gelman et al., 2008; Browne et al., 2009), and have been success-
fully applied in Bayesian cognitive models (see Chapter 11 in Lee &
Wagenmakers, 2013 for a demonstration of parameter expansion in a
signal detection theory model; also see Matzke et al., 2015).

Another widely applicable repararmeterization technique for hier-
archical models is noncentered parameterization (Betancourt &
Girolami, 2015, previously called the “Matt trick” in some older
sources), which we have obliquely referenced throughout this tuto-
rial. A pathological funnel-shaped posterior geometry (as shown ear-
lier in Figure 5c) can be induced when a centered parameterization
was used:

m � Normal (0,
���
10

√
)

s � Gamma (2, 1)

un � Normal (m, s)

so-called because the prior is centered on the mean parameter. This
toy model may be rewritten to use a noncentered parameterization:

m � Normal (0,
���
10

√
)

s � Gamma (2, 1)

hn � Normal (0, 1)

un = s · hn + m

which is mathematically equivalent. Even though the same hyperp-
riors are used, this expansion allows the entirety of the funnel to be
explored efficiently (Figure 5d), by introducing an auxiliary sampled
variable η that is independent of μ, and then rescaling it by the sam-
pled standard deviation σ. While noncentered parameterizations are
frequently applied in the context of Normal prior distributions, they
are also applicable to most any prior distribution that is parameter-
ized in terms of location and dispersion hyperparameters.
However, it is important to note that the noncentered parameteriza-
tion is not always superior: If a wealth of informative data is avail-
able, the centered parameterization will offer better performance,
while the noncentered parameterization may cause issues
(Betancourt & Girolami, 2015). The example_funnel.m script
included in matstanlib demonstrates both the centered and non-
centered parameterizations for this toy model, exactly as specified
above.

Of course, parameterization and reparameterization are such
broad terms that we cannot hope to cover even most of the most pop-
ular methods, techniques, and tricks in this level of depth. We
encourage you to explore the referenced sources and recent work
on similar models to further investigate techniques that might be

9We also generally caution against truncations, even when they work well
in a model, because they can make extending the model later on extremely
difficult.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 19

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

most suitable for the exact Bayesian cognitive model you are work-
ing with in your research.

From Troubleshooting to Model Development

At this point in the tutorial, we have described in great detail how
diagnostic checks and plots may be used to detect and identify the
most commonly encountered problems in Bayesian cognitive mod-
eling. We have suggested a handful of remedies along the way and
highlighted multiple specific changes in parameterization and repar-
ameterizations that often constitute good solutions for Bayesian cog-
nitive models. Each time you apply a Bayesian cognitive model, it is
always necessary to perform the required model-checking steps and
any subsequently needed troubleshooting to ensure that the output
from your model is (a) computationally sufficient and (b) consistent
with your intentions. Even if you are using an established Bayesian
cognitive model, diagnostic checks and plots can suddenly reveal
problems when the model is applied to a new dataset or is fit with
a different sampling algorithm.
In this section, we discuss a few final techniques that may vary in

relevance depending on your analysis plan, but all test additional
important expectations and assumptions about model behavior.
While some techniques are more often seen in terms of their role
in a wider Bayesian cognitive modeling workflow, all should also
be considered as possible steps in the troubleshooting process, as
each can support the identification of shortcomings that can compro-
mise the validity of model-based inference.
Depending on how one is planning to apply a given Bayesian cog-

nitive model (or models), some or all of these final checks may be
needed to ensure your model is capable of doing what you will
ask of it. Most of these techniques may need to be customized to
your model and research context to even be implemented at all.

Simulation-Based Calibration

As we discussed earlier, while parameter recovery studies have
been the most commonly used method to explore the quality of
Bayesian cognitivemodel estimates, they are far more useful as a qual-
itative troubleshooting tool. If one does intend to assess the accuracy
or reliability of posterior estimates, particularly in the sense of whether
a Bayesian cognitive model’s estimates are internally consistent, then
the correct Bayesian approach is SBC (Cook et al., 2006; Talts et al.,
2020). Whereas parameter recovery is a heuristic assessment of
model behavior for a single simulated dataset, SBCoffers a more prin-
cipled, comprehensive approach to quantify the coherence of posterior
estimates over the entire prior predictive distribution of data and,
ultimately, to formally validate a Bayesian model as it is
currently implemented. Unlike a recovery check, SBC allows for a
quantitative assessment of whether the posteriors tend to be overly
wide, overly narrow, or otherwise systematically biased on a
parameter-by-parameter basis. This is exceptionally useful informa-
tion for troubleshooting as these biases and other miscalibrations
may be targeted and ultimately corrected through many of the inves-
tigative and model-adjusting techniques previously discussed.
The SBC procedure entails running Nreps replications of a recov-

ery scoring routine. For each replication, a small simulation study is
run: True parameter values ũ drawn from the priors are used to sim-
ulate a dataset ỹ, which is then submitted to the Bayesian cognitive
model to collect a relatively small number L of post-warmup

iterations. The result of each replication is each true parameter val-
ue’s rank within the corresponding posterior samples for all param-
eters in the model (Talts et al., 2020; vs. the earlier approach of Cook
et al., 2006, which uses quantiles). If the model is correctly imple-
mented, then the ranks across the Nrep replications will be uniformly
distributed for each and every parameter in the model. A calibration
failure in the posterior estimates is detected when deviations from
uniformity are evident in the rank histograms for a given parameter
(among other SBC diagnostics; Talts et al., 2020). Because chain
autocorrelation violates an assumption of SBC, adjustments to this
base SBC procedure are required when the ESS estimate is notably
lower than L. Namely, the samples should be thinned (during the
SBC procedure only) by a factor of ESS

L to overcome the influence
of autocorrelation on results of SBC, particulary for thediagnostic
plots (Talts et al., 2020). This amended and extended version of
the base SBC procedure will often be needed to properly validate
Bayesian cognitive model scripts.

There has been a recent push to consider SBC as less of an option
and more of a requirement in Bayesian workflows, yet SBC has only
rarely been applied in the Bayesian cognitive modeling literature to
date (but for an example, see Hartmann & Klauer, 2020). While we
encourage psychologists to consider incorporating SBC toward the
end of their troubleshooting workflow, especially for Bayesian cogni-
tive models that are novel or relatively untested, there are some limi-
tations on SBC’s usability in practice. The first caveat is a practical
limitation: Depending on the computational demands of the model
(and onNrep and L), performing SBCmay take a considerable amount
of time and/or computational resources. Using back-of-the-envelope
calculations to estimate SBC runtime (from the time of a single sim-
ulation study with L post-warmup iterations, multiplying by the high-
est thinning factor and by Nrep, and dividing by one’s ability to
parallelize) is helpful to gauge feasibility. Another practical consider-
ation is whether automation of the SBC routine is available (as via the
SBC package in R) or unavailable (no dice for MATLAB users) in
your preferred programming language, as one may also need to
account for time to code the SBC routine and diagnostic plots.

Second, it is important to note that SBC is an active area of stat-
istical research where methods and recommendations are still evolv-
ing. For example, whether subtler problems will be detected by SBC
can depend on the values selected for Nrep and L, but there is rela-
tively little published guidance on how to select appropriate values.
Similarly, there are many ways to tweak the rank histogram and
empirical cumulative distribution function plots used to draw con-
clusions from SBC results; as such, the effectiveness of SBC in
assessing posterior calibration can depend to some extent on one’s
ability to perform these hands-on exploratory adjustments.
Because these finer points of the SBC procedure are still being
actively tested and refined by Bayesian statistical researchers, we
urge psychologists to keep up to date with the SBC literature if
they intend to apply SBC to Bayesian cognitive models.

While SBC is currently unfamiliar in the cognitive modeling lit-
erature, we expect that SBC will begin to take the place of larger
recovery simulations, and ultimately emerge as another key tool in
the Bayesian cognitive modeling toolbox.

Model Recovery

In research that involves the comparison of multiple models
applied to the same experimentally collected dataset, we recommend

BARIBAULT AND COLLINS20

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

assessing in some way whether the planned model comparison will
be capable of distinguishing among the candidate models. While it
would be ideal to rigorously test the accuracy and reliability of com-
parisons among Bayesian cognitive models, it is currently more
common in Bayesian cognitive modeling to assess whether one
can sufficiently recover the identity of the model that generated
the data, given the set of candidate models (for a discussion of
this distinction, see Lee, Gluck et al., 2019). Whether you find either
of the techniques we discuss here to be useful for troubleshooting
will depend on your choice of model comparison metric, the goal
of your planned comparison, and the exact expectation about
model behavior that you intend to evaluate.
By far, the most prevalent approach used in Bayesian cognitive

modeling research for this purpose is the model recovery study
(e.g., Pitt et al., 2003). The model recovery procedure is simple to
explain: First, N datasets are to be simulated from each ofMmodels.
Then, for each dataset, allMmodels are applied and compared using
a fully Bayesian model comparison metric (e.g., WAIC or LOO;
Vehtari et al., 2017). The output of the study is typically a contin-
gency table summarizing the frequency with which each data-
generating model was judged to be the best-fitting model (i.e., a con-
fusion matrix, although other summaries and metrics may be used).
If the models are sufficiently distinguishable, then the model com-
parisons should identify the true generating model for the majority
of the M ·N datasets. Even though model recovery is not a means
to evaluate the quality of model-based inference (Lee, Gluck et al.,
2019; Schad et al., 2022), it may still be informative when the intent
is only to perform a consistency check of the expectation for a model
comparison to regularly identify the true generating model: If the
confusion matrix is confused, then this expectation of model inver-
sion is not supported. In the context of troubleshooting, model
recovery may also be quite useful as a means to explore the influence
of experimental design on model comparison outcomes (for a recent
example, see Evans & Brown, 2018).
If the planned method of model comparison is a Bayes factor (as is

now feasible for Bayesian cognitive models via methods such as
bridge sampling; Gronau et al., 2017), then a new, alternative
approach is to perform SBC specifically for the Bayes factor compar-
ison (Schad et al., 2022). Similar to how SBC is a principled way to
quantify the internal consistency and accuracy of posterior estimates,
SBC for Bayes factors is a principled way to quantify the expected
accuracy for a planned comparison via Bayes factor, and uncover
the degree of variability in that Bayes factor that one might reason-
ably expect to encounter.
Unfortunately, running either of these two procedures can require

a considerable investment of time. Still, both techniques offer oppor-
tunities for directly troubleshooting comparisons among Bayesian
cognitive models, unlike any other techniques in this tutorial. We
expect that SBC for Bayes factors will find good use within the
Bayesian cognitive modeling community, particularly in applied
research where there may be a stronger need to plan for both effi-
ciency and precision in the comparison of Bayesian cognitive
models.

Posterior Predictives

Another way to better understand the behavior of a Bayesian cog-
nitive model is to perform a series of posterior predictive checks
(Rubin, 1984; Gelman et al., 2013). As the name might suggest,

posterior predictive checks (which are generated after the model
has been applied to a particular behavioral dataset) are similar in
many ways to prior predictive checks (which are generated before
the model was exposed to any data). After the posterior predictive
distribution has been generated by using each joint posterior sample
in turn to simulate a new dataset,10 performing each posterior predic-
tive check is simply a matter of comparing a summary statistic of the
observed data (that was just used for model fitting) to the same sum-
mary statistic across the posterior predictive distribution of data. For
a Bayesian cognitive model, these summary statistics are expected to
be both nontrivial and meaningful within the research context. As
such, the same carefully chosen set of behavioral patterns and perfor-
mance metrics can and ideally would be visualized in both the prior
and posterior predictive checks (Berkhof et al., 2000).

In the context of a simulation study, the posterior predictive
checks are the final assessment of the internal consistency of a
Bayesian cognitive model. If the model is behaving as intended,
then the data used to estimate the parameters of the model should
easily fall within the spread of the posterior predictive distribution
of data based on those same estimates. If this is not the case, then
further troubleshooting is needed to investigate whether this might
be signaling a serious problem in the model specification (or a seri-
ous error in the code).

When the model has been applied to an experimentally collected
dataset, posterior predictive checks should be used to evaluate the
descriptive adequacy of the Bayesian cognitive model (Shiffrin et
al., 2008). Each systematic discrepancy or misfit between the poste-
rior predictive and the observed data can reveal a different way in
which the model was unable to capture the true data-generating pro-
cess (i.e., the cognitive process that participants actually used to per-
form the task). While formal discrepancy measures (e.g., posterior
predictive p-values; Gelman et al., 1996) sometimes accompany
posterior predictive checks of statistical linear models, posterior pre-
dictive checks are typically qualitative assessments only in Bayesian
cognitive modeling. How to characterize the severity and importance
of any misfits will depend heavily on the identity of the cogntive
model and the research context. While misfits characterized as
small may sometimes simply be acknowledged, numerous severe
misfits may indicate that the model is neither useful nor valid as a
model of the latent cognitive process underlying the observed behav-
ior (or, again, suggest a need for further troubleshooting).

At this late stage of troubleshooting, it can be frustrating to find
that further loops of diagnostic investigation are required. While
the troubleshooting process can be a long slog, a side benefit is
often that a rich understanding of the inner workings and behavior
of the model is developed along the way. Through the wide variety
of checks and assessments needed, you might have noticed trade-
offs among key parameters; found conditions under which the
model is unidentified; learned which estimates are especially

10 It is important to note that this is different than using the collection of
point parameter estimates for each parameter to simulate new data, which
is an incorrect approach for Bayesian models. Using only the point estimates
ignores the uncertainty associated with these estimates, and as such is
unlikely to capture the full range of behavioral data seen as likely by the fitted
model. (Also consider that the collection of marginal posterior point esti-
mates is not necessarily a point in the joint parameter space that was ever vis-
ited during sampling, let alone guaranteed to be the most likely point in the
joint parameter space.)

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 21

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

sensitive or robust to their priors; discovered patterns of behavior
that the model presently fails to capture; and so on. It can be fruitful
to make note of these types of tendencies, strengths, and limitations,
particularly if you might continue to use this particular Bayesian
cognitive model in subsequent work.
After the current research project has come to a close, future pro-

jects might be inspired and facilitated by this kind of knowledge. For
example, one may later on begin a new project to explore whether
one or more theory-driven extensions to the model could account
for patterns of behavior left unaccounted for by the original version
of the model. In other words, the knowledge gained through the trou-
bleshooting process might guide a futuremodel development process
—but at this point, we are perhaps beyond the limits of troubleshoot-
ing. Of course, the techniques and procedures of troubleshooting
outlined in this tutorial are also important steps in any comprehen-
sive Bayesian workflow (Gelman et al., 2020; Schad et al., 2021),
which would further include the necessary steps from here toward
a wide variety of analytic and research goals.As such, this link
from troubleshooting to model development is just one of a multi-
tude of natural connections and deep links among the core stages
in a successful Bayesian cognitive modeling workflow.
The troubleshooting process ends when no further problems of

any kind are able to be detected, and as such, from both a computa-
tional perspective and a model consistency perspective, one is rea-
sonably confident that any inferences one will make based on the
final Bayesian cognitive model will be computationally sufficient,
internally consistent, and reasonable for the task at hand.

Reporting Results

When publishing results from research using Bayesian cognitive
modeling, authors should explicitly mention that the required
model checks were performed. It is not necessary to record and
report exhaustively every detail of your troubleshooting and model
development process (although this may be done as a “postregistra-
tion” of model-based work; Lee, Criss et al., 2019). However, the
final specification of the model that is being used and what diagnos-
tic checks were performed should always be made clear (for an
example, see Kruschke, 2021). All reports of results from
Bayesian cognitive models should include the model specification
(i.e., the likelihood and priors used), the sampling algorithm used
(including any actively given sampler-specific inputs), the criteria
used to evaluate the computational sufficiency of the model, and
some reference to the checks of model consistency performed. An
example of how this may be reported is:

…Finally, we performed prior predictive checks to demonstrate that each
of these model specifications was reasonable to apply in the context of
our experiment (see Figure X).

With the final model specifications and our behavioral data in hand,
we used Stan (Carpenter et al., 2017) to draw from the joint posterior dis-
tribution of each model via dynamic Hamiltonian Monte Carlo sam-
pling. For each model, we ran 4 chains of 500 warmup iterations and
1,500 kept iterations each, then performed a series of diagnostic checks.
We required an R̂ value of ≤ 1.01 and an effective sample size of ≥ 400
for all parameters, a BFMI of ≥ 0.2 for all chains, and that no diver-
gences were observed. For all of the 90% credible intervals (equal-tailed)
presented here, we also required effective sample size estimates of≥ 400
for the 5% and 95% quantiles of the relevant parameters. These checks
were supported by a visual inspection of diagnostic plots (e.g., rank plots

for all parameters). Only kept iterations from models that met these cri-
teria were used for inference.

Conclusion

While Bayesian cognitive modeling can be a challengingmethod to
use properly, it is also a rewarding approach to psychological research
that is only increasing in popularity (Jarecki et al., 2020; van de
Schoot et al., 2017). In this tutorial, we have sought to make the trou-
bleshooting process clear and accessible, especially for psychologists
who may be new to Bayesian methods for cognitive modeling.

Of course, one may sometimes find it is justified or necessary to
deviate from the exact recommendations outlined here. Practical con-
cerns, including the time and computational power available, may
shape the troubleshooting process in a number of ways. As touched
on earlier, some Bayesian cognitive models can require a rather
long time to run, and some more time-intensive troubleshooting pro-
cedures, such as SBC, may not always be feasible within a reasonable
research timeline. Experienced practitioners of Bayesian cognitive
modeling may realize conditions under which it is reasonable to
relax—or necessary to tighten—the criteria for certain diagnostic
checks. The procedures recommended here are also not an exhaustive
list of model-checking techniques: Further troubleshooting proce-
dures including prior sensitivity analyses, while beyond the scope
of this tutorial, are important tools for certain applications.

While the exact sequence of troubleshooting steps needed will be
different depending on one’s choice of cognitive model, experimen-
tal design, and planned application, one should now have a firm
enough grasp on the core tenets of Bayesian troubleshooting to
investigate one’s own models. One will not only now know the
most essential steps—from the requisite automated computational
checks to more custom methods to ensure the model is functioning
as intended, alongside the full investigative toolbox of diagnostic
plots—but should also be able to judge the quality of the output at
each step. Ultimately, it is our hope that this guide will not only
encourage more vigilant and conscientious use of Bayesian cogni-
tive models, but also might empower psychologists to build and
apply Bayesian cognitive models in their own research with confi-
dence in the quality of their work.

References

Ahn, W.-Y., Haines, N., & Zhang, L. (2017). Revealing neurocomputational
mechanisms of reinforcement learning and decision-making with the
hBayesDM package. Computational Psychiatry, 1, 24–57. https://
doi.org/10.1162/CPSY_a_00002

Andrews, M., & Baguley, T. (2013). Prior approval: The growth of Bayesian
methods in psychology. British Journal of Mathematical and Statistical
Psychology, 66(1), 1–7. https://doi.org/10.1111/bmsp.12004

Annis, J., & Palmeri, T. J. (2018). Bayesian statistical approaches to evaluat-
ing cognitive models.Wiley Interdisciplinary Reviews: Cognitive Science,
9(2), Article e1458 https://doi.org/10.1002/wcs.1458

Apgar, J. F., Witmer, D. K., White, F. M., & Tidor, B. (2010). Sloppy mod-
els, parameter uncertainty, and the role of experimental design.Molecular
BioSystems, 6(10), 1890–1900. https://doi.org/10.1039/b918098b

Baribault, B. (2021). matstanlib: A library of MATLAB functions for visual-
ization, processing, and analysis of output from Bayesian models (Version
1.0) [MATLAB library]. https://github.com/baribault/matstanlib.

Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review
of multinomial process tree modeling. Psychonomic Bulletin & Review,
6(1), 57–86. https://doi.org/10.3758/BF03210812

BARIBAULT AND COLLINS22

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1162/CPSY_a_00002
https://doi.org/10.1162/CPSY_a_00002
https://doi.org/10.1162/CPSY_a_00002
https://doi.org/10.1111/bmsp.12004
https://doi.org/10.1111/bmsp.12004
https://doi.org/10.1111/bmsp.12004
https://doi.org/10.1002/wcs.1458
https://doi.org/10.1002/wcs.1458
https://doi.org/10.1002/wcs.1458
https://doi.org/10.1039/b918098b
https://doi.org/10.1039/b918098b
https://github.com/baribault/matstanlib
https://github.com/baribault/matstanlib
https://github.com/baribault/matstanlib
https://doi.org/10.3758/BF03210812
https://doi.org/10.3758/BF03210812

Berkhof, J., Van Mechelen, I., & Hoijtink, H. (2000). Posterior predictive
checks: Principles and discussion. Computational Statistics, 15(3), 337–
354. https://doi.org/10.1007/s001800000038

Betancourt, M. (2016). Diagnosing suboptimal cotangent disintegrations in
Hamiltonian Monte Carlo. https://arxiv.org/abs/1604.00695.

Betancourt, M. (2018). A conceptual introduction to Hamiltonian Monte
Carlo. https://arxiv.org/abs/1701.02434.

Betancourt, M., & Girolami, M. (2015). Hamiltonian Monte Carlo for hier-
archical models. In S. Upadhyay, U. Singh, D. Dey, & A. Loganathan
(Eds.), Current trends in Bayesian methodology with applications (pp.
79–101). Chapman & Hall/CRC.

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference:
A review for statisticians. Journal of the American Statistical Association,
112(518), 859–877. https://doi.org/10.1080/01621459.2017.1285773

Boehm, U., Marsman, M., Matzke, D., &Wagenmakers, E.-J. (2018). On the
importance of avoiding shortcuts in applying cognitive models to hierar-
chical data. Behavior Research Methods, 50(4), 1614–1631. https://
doi.org/10.3758/s13428-018-1054-3

Box, G. E. (1980). Sampling and Bayes’ inference in scientific modelling and
robustness. Journal of the Royal Statistical Society: Series A (General),
143(4), 383–404. https://doi.org/10.2307/2982063

Brooks, S., Gelman, A., Jones, G., & Meng, X.-L. (2011). Handbook of
Markov Chain Monte Carlo. Chapman & Hall/CRC.

Brooks, S. P. (2003). Bayesian computation: A statistical revolution.
Philosophical Transactions of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, 361(1813), 2681–
2697. https://doi.org/10.1098/rsta.2003.1263

Brown, V. M., Zhu, L., Solway, A., Wang, J. M., McCurry, K. L.,
King-Casas, B., & Chiu, P. H. (2021). Reinforcement learning disruptions
in individuals with depression and sensitivity to symptom change follow-
ing cognitive behavioral therapy. JAMA Psychiatry, 78(10), 1113–1122.
https://doi.org/10.1001/jamapsychiatry.2021.1844

Browne, W. J., Steele, F., Golalizadeh, M., & Green, M. J. (2009). The use of
simple reparameterizations to improve the efficiency of Markov chain
Monte Carlo estimation for multilevel models with applications to discrete
time survival models. Journal of the Royal Statistical Society: Series A
(Statistics in Society), 172(3), 579–598. https://doi.org/10.1111/rssa
.2009.172.issue-3

Bürkner, P.-C. (2017). Advanced Bayesian multilevel modeling with the R
package BRMS. https://arxiv.org/abs/1705.11123.

Busemeyer, J. R., Pothos, E. M., Franco, R., & Trueblood, J. S. (2011). A
quantum theoretical explanation for probability judgment errors.
Psychological Review, 118(2), 193–218. https://doi.org/10.1037/
a0022542

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B.,
Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017).
Stan: A probabilistic programming language. Journal of Statistical
Software, 76(1), 1–32. https://doi.org/10.18637/jss.v076.i01

Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A., & Liu, J. (2013). A non-
degenerate penalized likelihood estimator for variance parameters in mul-
tilevel models. Psychometrika, 78(4), 685–709. https://doi.org/10.1007/
s11336-013-9328-2

Cook, S. R., Gelman, A., & Rubin, D. B. (2006). Validation of software for
Bayesian models using posterior quantiles. Journal of Computational and
Graphical Statistics, 15(3), 675–692. https://doi.org/10.1198/
106186006X136976

Dai, C., Heng, J., Jacob, P. E., & Whiteley, N. (2022). An invitation to
sequential Monte Carlo samplers. Journal of the American Statistical
Association, 117(539), 1–38. https://doi.org/10.1080/01621459.2022
.2087659

Danwitz, L., Mathar, D., Smith, E., Tuzsus, D., & Peters, J. (2022). Parameter
and model recovery of reinforcement learning models for restless bandit
problems. Computational Brain & Behavior, 5, 547–563.

Dearden, R., Friedman, N., & Andre, D. (1998, July). Bayesian Q-learning.
Proceedings of the fifteenth national conference on artificial
intelligence, Madison, WI. (pp. 761–768). AAAI.

Donkin, C., Kary, A., Tahir, F., & Taylor, R. (2016). Resources masquerad-
ing as slots: Flexible allocation of visual working memory. Cognitive
Psychology, 85, 30–42. https://doi.org/10.1016/j.cogpsych.2016.01.002

Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987). Hybrid
Monte Carlo. Physics Letters B, 195(2), 216–222. https://doi.org/10
.1016/0370-2693(87)91197-X

Efron, B.,&Morris, C. (1977). Stein’s paradox in statistics. Scientific American,
236(5), 119–127. https://doi.org/10.1038/scientificamerican0577-119

Etz, A., Gronau, Q. F., Dablander, F., Edelsbrunner, P. A., & Baribault, B.
(2018). How to become a Bayesian in eight easy steps: An annotated read-
ing list. Psychonomic Bulletin & Review, 25(1), 219–234. https://doi.org/
10.3758/s13423-017-1317-5

Etz, A., & Vandekerckhove, J. (2018). Introduction to Bayesian inference for
psychology. Psychonomic Bulletin & Review, 25(1), 5–34. https://doi.org/
10.3758/s13423-017-1262-3

Evans, N. J., & Brown, S. D. (2018). Bayes factors for the linear ballistic
accumulator model of decision-making. Behavior Research Methods,
50(2), 589–603. https://doi.org/10.3758/s13428-017-0887-5

Farrell, S., & Lewandowsky, S. (2018).Computational modeling of cognition
and behavior. Cambridge University Press.

Frank, M. J., Gagne, C., Nyhus, E., Masters, S., Wiecki, T. V., Cavanagh, J. F., &
Badre, D. (2015). fMRI and EEG predictors of dynamic decision parameters
during human reinforcement learning. The Journal of Neuroscience, 35(2),
485–494. https://doi.org/10.1523/JNEUROSCI.2036-14.2015

Gabry, J., & Mahr, T. (2021). bayesplot: Plotting for Bayesian models.
(Version 1.8.0) [R package]. https://mc-stan.org/bayesplot/

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019).
Visualization in Bayesian workflow. Journal of the Royal Statistical
Society: Series A (Statistics in Society), 182(2), 389–402. https://doi.org/
10.1111/rssa.2019.182.issue-2

Galdo, M., Bahg, G., & Turner, B. M. (2020). Variational Bayesian methods
for cognitive science. Psychological Methods, 25(5), 535–559. https://
doi.org/10.1037/met0000242

Gelman, A. (2004). Parameterization and Bayesian modeling. Journal of the
American Statistical Association, 99(466), 537–545. https://doi.org/10
.1198/016214504000000458

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin,
D. B. (2013). Bayesian data analysis (3rd ed.). Chapman & Hall/CRC.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data
analysis (1st ed.). Chapman & Hall/CRC.

Gelman, A., & Hill, J. (2006).Data analysis using regression and multilevel/
hierarchical models. Cambridge University Press.

Gelman, A., Meng, X.-L., & Stern, H. (1996). Posterior predictive assess-
ment of model fitness via realized discrepancies. Statistica Sinica, 6(4),
733–760.

Gelman, A., & Rubin, D. B. (1991). A single series from the Gibbs sampler
provides a false sense of security. Bayesian Statistics, 4, 625–631.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using
multiple sequences. Statistical Science, 7(4), 457–472. https://doi.org/10
.1214/ss/1177011136

Gelman, A., Simpson, D., & Betancourt, M. (2017). The prior can often only
be understood in the context of the likelihood. Entropy, 19(10), Article
555. https://doi.org/10.3390/e19100555

Gelman, A., Van Dyk, D. A., Huang, Z., & Boscardin, J. W. (2008). Using
redundant parameterizations to fit hierarchical models. Journal of
Computational and Graphical Statistics, 17(1), 95–122. https://doi.org/
10.1198/106186008X287337

Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B.,
Yao, Y., Kennedy, L., Gabry, J., Bürkner, P.-C., & Modrák, M. (2020).
Bayesian workflow. https://arxiv.org/abs/2011.01808.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 23

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1007/s001800000038
https://doi.org/10.1007/s001800000038
https://arxiv.org/abs/1604.00695
https://arxiv.org/abs/1604.00695
https://arxiv.org/abs/1604.00695
https://arxiv.org/abs/1604.00695
https://arxiv.org/abs/1701.02434
https://arxiv.org/abs/1701.02434
https://arxiv.org/abs/1701.02434
https://arxiv.org/abs/1701.02434
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.3758/s13428-018-1054-3
https://doi.org/10.3758/s13428-018-1054-3
https://doi.org/10.3758/s13428-018-1054-3
https://doi.org/10.2307/2982063
https://doi.org/10.2307/2982063
https://doi.org/10.1098/rsta.2003.1263
https://doi.org/10.1098/rsta.2003.1263
https://doi.org/10.1098/rsta.2003.1263
https://doi.org/10.1098/rsta.2003.1263
https://doi.org/10.1001/jamapsychiatry.2021.1844
https://doi.org/10.1001/jamapsychiatry.2021.1844
https://doi.org/10.1001/jamapsychiatry.2021.1844
https://doi.org/10.1001/jamapsychiatry.2021.1844
https://doi.org/10.1111/rssa.2009.172.issue-3
https://doi.org/10.1111/rssa.2009.172.issue-3
https://doi.org/10.1111/rssa.2009.172.issue-3
https://doi.org/10.1111/rssa.2009.172.issue-3
https://doi.org/10.1111/rssa.2009.172.issue-3
https://arxiv.org/abs/1705.11123
https://arxiv.org/abs/1705.11123
https://arxiv.org/abs/1705.11123
https://arxiv.org/abs/1705.11123
https://doi.org/10.1037/a0022542
https://doi.org/10.1037/a0022542
https://doi.org/10.1037/a0022542
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1007/s11336-013-9328-2
https://doi.org/10.1007/s11336-013-9328-2
https://doi.org/10.1007/s11336-013-9328-2
https://doi.org/10.1198/106186006X136976
https://doi.org/10.1198/106186006X136976
https://doi.org/10.1198/106186006X136976
https://doi.org/10.1080/01621459.2022.2087659
https://doi.org/10.1080/01621459.2022.2087659
https://doi.org/10.1080/01621459.2022.2087659
https://doi.org/10.1080/01621459.2022.2087659
https://doi.org/10.1016/j.cogpsych.2016.01.002
https://doi.org/10.1016/j.cogpsych.2016.01.002
https://doi.org/10.1016/j.cogpsych.2016.01.002
https://doi.org/10.1016/j.cogpsych.2016.01.002
https://doi.org/10.1016/j.cogpsych.2016.01.002
https://doi.org/10.1016/j.cogpsych.2016.01.002
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1038/scientificamerican0577-119
https://doi.org/10.1038/scientificamerican0577-119
https://doi.org/10.3758/s13423-017-1317-5
https://doi.org/10.3758/s13423-017-1317-5
https://doi.org/10.3758/s13423-017-1317-5
https://doi.org/10.3758/s13423-017-1262-3
https://doi.org/10.3758/s13423-017-1262-3
https://doi.org/10.3758/s13423-017-1262-3
https://doi.org/10.3758/s13428-017-0887-5
https://doi.org/10.3758/s13428-017-0887-5
https://doi.org/10.1523/JNEUROSCI.2036-14.2015
https://doi.org/10.1523/JNEUROSCI.2036-14.2015
https://doi.org/10.1523/JNEUROSCI.2036-14.2015
https://doi.org/10.1523/JNEUROSCI.2036-14.2015
https://mc-stan.org/bayesplot/
https://mc-stan.org/bayesplot/
https://mc-stan.org/bayesplot/
https://doi.org/10.1111/rssa.2019.182.issue-2
https://doi.org/10.1111/rssa.2019.182.issue-2
https://doi.org/10.1111/rssa.2019.182.issue-2
https://doi.org/10.1111/rssa.2019.182.issue-2
https://doi.org/10.1111/rssa.2019.182.issue-2
https://doi.org/10.1111/rssa.2019.182.issue-2
https://doi.org/10.1037/met0000242
https://doi.org/10.1037/met0000242
https://doi.org/10.1037/met0000242
https://doi.org/10.1198/016214504000000458
https://doi.org/10.1198/016214504000000458
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.3390/e19100555
https://doi.org/10.3390/e19100555
https://doi.org/10.1198/106186008X287337
https://doi.org/10.1198/106186008X287337
https://doi.org/10.1198/106186008X287337
https://arxiv.org/abs/2011.01808
https://arxiv.org/abs/2011.01808
https://arxiv.org/abs/2011.01808
https://arxiv.org/abs/2011.01808

Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995). Markov chain
Monte Carlo in practice. Chapman & Hall/CRC.

Gluth, S., & Jarecki, J. B. (2019). On the importance of power analyses for
cognitive modeling. Computational Brain & Behavior, 2(3-4), 266–270.
https://doi.org/10.1007/s42113-019-00039-w

Golubickis, M., Falben, J. K., Cunningham, W. A., & Macrae, C. N. (2018).
Exploring the self-ownership effect: Separating stimulus and response
biases. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 44(2), 295–306.https://doi.org/10.1037/xlm0000455

Greene, N. R., & Rhodes, S. (2022). A tutorial on cognitive modeling for
cognitive aging research. Psychology and Aging, 37(1), 30–42. https://
doi.org/10.1037/pag0000637

Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of
cognition. In R. Sun (Ed.), Cambridge handbook of computational psy-
chology (pp. 59–100). Cambridge University Press.

Gronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm, U., Marsman, M.,
Leslie, D. S., Forster, J. J., Wagenmakers, E. -J., & Steingroever, H.
(2017). A tutorial on bridge sampling. Journal of Mathematical
Psychology, 81, 80–97. https://doi.org/10.1016/j.jmp.2017.09.005

Gunawan, D., Hawkins, G. E., Tran, M.-N., Kohn, R., & Brown, S. (2020).
New estimation approaches for the hierarchical Linear Ballistic
Accumulator model. Journal of Mathematical Psychology, 96, Article
102368. https://doi.org/10.1016/j.jmp.2020.102368

Haines, N., Beauchaine, T. P., Galdo, M., Rogers, A. H., Hahn, H., Pitt, M.
A., Myung, J. I., Turner, B. M., & Ahn, W.-Y. (2020). Anxiety modulates
preference for immediate rewards among trait-impulsive individuals: A
hierarchical Bayesian analysis. Clinical Psychological Science, 8(6),
1017–1036. https://doi.org/10.1177/2167702620929636

Hartmann, R., & Klauer, K. C. (2020). Extending RT-MPTs to enable equal
process times. Journal of Mathematical Psychology, 96, Article 102340.
https://doi.org/10.1016/j.jmp.2020.102340

Heathcote, A., Brown, S. D., & Wagenmakers, E.-J. (2015). An introduction
to good practices in cognitive modeling. In B. U. Forstmann &
E.-J. Wagenmakers (Eds.), An introduction to model-based cognitive neu-
roscience (pp. 25–48). Springer.

Heathcote, A., Lin, Y.-S., Reynolds, A., Strickland, L., Gretton, M., &
Matzke, D. (2019). Dynamic models of choice. Behavior Research
Methods, 51(2), 961–985. https://doi.org/10.3758/s13428-018-1067-y

Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: Adaptively
setting path lengths in Hamiltonian Monte Carlo. Journal of Machine
Learning Research, 15(1), 1593–1623.

Jarecki, J. B., Tan, J. H., & Jenny, M. A. (2020). A framework for building
cognitive process models. Psychonomic Bulletin & Review, 27(6), 1218–
1229. https://doi.org/10.3758/s13423-020-01747-2

Jasra, A., Holmes, C. C., & Stephens, D. A. (2005). Markov chain Monte
Carlo methods and the label switching problem in Bayesian mixture mod-
eling. Statistical Science, 20(1), 50–67. https://doi.org/10.1214/
088342305000000016

Katahira, K. (2016). How hierarchical models improve point estimates of
model parameters at the individual level. Journal of Mathematical
Psychology, 73, 37–58. https://doi.org/10.1016/j.jmp.2016.03.007

Kennedy, L., Simpson, D., & Gelman, A. (2019). The experiment is just as
important as the likelihood in understanding the prior: A cautionary note
on robust cognitive modeling. Computational Brain & Behavior, 2(3-4),
210–217. https://doi.org/10.1007/s42113-019-00051-0

Klauer, K. C., Singmann, H., & Kellen, D. (2015). Parametric order con-
straints in multinomial processing tree models: An extension of Knapp
and Batchelder (2004). Journal of Mathematical Psychology, 64–65,
1–7. https://doi.org/10.1016/j.jmp.2014.11.001

Knapp, B. R., & Batchelder, W. H. (2004). Representing parametric order
constraints in multi-trial applications of multinomial processing tree mod-
els. Journal of Mathematical Psychology, 48(4), 215–229. https://doi.org/
10.1016/j.jmp.2004.03.002

Krefeld-Schwalb, A., Pachur, T., & Scheibehenne, B. (2022). Structural
parameter interdependencies in computational models of cognition.
Psychological Review, 129(2), 313–339. https://doi.org/10.1037/
rev0000285

Kruschke, J. K (2014). Doing Bayesian data analysis: A tutorial with R,
JAGS, and Stan. Academic Press.

Kruschke, J. K. (2021). Bayesian analysis reporting guidelines. Nature
Human Behaviour, 5(10), 1282–1291. https://doi.org/10.1038/s41562-
021-01177-7

Kumar, R., Carroll, C., Hartikainen, A., &Martin, O. A. (2019). ArviZ a uni-
fied library for exploratory analysis of Bayesian models in Python. Journal
of Open Source Software, 4(33), 1143. https://doi.org/10.21105/joss

Lambert, B., & Vehtari, A. (2022). R*: A robust MCMC convergence diag-
nostic with uncertainty using decision tree classifiers. Bayesian Analysis,
17(2), 353–379. https://doi.org/10.1214/20-BA1252

Lasagna, C. A., Pleskac, T. J., Burton, C. Z., McInnis, M. G., Taylor, S. F., &
Tso, I. F. (2022). Mathematical modeling of risk-taking in bipolar disor-
der: Evidence of reduced behavioral consistency, with altered loss aversion
specific to those with history of substance use disorder. Computational
Psychiatry, 6(1), 96–116. https://doi.org/10.5334/cpsy.61

Lee, M. D. (2008). Three case studies in the Bayesian analysis of cognitive
models. Psychonomic Bulletin & Review, 15(1), 1–15. https://doi.org/10
.3758/PBR.15.1.1

Lee, M. D. (2011). How cognitive modeling can benefit from hierarchical
Bayesian models. Journal of Mathematical Psychology, 55(1), 1–7.
https://doi.org/10.1016/j.jmp.2010.08.013

Lee, M. D. (2018). Bayesian methods in cognitive modeling. In J. T. Wixted
& E.-J. Wagenmakers (Eds.), The Stevens’ handbook of experimental psy-
chology and cognitive neuroscience (pp. 37–84). Wiley.

Lee, M. D., Criss, A. H., Devezer, B., Donkin, C., Etz, A., Leite, F. P.,
Matzke, D., Rouder, J. N., Trueblood, J. S., White, C. N., &
Vandekerckhove, J. (2019). Robust modeling in cognitive science.
Computational Brain & Behavior, 2(3-4), 141–153. https://doi.org/10
.1007/s42113-019-00029-y

Lee, M. D., Gluck, K. A., & Walsh, M. M. (2019). Understanding the com-
plexity of simple decisions: Modeling multiple behaviors and switching
strategies. Decision, 6(4), 335–368. https://doi.org/10.1037/dec0000105

Lee, M. D., & Vanpaemel, W. (2018). Determining informative priors for
cognitive models. Psychonomic Bulletin & Review, 25(1), 114–127.
https://doi.org/10.3758/s13423-017-1238-3

Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian cognitive modeling: A
practical course. Cambridge University Press.

Link, W. A., & Eaton, M. J. (2012). On thinning of chains in MCMC.
Methods in Ecology and Evolution, 3(1), 112–115. https://doi.org/10
.1111/j.2041-210X.2011.00131.x

Livingstone, S., Betancourt, M., Byrne, S., & Girolami, M. (2019). On the
geometric ergodicity of hamiltonian monte carlo. Bernoulli, 25(4A),
3109–3138. https://doi.org/10.3150/18-BEJ1083

Matzke, D., Dolan, C. V., Batchelder, W. H., & Wagenmakers, E.-J. (2015).
Bayesian estimation of multinomial processing tree models with heteroge-
neity in participants and items. Psychometrika, 80(1), 205–235. https://
doi.org/10.1007/s11336-013-9374-9

Monnahan, C. C., Thorson, J. T., & Branch, T. A. (2017). Faster estimation of
Bayesian models in ecology using Hamiltonian Monte Carlo. Methods in
Ecology and Evolution, 8(3), 339–348. https://doi.org/10.1111/mee3
.2017.8.issue-3

Navarro, D. J. (2021). If mathematical psychology did not exist we might
need to invent it: A comment on theory building in psychology.
Perspectives on Psychological Science, 16(4), 707–716. https://doi.org/
10.1177/1745691620974769

Navarro, D. J., Newell, B. R., & Schulze, C. (2016). Learning and choosing
in an uncertain world: An investigation of the explore–exploit dilemma in
static and dynamic environments. Cognitive Psychology, 85, 43–77.
https://doi.org/10.1016/j.cogpsych.2016.01.001

BARIBAULT AND COLLINS24

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1007/s42113-019-00039-w
https://doi.org/10.1007/s42113-019-00039-w
https://doi.org/10.1037/xlm0000455
https://doi.org/10.1037/xlm0000455
https://doi.org/10.1037/pag0000637
https://doi.org/10.1037/pag0000637
https://doi.org/10.1037/pag0000637
https://doi.org/10.1016/j.jmp.2017.09.005
https://doi.org/10.1016/j.jmp.2017.09.005
https://doi.org/10.1016/j.jmp.2017.09.005
https://doi.org/10.1016/j.jmp.2017.09.005
https://doi.org/10.1016/j.jmp.2017.09.005
https://doi.org/10.1016/j.jmp.2017.09.005
https://doi.org/10.1016/j.jmp.2020.102368
https://doi.org/10.1016/j.jmp.2020.102368
https://doi.org/10.1016/j.jmp.2020.102368
https://doi.org/10.1016/j.jmp.2020.102368
https://doi.org/10.1016/j.jmp.2020.102368
https://doi.org/10.1177/2167702620929636
https://doi.org/10.1177/2167702620929636
https://doi.org/10.1016/j.jmp.2020.102340
https://doi.org/10.1016/j.jmp.2020.102340
https://doi.org/10.1016/j.jmp.2020.102340
https://doi.org/10.1016/j.jmp.2020.102340
https://doi.org/10.1016/j.jmp.2020.102340
https://doi.org/10.3758/s13428-018-1067-y
https://doi.org/10.3758/s13428-018-1067-y
https://doi.org/10.3758/s13423-020-01747-2
https://doi.org/10.3758/s13423-020-01747-2
https://doi.org/10.1214/088342305000000016
https://doi.org/10.1214/088342305000000016
https://doi.org/10.1214/088342305000000016
https://doi.org/10.1016/j.jmp.2016.03.007
https://doi.org/10.1016/j.jmp.2016.03.007
https://doi.org/10.1016/j.jmp.2016.03.007
https://doi.org/10.1016/j.jmp.2016.03.007
https://doi.org/10.1016/j.jmp.2016.03.007
https://doi.org/10.1016/j.jmp.2016.03.007
https://doi.org/10.1007/s42113-019-00051-0
https://doi.org/10.1007/s42113-019-00051-0
https://doi.org/10.1016/j.jmp.2014.11.001
https://doi.org/10.1016/j.jmp.2014.11.001
https://doi.org/10.1016/j.jmp.2014.11.001
https://doi.org/10.1016/j.jmp.2014.11.001
https://doi.org/10.1016/j.jmp.2014.11.001
https://doi.org/10.1016/j.jmp.2014.11.001
https://doi.org/10.1016/j.jmp.2004.03.002
https://doi.org/10.1016/j.jmp.2004.03.002
https://doi.org/10.1016/j.jmp.2004.03.002
https://doi.org/10.1016/j.jmp.2004.03.002
https://doi.org/10.1016/j.jmp.2004.03.002
https://doi.org/10.1016/j.jmp.2004.03.002
https://doi.org/10.1016/j.jmp.2004.03.002
https://doi.org/10.1037/rev0000285
https://doi.org/10.1037/rev0000285
https://doi.org/10.1037/rev0000285
https://doi.org/10.1038/s41562-021-01177-7
https://doi.org/10.1038/s41562-021-01177-7
https://doi.org/10.1038/s41562-021-01177-7
https://doi.org/10.21105/joss
https://doi.org/10.21105/joss
https://doi.org/10.1214/20-BA1252
https://doi.org/10.1214/20-BA1252
https://doi.org/10.5334/cpsy.61
https://doi.org/10.5334/cpsy.61
https://doi.org/10.5334/cpsy.61
https://doi.org/10.3758/PBR.15.1.1
https://doi.org/10.3758/PBR.15.1.1
https://doi.org/10.3758/PBR.15.1.1
https://doi.org/10.3758/PBR.15.1.1
https://doi.org/10.3758/PBR.15.1.1
https://doi.org/10.1016/j.jmp.2010.08.013
https://doi.org/10.1016/j.jmp.2010.08.013
https://doi.org/10.1016/j.jmp.2010.08.013
https://doi.org/10.1016/j.jmp.2010.08.013
https://doi.org/10.1016/j.jmp.2010.08.013
https://doi.org/10.1016/j.jmp.2010.08.013
https://doi.org/10.1007/s42113-019-00029-y
https://doi.org/10.1007/s42113-019-00029-y
https://doi.org/10.1037/dec0000105
https://doi.org/10.1037/dec0000105
https://doi.org/10.3758/s13423-017-1238-3
https://doi.org/10.3758/s13423-017-1238-3
https://doi.org/10.1111/j.2041-210X.2011.00131.x
https://doi.org/10.1111/j.2041-210X.2011.00131.x
https://doi.org/10.1111/j.2041-210X.2011.00131.x
https://doi.org/10.1111/j.2041-210X.2011.00131.x
https://doi.org/10.1111/j.2041-210X.2011.00131.x
https://doi.org/10.1111/j.2041-210X.2011.00131.x
https://doi.org/10.3150/18-BEJ1083
https://doi.org/10.3150/18-BEJ1083
https://doi.org/10.1007/s11336-013-9374-9
https://doi.org/10.1007/s11336-013-9374-9
https://doi.org/10.1007/s11336-013-9374-9
https://doi.org/10.1111/mee3.2017.8.issue-3
https://doi.org/10.1111/mee3.2017.8.issue-3
https://doi.org/10.1111/mee3.2017.8.issue-3
https://doi.org/10.1111/mee3.2017.8.issue-3
https://doi.org/10.1111/mee3.2017.8.issue-3
https://doi.org/10.1177/1745691620974769
https://doi.org/10.1177/1745691620974769
https://doi.org/10.1177/1745691620974769
https://doi.org/10.1016/j.cogpsych.2016.01.001
https://doi.org/10.1016/j.cogpsych.2016.01.001
https://doi.org/10.1016/j.cogpsych.2016.01.001
https://doi.org/10.1016/j.cogpsych.2016.01.001
https://doi.org/10.1016/j.cogpsych.2016.01.001
https://doi.org/10.1016/j.cogpsych.2016.01.001

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In S. Brooks,
A. Gelman, G. Jones, & X.-L. Meng (Eds.), Handbook of Markov chain
Monte Carlo (pp. 113–160). Chapman & Hall/CRC.

Nilsson, H., Rieskamp, J., & Wagenmakers, E.-J. (2011). Hierarchical baye-
sian parameter estimation for cumulative prospect theory. Journal of
Mathematical Psychology, 55(1), 84–93. https://doi.org/10.1016/j.jmp
.2010.08.006

Nunez, M. D., Gosai, A., Vandekerckhove, J., & Srinivasan, R. (2019). The
latency of a visual evoked potential tracks the onset of decision making.
NeuroImage, 197, 93–108. https://doi.org/10.1016/j.neuroimage.2019
.04.052

Park, H., Yang, J., Vassileva, J., & Ahn, W.-Y. (2021). Development of a
novel computational model for the balloon analogue risk task: The
exponential-weight mean–variance model. Journal of Mathematical
Psychology, 102, Article 102532. https://doi.org/10.1016/j.jmp.2021
.102532

Peters, J., & D’Esposito, M. (2020). The drift diffusion model as the choice
rule in inter-temporal and risky choice: A case study in medial orbitofron-
tal cortex lesion patients and controls. PLoS Computational Biology,
16(4), Article e1007615. https://doi.org/10.1371/journal.pcbi.1007615

Pitt, M. A., Kim, W., & Myung, I. J. (2003). Flexibility versus generalizabil-
ity in model selection. Psychonomic Bulletin & Review, 10(1), 29–44.
https://doi.org/10.3758/BF03196467

Pleskac, T. J., Cesario, J., & Johnson, D. J. (2018). How race affects evidence
accumulation during the decision to shoot. Psychonomic Bulletin &
Review, 25(4), 1301–1330. https://doi.org/10.3758/s13423-017-1369-6

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical
models using Gibbs sampling. In K. Hornik, F. Leisch, & A. Zeileis
(Eds.), Proceedings of the 3rd international workshop on distributed stat-
istical computing (pp. 1–10). DSC.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory
and data for two-choice decision tasks. Neural Computation, 20(4),
873–922. https://doi.org/10.1162/neco.2008.12-06-420

Robert, C., & Casella, G. (2011). A short history of Markov chain Monte
Carlo: Subjective recollections from incomplete data. In S. Brooks,
A. Gelman, G. Jones, & X.-L. Meng (Eds.), Handbook of Markov chain
monte carlo (pp. 49–67). Chapman & Hall/CRC.

Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical mod-
els with an application in the theory of signal detection. Psychonomic
Bulletin & Review, 12(4), 573–604. https://doi.org/10.3758/BF03196750

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009).
Bayesian t tests for accepting and rejecting the null hypothesis.
Psychonomic Bulletin & Review, 16(2), 225–237. https://doi.org/10
.3758/PBR.16.2.225

Röver, C., Bender, R., Dias, S., Schmid, C. H., Schmidli, H., Sturtz, S.,
Weber, S., & Friede, T. (2021). On weakly informative prior distributions
for the heterogeneity parameter in Bayesian random-effects meta-analysis.
Research Synthesis Methods, 12(4), 448–474. https://doi.org/10.1002/
jrsm.v12.4

Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calcula-
tions for the applied statistician. The Annals of Statistics, 12(4), 1151–
1172. https://doi.org/10.1214/aos/1176346785

Salvatier, J., Wiecki, T. V., & Fonnesbeck, C. (2016). Probabilistic program-
ming in Python using PyMC3. PeerJ Computer Science, 2, Article e55.
https://doi.org/10.7717/peerj-cs.55

Schad, D. J., Betancourt, M., & Vasishth, S. (2021). Toward a principled
Bayesian workflow in cognitive science. Psychological Methods, 26(1),
103–126. https://doi.org/10.1037/met0000275

Schad, D. J., Nicenboim, B., Bürkner, P. -C., Betancourt, M., & Vasishth, S.
(2022). Workflow techniques for the robust use of Bayes factors.

Psychological Methods. Advance online publication. https://doi.org/10
.1037/met0000472

Schaper, M. L., Mieth, L., & Bell, R. (2019). Adaptive memory: Source
memory is positively associated with adaptive social decision making.
Cognition, 186, 7–14. https://doi.org/10.1016/j.cognition.2019.01.014

Scheibehenne, B., & Pachur, T. (2015). Using Bayesian hierarchical param-
eter estimation to assess the generalizability of cognitive models of choice.
Psychonomic Bulletin & Review, 22(2), 391–407. https://doi.org/10.3758/
s13423-014-0684-4

Shiffrin, R. M., Lee, M. D., Kim, W., & Wagenmakers, E. -J. (2008). A sur-
vey of model evaluation approaches with a tutorial on hierarchical
Bayesian methods. Cognitive Science, 32(8), 1248–1284. https://doi.org/
10.1080/03640210802414826

Spektor, M. S., & Kellen, D. (2018). The relative merit of empirical priors in
non-identifiable and sloppy models: Applications to models of learning
and decision-making. Psychonomic Bulletin & Review, 25(6), 2047–
2068. https://doi.org/10.3758/s13423-018-1446-5

Stan Development Team (2022). Stan modeling language users guide and
reference manual (Version 2.30). https://mc-stan.org

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduc-
tion. MIT Press.

Talts, S., Betancourt, M., Simpson, D., Vehtari, A., & Gelman, A. (2020).
Validating Bayesian inference algorithms with simulation-based calibra-
tion. https://arxiv.org/abs/1804.06788

Tran, N.-H., Van Maanen, L., Heathcote, A., & Matzke, D. (2021).
Systematic parameter reviews in cognitive modeling: Towards a robust
and cumulative characterization of psychological processes in the diffu-
sion decision model. Frontiers in Psychology, 11, Article 608287.
https://doi.org/10.3389/fpsyg.2020.608287

Turner, B. M., Sederberg, P. B., Brown, S. D., & Steyvers, M. (2013). A
method for efficiently sampling from distributions with correlated dimen-
sions. Psychological Methods, 18(3), 368–384. https://doi.org/10.1037/
a0032222

Vandekerckhove, J., Tuerlinckx, F., & Lee, M. (2008, July). A Bayesian
approach to diffusion process models of decision-making. In
Proceedings of the 30th annual conference of the Cognitive Science
Society, Austin TX (pp. 1429–1434). Cognitive Science Society.

van de Schoot, R., Winter, S. D., Ryan, O., Zondervan-Zwijnenburg, M., &
Depaoli, S. (2017). A systematic review of Bayesian articles in psychol-
ogy: The last 25 years. Psychological Methods, 22(2), 217–239. https://
doi.org/10.1037/met0000100

Vanpaemel, W. (2010). Prior sensitivity in theory testing: An apologia for the
Bayes factor. Journal of Mathematical Psychology, 54(6), 491–498.
https://doi.org/10.1016/j.jmp.2010.07.003

Van Ravenzwaaij, D., Cassey, P., & Brown, S. D. (2018). A simple introduc-
tion to Markov Chain Monte-Carlo sampling. Psychonomic Bulletin &
Review, 25(1), 143–154. https://doi.org/10.3758/s13423-016-1015-8

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model eval-
uation using leave-one-out cross-validation and WAIC. Statistics and
Computing, 27(5), 1413–1432. https://doi.org/10.1007/s11222-016-
9696-4

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C.
(2021). Rank-normalization, folding, and localization: An improved R̂
for assessing convergence of MCMC. Bayesian Analysis, 16(2), 667–
718. https://doi.org/10.1214/20-BA1221

Westfall, H. A., & Lee, M. D. (2021). A model-based analysis of the impair-
ment of semantic memory. Psychonomic Bulletin & Review, 28(5), 1484–
1494. https://doi.org/10.3758/s13423-020-01875-9

Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computa-
tional modeling of behavioral data. eLife, 8, Article e49547. https://
doi.org/10.7554/eLife.49547

(Appendices follow)

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 25

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1016/j.jmp.2010.08.006
https://doi.org/10.1016/j.jmp.2010.08.006
https://doi.org/10.1016/j.jmp.2010.08.006
https://doi.org/10.1016/j.jmp.2010.08.006
https://doi.org/10.1016/j.jmp.2010.08.006
https://doi.org/10.1016/j.jmp.2010.08.006
https://doi.org/10.1016/j.neuroimage.2019.04.052
https://doi.org/10.1016/j.neuroimage.2019.04.052
https://doi.org/10.1016/j.neuroimage.2019.04.052
https://doi.org/10.1016/j.neuroimage.2019.04.052
https://doi.org/10.1016/j.neuroimage.2019.04.052
https://doi.org/10.1016/j.neuroimage.2019.04.052
https://doi.org/10.1016/j.jmp.2021.102532
https://doi.org/10.1016/j.jmp.2021.102532
https://doi.org/10.1016/j.jmp.2021.102532
https://doi.org/10.1016/j.jmp.2021.102532
https://doi.org/10.1016/j.jmp.2021.102532
https://doi.org/10.1371/journal.pcbi.1007615
https://doi.org/10.1371/journal.pcbi.1007615
https://doi.org/10.1371/journal.pcbi.1007615
https://doi.org/10.1371/journal.pcbi.1007615
https://doi.org/10.3758/BF03196467
https://doi.org/10.3758/BF03196467
https://doi.org/10.3758/s13423-017-1369-6
https://doi.org/10.3758/s13423-017-1369-6
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.3758/BF03196750
https://doi.org/10.3758/BF03196750
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.3758/PBR.16.2.225
https://doi.org/10.1002/jrsm.v12.4
https://doi.org/10.1002/jrsm.v12.4
https://doi.org/10.1002/jrsm.v12.4
https://doi.org/10.1002/jrsm.v12.4
https://doi.org/10.1002/jrsm.v12.4
https://doi.org/10.1214/aos/1176346785
https://doi.org/10.1214/aos/1176346785
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1037/met0000275
https://doi.org/10.1037/met0000275
https://doi.org/10.1037/met0000472
https://doi.org/10.1037/met0000472
https://doi.org/10.1016/j.cognition.2019.01.014
https://doi.org/10.1016/j.cognition.2019.01.014
https://doi.org/10.1016/j.cognition.2019.01.014
https://doi.org/10.1016/j.cognition.2019.01.014
https://doi.org/10.1016/j.cognition.2019.01.014
https://doi.org/10.1016/j.cognition.2019.01.014
https://doi.org/10.3758/s13423-014-0684-4
https://doi.org/10.3758/s13423-014-0684-4
https://doi.org/10.3758/s13423-014-0684-4
https://doi.org/10.1080/03640210802414826
https://doi.org/10.1080/03640210802414826
https://doi.org/10.1080/03640210802414826
https://doi.org/10.3758/s13423-018-1446-5
https://doi.org/10.3758/s13423-018-1446-5
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://arxiv.org/abs/1804.06788
https://arxiv.org/abs/1804.06788
https://arxiv.org/abs/1804.06788
https://arxiv.org/abs/1804.06788
https://doi.org/10.3389/fpsyg.2020.608287
https://doi.org/10.3389/fpsyg.2020.608287
https://doi.org/10.3389/fpsyg.2020.608287
https://doi.org/10.3389/fpsyg.2020.608287
https://doi.org/10.1037/a0032222
https://doi.org/10.1037/a0032222
https://doi.org/10.1037/a0032222
https://doi.org/10.1037/met0000100
https://doi.org/10.1037/met0000100
https://doi.org/10.1037/met0000100
https://doi.org/10.1016/j.jmp.2010.07.003
https://doi.org/10.1016/j.jmp.2010.07.003
https://doi.org/10.1016/j.jmp.2010.07.003
https://doi.org/10.1016/j.jmp.2010.07.003
https://doi.org/10.1016/j.jmp.2010.07.003
https://doi.org/10.1016/j.jmp.2010.07.003
https://doi.org/10.3758/s13423-016-1015-8
https://doi.org/10.3758/s13423-016-1015-8
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1214/20-BA1221
https://doi.org/10.1214/20-BA1221
https://doi.org/10.3758/s13423-020-01875-9
https://doi.org/10.3758/s13423-020-01875-9
https://doi.org/10.7554/eLife.49547
https://doi.org/10.7554/eLife.49547
https://doi.org/10.7554/eLife.49547
https://doi.org/10.7554/eLife.49547

Appendix

Code Libraries to Support Troubleshooting in R, Python, and
MATLAB
Libraries that facilitate many of the troubleshooting procedures

recommended here are freely available in each of the three program-
ming languages—R, Python, and MATLAB—that are most com-
monly used for Bayesian cognitive modeling. As of this writing
(August 2022), the most comprehensive support libraries available
are bayesplot in R (Gabry & Mahr, 2021), ArviZ in Python
(and Julia; Kumar et al., 2019), and matstanlib in MATLAB
(Baribault, 2021).
Below, we outline exactly how these support libraries may be used

to automate the computations and plots described in the main text.

Using matstanlib for Troubleshooting in MATLAB

While an abundance of tutorials are available that demonstrate the
use of bayesplot and ArviZ, scarcely any demonstrate use of
matstanlib as it has just recently been released. As such, we
offer a brief walkthrough of how this new resource may be used to
automate and/or support each of the troubleshooting procedures
we recommend. However, the sequence of steps is the same in R
and Python (see Table A1 for analogous commands in bayesplot
and ArviZ).
After running the model, it is often necessary to convert the output

to a format that is compatible with the support library. For MATLAB
users, neither the recognized MATLAB interface to Stan, MatlabStan
(https://github.com/brian-lau/MatlabStan), nor the alternative inter-
face, Trinity (https://github.com/joachimvandekerckhove/trinity),
returns samples in the format that is required by matstanlib. mat-
stanlib’s extractsamples.m function automates the refor-
matting process for output from either interface:

[samples,diagnostics] = extractsamples(‘Matlab
Stan’,fit);

[samples,diagnostics] = extractsamples(‘trinity’,
chains,info);

while ensuring that chain indices and the order of iterations within
each chain is all faithfully maintained. Posterior samples and sam-
pler diagnostics are returned in separate structures.
The required computational checks are fully automated by mat-

stanlib. First, those computational diagnostics that are based on
the posterior samples (R̂ and ESS), along with some basic posterior
summary statistics, are computed and collected in a table:

posteriorTable = mcmctable(samples);

Then, an automated assessment of all HMC/NUTS diagnostics
may be printed at the command line:

interpretdiagnostics(diagnostics,
posteriorTable)

This report will include a warning if any of the required computa-
tional checks for HMC/NUTS sampling (R̂, ESS, divergences,
BFMI) were not passed.
Some of the required consistency checks are automated by mat-

stanlib. While prior predictive checks must be programmed

manually, as they require customization to the research context, param-
eter recovery checks are supported. After running a simulation study,
recovery plots may be generated using the matstanlib’s plotre-
covery.m function, as we used to create all six recovery plots in
Figure 9.

If any problems are detected through these checks, a variety of diag-
nostic plots are needed to investigate further. Nearly all of the diagnos-
tic plots mentioned in the tutorial are available in matstanlib.

matstanlib offers trace plots and rank plots to support trouble-
shooting high R̂, and ESS plots to support troubleshooting low ESS.
The trace plots in Figures 3, 4 (top), and 5b and the rank plots in
Figure 4 (bottom) were generated by matstanlib’s traceden-
sity.m and rankplots.m functions, respectively. Each trio of
ESS plots in Figure 7 was generated by matstanlib’s plo-
tess.m function.

matstanlib also offers diagnostic plots for troubleshooting
those diagnostics that are specific to HMC/NUTS, including
BFMI and divergences. Low BFMI warnings can be investigated
using energy plots; the energy plots in Figure 6a and b, which
were generated by matstanlib’s plotenergy.m function.
The visualization of divergent transitions by chain in Figure 5a, gen-
erated by the plotdivergences.m function, and the parallel
coordinate plot of samples in Figure 10b, generated by the paral-
lelsamples.m function, are useful to recognize if divergences
are more concentrated in the samples from a particular chain, or in
a specific part of the joint parameter space, respectively.

A wide variety of other matstanlib functions support visual
exploration of the joint posterior densities and estimates. As many
of these functions can accept optional inputs to trigger diagnostic
overlays, they may simultaneously support troubleshooting for vari-
ous HMC/NUTS diagnostics. To demonstrate the effect of reparame-
terization on a funnel-shaped density, we used the
jointdensity.m function to generate the bivariate density
plots, with indicators for divergent transitions (if any) overlaid, as
seen in Figure 5c and d . The grids of bivariate densities for multiple
conjunctions of parameters in Figures 6c and 10a were generated by
the multidensity.m function. Using optional inputs for multi-
density.m to request that the energy diagnostic was included in
Figure 6c and that divergence indicators were overlaid in
Figure 10a, and these plots especially useful for troubleshooting
low BFMI and divergent transitions, respectively.

Diagnostic overlays are also able to be included on a number of
other matstanlib plots. For example, to add a rug plot of itera-
tions with divergences or the maximum treedepth was reached to a
trace plot, as we did for Figure 5b, the structure of diagnostic quan-
tities must be given as an additional input:

tracedensity(samples,parameterNames,
diagnostics)

To see the most recent documentation for any matstanlib
function, including a full list of the optional inputs that are available,
simply run the help command at the command line:

help plotess
(Appendices continue)

BARIBAULT AND COLLINS26

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://github.com/brian-lau/MatlabStan
https://github.com/brian-lau/MatlabStan
https://github.com/brian-lau/MatlabStan
https://github.com/joachimvandekerckhove/trinity
https://github.com/joachimvandekerckhove/trinity
https://github.com/joachimvandekerckhove/trinity

Finally, matstanlib offers limited support for improving model
specifications. To support the elicitation of new hyperpriors, prior
simulation is automated through the hyperpriortester.m func-
tion, which was used to generate both panels in Figure 11. A small
number of post hoc reparameterizations for hyperparameters of select
distributions are automated by the hypertransform.m function.

All of the supplementary code mentioned in the main text
(example_RL.m, example_funnel.m, RL_broken.stan,
RL_fixed.stan) is available in the examples folder of
matstanlib.

The matstanlib library is freely available from https://github
.com/baribault/matstanlib.

Received December 17, 2021
Revision received August 29, 2022

Accepted November 07, 2022 ▪

Table A1
Essential Commands for Troubleshooting in Various Programming Languages’ Support Libraries

Command name

MATLAB R Python
Command behavior matstanlib bayesplot ArviZ

Core functionality
Reformat samples and diagnostics extractsamples as.array, nuts_params from_pystan, etc.
Generate a table of posterior statistics and convergence diagnostics mcmctable monitor summary

Diagnostics report interpretdiagnostics check_hmc_diagnostics —

Diagnostic plots
Trace plot tracedensity mcmc_trace, mcmc_combo plot_trace
Rank plots rankplots mcmc_rank_hist plot_rank
Divergences by chain plotdivergences — —

Energy plot plotenergy mcmc_nuts_energy plot_energy
ESS diagnostic plots plotess — plot_ess
Bivariate density with marginals jointdensity mcmc_scatter plot_pair
Grid of bivariate densities multidensity mcmc_pairs plot_pair
Parallel coordinates plot parallelsamples mcmc_parcoord plot_parallel
Parameter recovery plot plotrecovery mcmc_recover_scatter —

Other functionality
Prior simulation hyperpriortester — —

Posthoc application of select known reparameterizations hypertransform — —

Note. Function names in gray indicate the command is from the main interface package (i.e., Rstan, PyStan) as similar functionality is not included in the
support package (i.e., is not available in bayesplot or ArviZ). If no function name is given, then as of this writing (August 2022), there is no
counterpart in either the interface package or the specified support package.

TROUBLESHOOTING BAYESIAN COGNITIVE MODELS 27

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://github.com/baribault/matstanlib
https://github.com/baribault/matstanlib
https://github.com/baribault/matstanlib

	Troubleshooting Bayesian Cognitive Models
	Bayesian Cognitive Modeling
	The Bayesian Framework
	An Example Bayesian Cognitive Model
	A Brief Introduction to Sampling Algorithms
	Sampler Output

	Detecting Problems
	Computational Checks
	Convergence and Divergence
	Sampling Efficiency

	Consistency Checks
	Prior Predictives
	Parameter Recovery

	Identifying the Root Issue
	Posterior Geometry
	Parameterization
	Reparameterization

	From Troubleshooting to Model Development
	Simulation-Based Calibration
	Model Recovery
	Posterior Predictives

	Reporting Results
	Conclusion
	References
	Using &monospace;matstanlib&/monospace; for Troubleshooting in MATLAB

