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Abstract

Why are we so slow in choosing the lesser of 2 evils? We considered whether such slowing relates to uncertainty about the
value of these options, which arises from the tendency to avoid them during learning, and whether such slowing relates to
frontosubthalamic inhibitory control mechanisms. In total, 49 participants performed a reinforcement-learning task and a
stop-signal task while fMRI was recorded. A reinforcement-learning model was used to quantify learning strategies.
Individual differences in lose-lose slowing related to information uncertainty due to sampling, and independently, to less
efficient response inhibition in the stop-signal task. Neuroimaging analysis revealed an analogous dissociation: subthalamic
nucleus (STN) BOLD activity related to variability in stopping latencies, whereas weaker frontosubthalamic connectivity
related to slowing and information sampling. Across tasks, fast inhibitors increased STN activity for successfully canceled
responses in the stop task, but decreased activity for lose-lose choices. These data support the notion that fronto-STN
communication implements a rapid but transient brake on response execution, and that slowing due to decision
uncertainty could result from an inefficient release of this “hold your horses” mechanism.

Key words: basal ganglia systems, Bayesian hierarchical modeling, fMRI effective and functional connectivity, reinforcement
learning, response inhibition

Optimal foraging entails learning to select among decision alterna-
tives, based on their (hidden) probabilistic values. Individuals differ
in their exploration/exploitation balance, and hence the degree to
which they sample options with lower valued outcomes, during
reinforcement learning. Such interindividual variability may help

understand the mechanisms involved in choosing the lesser of 2
evils. Value-based decision-making often requires choice between
options that have similar learned values but may never have been
presented together (e.g,, a novel choice between miso soup and
com chowder). These kinds of choices can elicit conflict arising
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from either the novel pairing of 2 previously desired outcomes
(win-win) or undesired outcomes (lose-lose). Despite identical
value differences, the novel pairing of 2 lose-lose options is consis-
tently associated with prolonged decision times when compared
with win-win conflict (Frank, Samanta, et al. 2007; Cavanagh et al.
2011; Jocham et al. 2011; Ratcliff and Frank 2012; Cavanagh, Wiecki,
et al. 2014). While the relative speeding for high valued options is
attributed to effects of reward expectation (and dopamine levels)
on reaction time (RT), the literature has generally not considered
the impact of differential uncertainty about choice values.
Consider a common reinforcement-learning task in which an
agent learns to choose among pairs of options with different rein-
forcement probabilities (e.g., 80% vs. 20%, 70% vs. 30%, and 60% vs.
40%) (Frank et al. 2005). While one can optimize rewards in this
task by exploiting/maximizing (i.e., always choosing the more
rewarded option), this strategy would prevent the agent from
exploration and hence from acquiring a precise representation
about the value of the lesser options (Gittins 1979; Cohen et al.
2007). Critically, this exploitation strategy would also then make it
more difficult to later choose between a 40% and 20% option (a
high-conflict lose-lose choice), due to less sampling and greater
uncertainty about their true values.

What are the neural mechanisms that can leverage such
uncertainty to adjust decision times? Prior studies indicate that
when presented with decision conflict, increased activity in the
STN acts to delay response execution by inhibiting action alto-
gether (Aron and Poldrack 2006; Aron et al. 2007; Jahfari et al.
2011, 2012) or by raising the decision threshold, that is, the level
of evidence required to make a choice (Frank 2006; Frank,
Samanta, et al. 2007; Cavanagh et al. 2011; Ratcliff and Frank
2012; Zaghloul et al. 2012; Green et al. 2013; Wiecki and Frank
2013; Frank et al. 2015; Zavala et al. 2015; Herz et al. 2016).
Intuitively, a common mechanism for response inhibition and
threshold adjustment seemingly implies that faster or more
efficient inhibition would relate to more conflict-induced slow-
ing. However, in the case of lose-lose conflict such a fixed
increase in decision threshold mechanism is maladaptive
when the learned information for the optimal choice is sparse
(i.e., it could engender decision paralysis). Instead, simulation
studies suggested that the STN “hold your horses” mechanism
is dynamic, with a fast initial STN surge that is followed by a
steep decline of activation (“releasing the horses”), facilitating
choice even when the evidence is sparse (Ratcliff and Frank
2012; Wiecki and Frank 2013). This dynamic could even suggest
an efficient initial STN surge, and hence rapid response inhibi-
tion, might actually lead to less uncertainty-induced slowing.

We aimed to specify these relationships with the examination
of 2 tasks. Functional magnetic resonance imaging (fMRI) data
was recorded while participants performed a reinforcement-
learning task followed by a test-phase containing novel win-win,
lose-lose, and win-lose pairs without feedback (Fig. 1a). Here, the
degree of exploration/exploitation (and hence subsequent uncer-
tainty in learned values of lose options) was assessed during
learning by stochasticity in choices and quantified with a
reinforcement-learning model that reliably predicted trial-to-trial
choices (Fig. 2). With far less samples to refine beliefs about the
precise probabilities, exploiters should only have a rough value
estimate for loss stimuli. Although the reward probabilities of
each stimulus are complementary (e.g., A is 80% and B is 20%)
and hence in principle knowledge of this structure could facilitate
inference about the value of B by selecting A, this inference is
indirect and participants were never explicitly told about the
complementary relationship within each learning option.
Previous studies with this task have also shown that learning

about A and B is independent and one can excel at choose-A and
not at avoid-B and vice-versa. Choose-A performance is related to
brain responses to positive feedback and striatal dopaminergic
signaling, whereas avoid-B performance is related to neural
response to negative feedback and oppositely impacted by dopa-
minergic manipulations (Frank et al. 2004; Frank, Moustafa, et al.
2007; Kravitz et al. 2012; Collins and Frank 2014; Frank 2016).
Importantly, we also administered a stop-signal task to assess
the efficiency of response inhibition in the absence of learning
(Fig. 1b), and to relate this to the behavioral and neural markers
of conflict-based slowing.

We assess how choice strategies and the efficiency of
response inhibition each relate to slowing in 1) reaction times,
2) the BOLD response of the STN region, and 3) the strength of
effective connectivity in the frontosubthalamic pathway by
using a model-driven effective connectivity approach termed
ancestral graphs (AG) (Waldorp et al. 2011). This last explorative
analysis followed prior studies suggesting that the communica-
tion from PFC into the STN region, the so-called hyperdirect
pathway (Nambu et al. 2002), is enhanced under response con-
flict (Aron et al. 2007; Isoda and Hikosaka 2007, 2008; Frank
et al. 2015) to motivate a brake (Jahfari et al. 2012, 2015; Aron
et al. 2016), or decision threshold adjustments on striatal
reward-based choice in order to prevent impulsive or prema-
ture responses (Frank 2006; Cavanagh et al. 2011; Wiecki and
Frank 2013; Herz et al. 2017).

Materials and Methods
Participants

A total of 49 young adults (25 males; mean age = 22 years;
range: 19-29 years) participated in this study. Four participants
were excluded from all analyses due to movement (2), incom-
plete sessions (1), or misunderstanding of task instructions (1).
One participant did not complete the stop-task, and for one we
were unable to obtain reliable SSRT estimates (stopping
latency) therefore they were only included for the reinforce-
ment learning task (RL-task) RL-task analysis. All participants
had normal or corrected-to-normal vision and provided written
consent before the scanning session, in accordance with the
declaration of Helsinki. The ethics committee of the University
of Amsterdam approved the experiment, and all procedures
were in accordance with relevant laws and institutional
guidelines.

Tasks and Procedure

As shown in Figure 1, participants performed a reinforcement-
learning task (Frank et al. 2004) and a stop-signal task in the
MRI scanner. All stimuli were presented on a black-projection
screen that was viewed via a mirror-system attached to the
MRI head coil. For each experiment faces with natural expres-
sions were used as stimuli and selected from the Radboud Face
Database (Langner et al. 2010). Faces had neither hair nor
glasses and were trimmed to remove all external features
(neck, hairline). To control for carryover effects, faces used for
the stop-task were not used in the RL-task, and participants
were told explicitly that the faces used in the stop-task are
unrelated to, and different from, the ones used in the RL-task.

Reinforcement Learning Task

The RL-task consisted of 2 phases; an initial reinforcement
learning phase and a subsequent test-phase. During the
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Figure 1. Experimental design. (a) Reinforcement-learning task. During learning, 2 faces were presented at each trial, and participants learned to select the most opti-
mal face stimulus (A, C, E) solely through probabilistic feedback (probability of correct is displayed beneath each stimulus). The learning-phase only contained 3 face
pairs (AB, CD, ED) for which feedback was given. In the test-phase, faces were arranged into 15 combinations. Trials were further identical to the learning-phase with
the exception of feedback. (b) Stop-signal task. Each trial started with the presentation of a fixation-cross followed by a male or female face stimulus, indicating a left
or right response. During stop trials, a tone was played at a variable delay (SSD) after the presentation of the go stimulus. The tone instructed participants to suppress

the indicated response.

learning phase, 3 different male or female face pairs (AB, CD,
EF) were presented in random order and participants learned to
choose 1 of the 2 faces (Fig. 1a). Probabilistic feedback followed
each choice to indicate “correct” (happy smiley) or “incorrect”
(sad smiley) (Jocham et al. 2011). Choosing face-A lead to “cor-
rect” on 80% of the trials, whereas face-B leads to “incorrect”.
Other ratios for “correct” were 70:30 (CD) and 60:40 (EF). Each
trial had a fixed duration of 4000 ms, and started with a jitter
interval of 0, 500, 1000, or 1500 ms to obtain an interpolated
temporal resolution of 500 ms. During this interval, a white fix-
ation cross was presented and participants were asked to
maintain fixation. Two faces were then presented left and right
of the fixation-cross and remained on screen up to response, or
trial end (4000 ms). If a response was given on time, a white box
surrounding the chosen face was shown (300 ms) and followed
(interval 0-450ms) by feedback (500 ms). Omissions were fol-
lowed by the text “miss” (2000 ms). The test-phase contained
the 3 face-pairs from the learning phase, and 12 novel combi-
nations, in which participants had to select which item they
thought had been more rewarding during learning. High-
conflict win-win trials were defined as choices that involved 2
previously rewarding stimuli (i.e., AC, AE, CE), whereas high-
conflict lose-lose trials were defined as choices that involved 2
previously losing stimuli (BD, BF, DF). Low-conflict win-lose sti-
muli served as controls for selection among novel pairs but
which invoked little conflict (AD, AF, CB, etc.). Test-phase trials
(4000 ms) were identical to the learning phase but no feedback
was provided. In addition to the jitter used at the beginning of
each trial, null trials (4000 ms) were randomly interspersed dur-
ing the learning (60 trials) and test (72 trials) phase. Across the
whole task, each face was presented equally often on the left or
right side, and choices were indicated with the right-hand
index (left) or middle (right) finger.

Before the MRI session, participants performed a complete
learning phase to familiarize with the task (300 trials with dif-
ferent faces). In the MRI scanner, participants performed 2
learning blocks of 150 trials each (300 trials total; equal num-
bers of AB, CD, and EF), and 3 test phase blocks of 120 trials
each (360 total; 24 presentations of each pair).

Stop-signal task

Each trial started with a white fixation cross followed by a male
or female face stimulus. Participants were asked to identify the
gender of the face presented with a left (index finger right
hand) or right response (middle finger of the right hand).

During stop trials a tone was presented after a variable interval.
The tone instructed participants to suppress the indicated gen-
der response (Fig. 1b). Trials started with a random jitter inter-
val of 0-1500ms (steps of 500ms), during which a white
fixation cross was presented in the center of the screen. A face
stimulus was then presented for a period of 500 ms. On 30% of
the trials, the go stimulus was followed by a high tone (stop sig-
nal). The stop signal delay (SSD) between the go stimulus and
the stop signal was initially set at 250 ms and adjusted accord-
ing to standard staircase methods to ensure convergence to
P(inhibit) = 0.5 (for the full description of the staircase
method used please see the task code on https://github.com/
sarajahfari/Control_Conflict.git). Instructions emphasized that
participants should do their best to respond as quickly as possi-
ble while also doing their best to stop when an auditory stop
signal occurred. Each trial had a fixed duration of 4000 ms, and
trials were further separated by an occasional null trial with
only a fixation (4000 ms; 15 trials). Outside the scanner, partici-
pants performed a brief practice block of 30 trials to familiarize
with the task. In the MRI scanner, participants subsequently
performed a total of 150 trials (100 go trials, 50 stop trials).

Reinforcement-Learning Model

We quantitatively characterized participants’ learning curves
using a variant of the Q learning RL algorithm (Watkins and
Dayan 1992; Frank, Moustafa, et al. 2007; Daw 2011), using hier-
archical Bayesian parameter estimation, allowing us to sepa-
rately estimate learning rates from choice stochasticity/
exploration. Based on previous work we defined separate learn-
ing rate parameters for positive (xgain) and negative (aloss)
reward prediction errors (Frank, Moustafa, et al. 2007; Kahnt
et al. 2009; Niv et al. 2012). Q-learning assumes participants rep-
resent reward expectations for each stimulus/action (A-to-F).
After observing a particular reward outcome, the expected value
(Q) for selecting a stimulus i (A-to-F) on the next trial is updated
as follows:

aGain (1) — Qi(®)], ifr=1
it+DH=0Q i
UE+D =0+ {aLoss h(®) - Q)] ifr=0

number, and r = 1 (positive feedback) or r = 0 (negative feed-
back). The probability of selecting one response over the other
(i.e., A over B) is computed as follows:

where 0 < agin OF ojess < 1 Tepresent learning rates, t is trial
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Figure 2. Q-learning model and performance. Graphical Q-learning model for hierarchical Bayesian parameter estimation (a). @ () is the cumulative standard normal distribu-
tion function. The model consists of an outer subject (i = 1,....,N), and an inner trial plane (t = 1,...,T). Nodes represent variables of interest. Arrows are used to indicate depen-
dencies between variables. Double borders indicate deterministic variables. Continues variables are denoted with circular nodes, and discrete with square nodes. Observed
variables are shaded in grey. The right panel shows group-level posteriors for all Q-learning parameters (with t/100) (b), and model performance where data is simulated
with the estimated parameters and evaluated against the observed data for the AB (c), CD (d), or EF (e) pairs. Error bars represent standard error of the mean (SEM).

exp (t X Qi(A))

Pa(t) =
exp(t X Q¢(B)) + exp (t X Q¢(A))

with 0 < 7 < 100 known as the inverse temperature governing the
degree to which learned Q values are exploited. Higher estimates
of r indicate that decisions are mostly determined by the relative
difference in value (exploitation), whereas lower estimates show
a more stochastic choice pattern but which facilitates better
learning of the underlying values of the lesser options.

The Q-learning algorithm was fit to the learning-phase trials
using a Bayesian hierarchical estimation method where para-
meters for individual subjects are drawn from a group-level
distribution. This hierarchical structure is preferred for param-
eter estimation as it allows for the simultaneous estimation of
both group level parameters and individual parameters, and
confers greater statistical strength for estimating and recover-
ing parameters (Wetzels et al. 2010; Ahn et al. 2011; Lee 2011;
Steingroever et al. 2013; Wiecki et al. 2013; Jahfari and
Theeuwes 2017). Figure 2a shows a graphical representation of
the model. The quantities r;, .; (reward for participant i on trial
t-1) and ch;; (choice for participant i on trial t) are obtained
directly from the data. The quantities aGi, aLi and i are deter-
ministic, and are transformed during estimation by using their
respective probit transformations Z'i (¢'Gi, «’Li, 7'i). The probit
transform is the inverse cumulative distribution function of the
normal distribution. The parameters Z'i lie on the probit scale
covering the entire real line. Parameters Z'i were drawn from
group-level normal distributions with mean y,’ and standard
deviation &,'. A normal prior was assigned to group-level means
u; ~ N(0,1), and a uniform prior to the group-level standard
deviations ;" ~ U(1,1.5) (Wetzels et al. 2010; Steingroever et al.
2013). Model fits were implemented in Stan (Homan and
Gelman 2014; Stan Development Team 2014). Multiple chains
were generated to ensure convergence, and evaluated with the
Rhat statistics (i.e., all Rhats were close to 1.0) (Gelman and
Rubin 1992). The right panel of Figure 2 shows group-level pos-
teriors on model parameters, and simulations from these para-
meters yield reasonable learning curves that match those
observed empirically.

Behavioral Analysis

In the RL-task accuracy rates were based on choosing the most
optimal stimulus (e.g., A over C, or A over B). Accuracy rates
and median reaction times (RTs) for the RL-task test-phase
were separated into high-conflict win-win (ww; AC, AE, CE),
high-conflict lose-lose (ll; BD, BF, DF), and low-conflict win-lose
(wl; AD, AF, CB, CF, EB, ED) pairs (Fig. 1a). Pairs that were pre-
sented during the learning phase (AB, CD, EF) were excluded
from the win-lose condition, so that all conditions only con-
tained novel pairs. Repeated measures ANOVA with Tukey’s
test were used to assess how conflict affects performance (RT
and Accuracy). The stop-signal reaction time (SSRT) for the
stop-task was estimated using the so-called “integration
method” (Logan and Cowan 1984; Verbruggen and Logan 2009).
This method takes the percentile of the go RT corresponding
the individuals exact chance of responding given a stop signal,
and subtracts the mean SSD from this value. Overall, the
chance of responding given a signal was close to 0.5 (M = 0.47,
SD = 0.06), the average SSD was 530.83 (SD = 284.71), and SSRT
was 274.07ms (SD = 105.67). Mean RTs of failed stops (M =
803.62, SD = 307.7) were faster than correct go trials (M = 845.14,
SD = 330.20), and this difference was significant (t[42] = 2.30, P =
0.03) validating the independence assumption of the race-
model. Robust regressions, and robust multiple regressions
were used to focus on the relationship between conflict-
induced slowing/errors and choice strategies (z) or the effi-
ciency to stop (SSRT), after reinforcement learning.

Magnetic Resonance Imaging Scanning Procedure

The fMRI data for the RL-task was acquired in a single scanning
session with 2 learning and 3 test-phase runs on a 3-T scanner
(Philips Achieva TX, Andover, MA) using a 32-channel head coil.
Each scanning run contained 340 functional T2*-weighted echo-
planar images for the learning phase, and 290 T2*-weighted
echoplanar images for the test phase (TR = 2000ms; TE =
27.63ms; FA = 76.1°; 3 mm slice thickness; 0.3 mm slice spacing;
FOV = 240 x 121.8 x 240; 80 x 80 matrix; 37 slices, ascending slice
order). After a short break of 10min with no scanning, data
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collection was continued with a 3D T1 scan for registration pur-
poses (repetition time [TR] = 8.5080 ms; echo time [TE| = 3.95 ms;
flip angle [FA] = 8° 1mm slice thickness; 0mm slice spacing;
field of view [FOV] = 240 x 220 x 188), and the fMRI data collec-
tion for the stop-task (335 T2* weighted echoplanar images; TR =
2000 ms; TE = 27.63 ms; FA = 76.1°; 3 mm slice thickness; 0.3 mm
slice spacing; FOV = 240 x 121.8 x 240; 80 x 80 matrix; 37 slices,
ascending slice order).

Overall, participants first went into the scanner for approxi-
mately 45 min to perform the RL-task with 2 learning phases,
and 3 test phase blocks. We subsequently introduced a short
+10 min break, where participants were taken out of the scan-
ner and served with the traditional “stroopwafel” (Dutch
cookie). Once participants went back into the scanner we first
started with the recording of the structural T1 scan. During this
period, participants had no task and were asked to relax. The
stop-task then followed with an approximate duration of
15min. Although we cannot rule out fatigue or attentional
deterioration in the stop-task, our behavioral and BOLD obser-
vations were very similar to those observed in other fMRI stud-
ies using the stop-signal task (Aron et al. 2007; Jahfari et al.
2011).

Preprocessing

Preprocessing was performed using FEAT (FMRI Expert Analysis
Tool) version 6.00, part of FSL (FMRIB’s Software Library, www.
fmrib.ox.ac.uk/fsl). The first 6 volumes were discarded to allow
for T1 equilibrium effects. Preprocessing steps included motion
correction, high-pass filtering in the temporal domain (¢ = 50),
and prewhitening (Woolrich et al. 2001). All functional data sets
were individually registered into 3D space using the partici-
pant’s individual high-resolution anatomical images. The indi-
vidual 3D representation was then used to normalize the
functional data into Montreal Neurological Institute (MNI)
space by linear and nonlinear scaling.

fMRI Analysis Procedure and ROI Selection

The analysis procedure of the fMRI data was 2-fold. First, an
anatomically defined template of the STN region was used to
explore how the STN BOLD response relates to SSRT (control) or
7 (choice uncertainty based on past learning) in the test phase
after learning, and in the stop-signal task. The STN template
was derived from a recent study using ultrahigh 7 T scanning
(Keuken et al. 2014), and selected for its use in previous fMRI
studies focusing on reinforcement based conflicted choices
(Frank et al. 2015), or response inhibition (Jahfari et al. 2012,
2015; De Hollander et al. 2017). Because our 3T protocol with
3 mm isotropic voxels might lack the resolution to separate the
STN from the Red Nucleus (RN), or Substantia Nigra (SN) with
certainty (De Hollander et al. 2015) we refer to the STN as the
STN region in the description and discussion of our findings.
Second, the model-driven AG connectivity method was used
for selecting the optimal network in describing PFC and BG
coactivation patterns during test-phase trials (for the analysis
of the stop-task using AG please see Jahfari et al. 2011, 2012,
2015), and, to subsequently explore how the strength of PFC-BG
connectivity in the optimal model relates to decision times,
SSRT, or 7. The regions of interest (ROIs) used for the AG analy-
sis included: 1) masks based on a whole brain cluster-corrected
analysis of the learning-phase fMRI data to identify regions
that covary with trial-by-trial signed reward prediction errors;
and 2) a priori selected PFC and BG anatomical masks for

regions typically associated with fronto-BG decision-making, or
choice evaluations (Mink 1996; Frank 2006; Isoda and Hikosaka
2008; Nambu 2009; Shenhav et al. 2014). Please see below for a
detailed description of each step.

Deconvolution Analysis of the STN

To more precisely examine the time course of activations in
the STN region, we performed finite impulse response estima-
tion (FIR) on the STN BOLD signals. After motion correction,
temporal filtering and percent signal change conversion, data from
the STN region were averaged across voxels, and upsampled from
0.5 to 3Hz. This allows the FIR fitting procedure to capitalize on
the random timings (relative to TR onset) of the stimulus presenta-
tions and decisions in the experiment. For this analysis, stimulus
onset was chosen as t0 of the FIR time course. FIR time courses for
all trial types were then estimated simultaneously using a least-
squares fit, as implemented in the FIRDeconvolution package
(Knapen and Gee 2016). Resulting single-participant response time-
courses were then used to evaluate the contribution of SSRT and
choice strategies for each timepoint separately, using multiple
regression as implemented in the statsmodels package (Seabold
and Perktold 2010). Here, alpha value for the contributions of SSRT
and choice strategy was set to 0.0125 (i.e., a Bonferroni corrected
value of 0.05 given the interval of interest between 0 and 8s).
Confidence intervals in Fig. 5 were estimated using bootstrap
analysis across participants (n = 1000), where the shaded region
represents the SEM across participants (i.e., bootstrapped 68%
confidence interval).

Ancestral Graphs Method

To focus on frontobasal ganglia dynamics when participants
make reinforcement guided-decisions after learning, the fMRI
data recorded during test-phase was analyzed using AG
(Waldorp et al. 2011). AG infer functional or effective connectiv-
ity by taking into account the distribution of BOLD activation
per ROI, across trials, per subject, and so are not dependent on
the low temporal resolution of the time series in fMRI. A graph-
ical model reflects the joint distribution of several neuronal
systems with the assumption that for each individual the set of
active regions is the same. The joint distribution (graphical
model) of 2 nodes is estimated from the replications of “condi-
tion specific trials” (e.g.,, win-win or lose-lose), and not from
the time series. With this method, we can infer 3 types of con-
nections: 1) effective connectivity (directed connection —>), 2)
functional connectivity (undirected connection -), and 3)
unobserved systems (bidirected connection <->). Directed
connections are regression parameters in the usual sense
(denoted by p) and undirected connections are partial covar-
iances (unscaled partial correlations; denoted by 1). The bidir-
ected connections refer to the covariance of the residuals from
the regressions (denoted by w). These 3 types of connections can
be identified by modeling the covariance matrix (denoted by %)
as follows:

z =/3-1(6\'1 g)(ﬂ‘iﬂ

where g contains the regression coefficients, A contains the
partial covariances, and Q contains the covariances between
residuals. A random effects model is used to combine models
across subjects to then compare different models over the
whole group using Bayes information criterion (BIC). The graph
with the lowest BIC value will be selected.
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To infer directions from the ancestral graph, it is required
that a change in direction implies a change in probability distri-
bution. This is not always the case. For example, a chain from
A to B to Cis in terms of conditional independencies equivalent
to a chain with the directions reversed, that is from C to B to A
(for more details see Waldorp et al. 2011). Two equivalent mod-
els, such as those just mentioned, will result in the same BIC
value, indicating that directionality cannot be inferred. The
most important structure is when 2 arrowheads meet (a col-
lider). This will always result in a change in BIC value. The
causal interpretations of the connections from an ancestral
graph that is the best model according to the BIC can be briefly
described as follows:

e A —> B: Ais a cause of B [effective connectivity]

e A - B: Ais a cause of B and/or B is a cause of A [functional
connectivity]

e A <—> B: there is a latent common cause of A and B [missing
region]

For a more detailed description and cautions on causal inter-
pretations see Zhang (2008).

The method of AG relies on conditional independencies
implied by the topology of the network. Therefore, different
models (e.g., different directions of connections) result in differ-
ent fits to the data. The differences between models is charac-
terized by BIC, which combines both accurate descriptive (for
the data at hand) and predictive (for future data) value.

For the purpose of testing differences between connections,
Waldorp et al. (2011) combined the estimation of AG with a
random-effects model in which the parameters (connections)
of each subject are from a normal distribution with unknown
mean and variance. The main assumption of the random
effects model is that all participants are from the same popula-
tion, but that they can differ in connection strength. The model
is compared at the group level to other models and is tested for
fit at the individual level. The resulting ancestral graph is the
best representation at the group level and at least an adequate
representation at the individual level.

Once the model with the lowest BIC is selected, individual
(subject) fits are obtained by using an adjusted goodness-of-fit
test, indicating whether the model explains the data well
enough. To assess relative fit between the selected model and
saturated model, the AG method makes use of a modified ver-
sion of the likelihood ratio (LR) test. For AG, the modified LR
test is defined as the ratio of the model of interest (hypothesis)
and the unrestricted (saturated) model. The test is corrected for
being overly sensitive because the data can deviate from nor-
mality slightly (Yuan and Bentler 1997). The corrected test, has
asymptotically a 2 distribution with p(p + 1)/2 — q degrees of
freedom, where p is the number of variables and q is the num-
ber of parameters. The test represents the relative difference in
fit between the saturated model and the hypothesized model.
Smaller values indicate a good relative fit to the observed data,
compared with the full-saturated model; that is, smaller values
mean that leaving out connections still corresponds well to the
data. A significance level of 0.05 was used to reject models with
a poor fit at the subject level.

The main differences between AG described in (Waldorp
et al. 2011) and dynamic causal modeling (DCM) or structural
equation modeling (SEM) are: 1) inference is based on trial-by-
trial variation in the estimated BOLD signal and not on the time
series as in DCM or SEM because of the low frequency sampling

in fMRI, 2) both functional and effective connectivity can be
represented in a single ancestral graph, 3) a common unob-
served (latent) cause of a connection can be detected, 4) the
definition of a circular system is only possible in undirected
systems, and 5) the selected model is always compared against
the full saturated model to evaluate relative fits, and to ensure
that leaving out connections can still correspond well to the
observed pattern of BOLD responses across trials.

ROI Definition for AG Connectivity

AG connectivity was evaluated using the test-phase trials of
the RL-task. Because lose-lose options can prolong decisions,
the first aim of our connectivity evaluation was to describe how
PFC and BG decision-making regions collaborate to reach, and
implement, a value-driven choice. We previously showed that a
stop-network (please see Supplementary Fig. 1a), with projections
from the right IFG and preSMA into the hyperdirect (STN —> GPi),
and indirect (STR —> GPe —> GPi) pathways fits well to observed
BOLD activity patterns when a choice is omitted, but is insufficient
to describe across trial coactivation patterns when a manual
choice is initiated (Jahfari et al. 2012, 2015). For similar observa-
tions with the BOLD pattern of win-win or lose-lose trials, using
this right hemispheric stop-network, please see Supplementary
Figure 1b. To optimize fits for the description of win-win or lose-
lose decisions, all ROIs were selected based on their potential
involvement in value-driven decision-making. The definition of
ROIs used for AG connectivity in the test-phase relied on 1) the
analysis of fMRI data in the learning-phase, to identify regions
(voxels) within the striatum and vmPFC that correlate specifically
with the signed reward prediction error (RPE), and 2) on previous
work linking specific regions within the PFC and BG to value-
driven choice.

First, the 2 learning blocks were used to identify voxels
within the vmPFC and striatum that respond to ongoing reward
prediction errors during reinforcement-guided decision-mak-
ing. For this purpose, the onset of each outcome was modeled
as a separate delta function and convolved with the hemody-
namic response function. We used a parametric GLM design
with orthogonalized regressors where positive or negative out-
comes were parametrically modulated by demeaned trial-wise
prediction errors derived from the Q-learning model. Individual
contrast images were computed for positive and negative error
related responses and taken to a second-level random effect
analysis using one-sample t-test. For the whole-brain analysis
Z (Gaussianzied T/F) statistic images were thresholded using
clusters determined by z > 2.3 (contrast positive RPE correla-
tion) and a cluster-corrected significance threshold of P = 0.05.
Note, that this liberal threshold was only used for the definition
of ROI masks that covary with RPE during learning; to be used
only as masks for the evaluation of connectivity in the subse-
quent test-phase. During the test-phase feedback is no longer
presented and internal representations of action values become
vital to the selection process. Because reward prediction errors
are thought to act as a teaching signal, ROI definition for the
striatum (center of gravity [cog]: 1, 5, —4) and vmPFC (cog: -3,
52, —1) nodes made use of the positive correlation RPE contrast
in the learning phase, with the exclusion of voxels in the
ventricles.

Second, a priori anatomical masks were defined for the fol-
lowing regions: preSMA (cog: [-] 9, 25, 50), DLPFC (cog: [-] 37,
37, 27), STN (cog: [L] -9, —14, -7; [R] 10, —13, -7), globus pallidus
interna (GPi) (cog: [L] —18, -8, —3; [R] 19, -7, —3), globus pallidus
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externa (GPe) (cog: [L] —19, -5, 0; [R] 20, -3, 0), thalamus (cog: [L]
-10, -19, 7; [R] 11, —18, 7), and primary motor cortex (M1) (cog:
—18, —26, 61). All selected ROIs were bilateral. The DLPFC tem-
plate was obtained from a recent study, linking especially the
posterior part to action execution (Cieslik et al. 2013). The STN,
GPe, and GPi templates were derived from a previous study
using ultrahigh 7 T scanning (Keuken et al. 2014), thresholded
to exclude the lowest 25% voxels, and then binarized. All other
ROIs were created from cortical and subcortical structural
atlases available in FSL.

Single-Trial Parameter Extraction for AG Connectivity

For each ROI (anatomical or RPE based) we subsequently
obtained a single parameter estimate (averaged normalized
p estimate across voxels in each ROI mask) for each trial of the
recorded test-phase, per subject. The average number of para-
meters (based on trials) per ROI was 71.1 (SD = 1.7) for win-win,
71.4 (SD = 1.3) for lose-lose, and 213.7 (SD = 5.2) for win-lose.
Misses were excluded from connectivity analysis. Connectivity
analysis was conducted in R-Cran (version 3.0.2), including the
packages ggm (version 1.995-3), graph (version 1.40.0), and
RBGL (version 1.38.0). Please see Supplementary Figures 2 and 3
for the average (across trials) cluster corrected activity maps of
each behavior, overlaid with the outline of masks used for con-
nectivity. Note however that these activity maps display only
the average response across trials, whereas our connectivity
analysis focused on trial-by-trial coactivation patterns.

Model Definition for AG Connectivity

To examine how frontal and basal-ganglia nodes work together in
selecting a response during the test phase, model fits were per-
formed on the following trials: 1) win-win, 2) lose-lose, and 3)
win-lose choices. A set of 7 potential choice models containing the
direct (PFC-Striatum-GPi-Thalamus-M1), hyperdirect (PFC-STN
region-GPi-Thalamus-M1), or indirect (PFC-Striatum-GPe-GPi-
Thalamus-M1) PFC-BG pathways was tested to find the most opti-
mal model in explaining the pattern of activation in the predefined
regions. PFC consisted of vimPFC, DLPFC and preSMA, and each
PFC region was defined to project into BG (see above for specifica-
tion in the separate pathways). Because all PFC regions projected
into BG, connections between PFC nodes could only be defined as
undirected (functional connectivity). To optimize fits, all models
were evaluated separately for left (right hand index finger) and
right (right hand middle finger) responses (Table 1), and win-lose
trials were first subdivided into 3 smaller chunks based on value-
differences between pairs (small, 30; medium, 40; large, 50).

Table 1 BIC values for model fits across test-phase conditions

1975

Connectivity towards GPe and GPi was differentially evaluated
based on the theoretical description of the direct (Striatum —> GPi),
indirect (Striatum —> GPe —> GPi), and hyperdirect (STN region —>
GPi) pathways. The differential evaluation of 2 adjacent nodes (i.e.,
GPi and GPe) is not trivial and was justified by 2 critical observa-
tions. First, our model selection approach illustrated a better bal-
ance between variance and bias, with substantial decreases in BIC
values (> 860 points in each condition; please see Table 1: model 4
vs. model 7), when projections towards the GPe were defined
(“indirect” pathway) alongside the projections towards only GPi
(“hyperdirect” and “direct” pathways). Second, for each partici-
pant, across trial partial correlations (pcor) were computed among
all the regions included in the connectivity analysis. Across sub-
jects, the strength of pcor observed between the adjacent GPe/GPi
nodes (pcor M = 0.37, SD = 0.11), was highly similar to relation-
ships found between more distant regions such as for example
the DLPFC and preSMA (pcor M = 0.36, SD = 0.19; t[44] = 0.30, P =
0.77), or the preSMA and vmPFC (pcor M = 0.38, SD = 0.15; t[44]=
-0.39, P = 0.70).

Because connection strengths did not differ for win-lose
divisions, parameter estimates of the winning model were
averaged for the win-win, lose-lose, and win-lose condition to
align with the behavioral analysis. To compare the contribution
of each model with the BIC criterion all 9 regions were always
entered into the model, but the defined relationship (or connec-
tions) among regions varied across models.

Results
Uncertainty and Conflict-Induced Slowing

In our RL-task participants learned to select among choices
with different probabilities of reinforcement (i.e., AB 80:20, CD
70:30, and EF 60:40). A subsequent test-phase, where feedback
was omitted, required participants to select the optimal option
among novel pairs involving low (win-lose) or high (win-win
and lose-lose) decision conflict. During the test-phase, as
expected, accuracy in choosing the most optimal stimulus was
reduced for both high-conflict lose-lose and win-win pairs
compared with low-conflict win-lose pairs (F[2,88] = 18.8, P <
0.0001; Fig. 3a). Slowed RTs were observed for only the lose-lose
pairs (F[2,88] = 21.4, P < 0.0001; Fig. 3b).

To understand how the experience of conflict is influenced
by the uncertainty associated with learned values that arises
from information sampling, we quantified such sampling via
the softmax ¢ parameter estimated from the reinforcement
learning model. Higher estimates of r index a greater tendency
to exploit higher valued stimuli and as such predicted higher
accuracies (rag = 0.79, rcp = 0.74, rgr = 0.47; all P’s < 0.01; Fig. 3c)
with steeper learning curves (Fig. 3d—f) in the learning phase. As

Win-win Lose-lose Win-lose 1 Win-lose m Win-lose s
Model specification Left Right Left Right Left Right Left Right Left Right
1 PFC + BG direct 18 045 18222 18333 18453 12928 13321 13281 13306 13192 13226
2 PFC + BG indirect 17491 17 507 17731 17753 12535 12900 12 862 12905 12743 12748
3 PFC + BG hyperdirect 18709 18644 18987 19036 13367 13678 13674 13653 13636 13612
4  PFC + BG direct&hyperdirect 17831 17 906 18133 18320 12768 13119 13056 13082 13031 12986
5 PFC + BG direct&indirect 17 427 17453 17 681 17705 12480 12832 12801 12855 12667 12673
6  PFC + BG indirect&hyperdirect 16660 16614 16902 16918 11962 12296 12235 12279 12104 12116
7  PFC + BG direct&indirect&hyperdirect 16588 16564 16848 16869 11906 12215 12176 12218 12018 12029

Lower BIC values indicate a better balance between the variance and bias of the estimated model connections.
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Figure 3. The exploit/explore trade-off in future decisions. Percentage of correct responses (a) and median reaction times (b) in the test-phase. (c) Participants with an
exploitative choice strategy learned well by mostly choosing the optimal options during the learning phase (d-f) and were more accurate (g) but slowed (h) in the test-
phase; especially for the mostly neglected lose-lose pairs. The groups in plots d-h were created with a median split on , and plotted to illustrate learning differences

over time. Error bars represent SEM. **P < 0.01, *P < 0.05

noted above, however, we posited that such exploitation would
increase the uncertainty about the values of under-sampled loss
stimuli in future test-phase choices. A repeated measures ANOVA
with the between subject variable strategy (Exploit/Explore;
defined as the continuous variable 7) and within subject factor
Conflict (win-win, lose-lose, win-lose) revealed that exploitation
during learning was related to improved accuracy (F[1,43] = 72.1, P
< 0.0001; please see Fig. 3g for a visualization based on a median
split on 7), but also prolonged reaction times in the test phase
(F[1,43] = 9.0, P < 0.01; Fig. 3h). Critically, these effects were
qualified by an interaction between Strategy and Conflict
(accuracy: F[2,86] = 3.4, P = 0.04; RT: F[2,86] = 6.9, P < 0.01),
revealing especially large costs for lose-lose decisions in
exploiters. In particular, compared with explorers, exploiters
exhibited the most prominent RT cost for lose-lose (t[42] = 3.5,
P = 0.001) and less so for win-lose (t[42] = 2.1, P = 0.04), and
win-win (t[42] = 1.7, P = 0.09). Similarly, although they per-
formed more accurately overall, exploiters showed significant
gains in accuracy only for choices involving a win stimulus
(win-win t[42] = 3.2, P < 0.01; win-lose t[42] = 6.3, P < 0.0001),
and not for lose-lose choices (t[42] = 1.8, P = 0.08).

Hence, while it is unsurprising that overall, participants per-
forming more accurately during training also do so at test, these
exploitative participants were characterized by relatively selective
RT costs for the lose-lose choices in the test phase. These costs
are expected given that they had not sampled these stimuli as
much and hence should exhibit larger uncertainty when choos-
ing among them. We next considered whether such RT costs

were mitigated by response inhibition, separately from choice
strategy.

Control and Conflict-Induced Slowing

While prolonged decision-times (RTs) in the test-phase were
related to exploitative choice strategies, we also were inter-
ested to assess the role of response inhibition independently of
learning and uncertainty. Previous work has attributed conflict-
induced slowing to the same STN mechanism associated with
outright response inhibition (Frank 2006; Aron et al. 2007) via
either dynamic modulation of decision thresholds and/or an
initial delay that precedes the decision-process (Ratcliff and
Frank 2012). Therefore, we additionally examined an indepen-
dent measure of inhibitory control efficiency in the stop-signal
task termed the stop-signal reaction time (SSRT, Fig. 4a).

We hypothesized that if conflict-induced slowing is simply
associated with more overall response inhibition (or a fixed
increase in decision threshold), then subjects engaging this mech-
anism would exhibit more inhibition and slower conflict-induced
RTs. If, on the other hand, conflict-induced slowing involves a
transient threshold increase that then collapses, then efficient
response inhibition should relate to less conflict-induced slowing.
Moreover, for exploiters, this release of a transient brake should
particularly censor the tail of the RT distribution, which would
otherwise have more density due to uncertainty in the evidence.
Please note that N = 43, in contrast to the analysis above with N =
45, as there were 2 more fall-outs in the stop task.
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Figure 4. The efficiency to implement control predicts lose-lose slowing. (a) Graphic representation of the race model estimation for SSRT. A distribution of go trial
RTs is shown beneath the curve. SSRT represents the average time needed to suppress a planned response. The efficiency to stop (SSRT) predicted response times
during lose-lose trials (b). Exploitative participants who were more efficient in inhibition showed a steeper decline in the tail of the lose-lose reaction time distribu-
tion (c), this was not seen for explorative participants (d). Median splits were used to create the Exploit/Explore or fast/slow SSRT groups.

Indeed, overall, faster SSRTs (more efficient inhibition) were
related to faster lose-lose response times (t[41] = 3.36, P = 0.002,
robust regression; Fig. 4b). (No such relationship was seen for
win-win RT; t[41] = 1.57, P = 0.13.) SSRT was unrelated to explo-
ration vs exploitation in choices during learning (t[41] = 1.82,
P = 0.08), suggesting that the 2 factors might contribute inde-
pendent variance to the lose-lose decision times. Indeed, a
robust multiple regression showed a significant contribution of
both 7 (b, = 42.02, t[40] = 2.992, P = 0.005), and SSRT (bssre = 1.181,
t[40] = 2.989, P = 0.005) to lose-lose response times. Furthermore,
while the inhibition effect was observable in both exploiters and
explorers—consistent with an independent effect of SSRT on
implementing and releasing the brake—its impact on the tail of
the distributions was observed only in exploiters (Fig. 4c,d). This
result is consistent with the notion that exploiters have more
uncertainty about action outcomes, and hence without an effi-
cient brake they exhibit longer tails. SSRTs were not related to
lose-lose accuracy performance (P = 0.34).

These results explain lose-lose RT as a function of both
choice strategies (previous sampling of information and hence
uncertainty) and active but transient inhibitory control. Highly
slowed participants were exploitative during learning, and inef-
ficient in the implementation of a fast brake.

The Efficacy of Control in the STN During Full Stops and
Conflict
At the neural level, the STN is well known for its role in global

stopping (fast full brake) and the modulation of decision require-
ments. To evaluate how our behavioral observations relate to

this literature, the time-course of activity within the STN region
was estimated for both the stop-signal task and the test-phase
of the RL-task. Multiple regressions were then used to evaluate
how the STN region activity in each task relates to one’s efficacy
to inhibit a planned response (SSRT), or choice strategy z.

In the stop-signal task (N = 43), the estimated STN region
activity (Fig. 5a) was strongest for failed stop trials, corroborating
a recent 7 T study focusing on the STN in this task (De Hollander
et al. 2017), and possibly reflects a reactive engagement to correct
for the failure to stop (we return to this result in the discussion).
Notably, efficient inhibition, as indexed by SSRT, was marginally
correlated with the estimated STN region response only when
participants succeeded to suppress a planned response on time
(i.e., successful stop trials); such that higher early BOLD responses
in the STN region were related to faster or more efficient inhibi-
tion times (Fig. 5b,c). As expected, no relationship was observed
between the STN region BOLD response and t, when participants
were engaged in the stop-task.

These 3T observations focusing on the STN region in the
stop-signal task replicate the 7T findings reported by of De
Hollander et al. (2017), by increasing both sample size and voxel
size. The gains in temporal signal to noise ratio (tSNR) and
power resulted in the estimation of robust task-related STN
BOLD responses with a peak around 4-6s, and condition spe-
cific replications of the 7 T report. Our large sample size addi-
tionally enabled us to examine how variability in BOLD relates
to individual differences in stopping efficiencies. We extend
current beliefs by showing how the efficacy to inhibit responses
is only related to the STN regions BOLD response when the
attempt is successful.
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Figure 5. The efficiency to stop predicts the STN BOLD response in conflict and full response cancellation. The FIR-estimated STN BOLD signal time-course for trials
in the stop-signal task (top panel) and the test-phase after learning (bottom panel), with the estimated regression coefficients SSRT shown for each trial type (mid
panel). SSRT differentially related to activity patterns of the STN when inhibition was successful in the stop task (marginal effect with P = 0.05), or with the experience
of conflict in test-phase trials. The horizontal lines show the interval in which SSRT contributed significantly to the multiple regression, for the conflicted lose-lose
(red) and win-win (green) trials. The right panel highlights the differential relationship across task, with drawn correlation plots for successful stop trials (c), and the

slowed lose-lose trials after learning (f).

We then turned to the test-phase of the RL-task to under-
stand how STN region activity relates to the observed behavioral
relationships between slowing and control (N = 43). Overall, the
estimated STN region response was very similar across all trials
of the test phase (Fig. 5d). The multiple regression, however,
showed that STN response to high-conflict (win-win and lose-
lose), but not low-conflict win-lose trials, was directly related to
SSRT (Fig. 5e). STN region activity was unrelated to r, pointing
towards distinct effects of inhibitory control and choice uncer-
tainty on response slowing. The positive relationship between
SSRT and lose-lose STN activity (Fig. 5f) corresponds to the
behavioral observation that more slowing was tied to longer
SSRTs, consistent with the notion that it results from the ineffi-
cient implementation of a transient STN region brake.

Conflict-Induced Slowing in Corticobasal Ganglia
Pathways

Finally, we used the model-driven AG approach (please see
Materials and Methods for a detailed explanation) to analyze
the information flow between PFC and BG during test-phase
trials, and to explore how this interplay relates to the signifi-
cant lose-lose slowing.

The evaluation of effective connectivity restricted the inter-
play between PFC and BG with the use of 3 pathways generally
described in animal and human studies (Nambu et al. 2002;
Nambu 2009; Jahanshahi and Rothwell 2017) (Fig. 6a). Here, most
projections terminate in the striatum (STR), from where 2 (out of
3) pathways depart. A direct-pathway projects into thalamus via

the globus pallidus interna (GPi) to facilitate action selection,
while an indirect-pathway via the globus pallidus externa (GPe)
can allow the integration of additional information by adaptively
slowing the motor output. A third, hyperdirect-pathway directly
projects from PFC into subthalamic nucleus (STN) and inhibits the
thalamus output to primary motor cortex (M1) by exciting the GPi.
These described PFC-BG pathways each play a specific (and there-
fore testable) role in the selection, regulation, or suppression of
choices, and were therefore selected for the evaluation of 7 poten-
tial connectivity networks to describe information flows, or connec-
tivity, between the PFC and BG during test-phase decisions (please
see Materials and Methods for the definition of all 7 models).

Concurrent with the literature, random effects analysis
across the whole group indicated that a connectivity network
comprising the direct, indirect and the hyperdirect pathway
best describes the pattern of activity during all choice trials
(Table 1). Assessment of relative fit then ensured that the
model is a good representation of the observed activation pat-
terns in all 45 participants. Figure 6b shows the graphical out-
line of this model with functional connectivity (undirected
relationship) between all PFC nodes (i.e., DLPFC, preSMA,
vmPFC) and effective connectivity from each PFC region into
the striatum (STR) and STN region. Within BG, effective connec-
tivity was defined from STN region into GPi, Striatum into GPe,
GPe into GPi, GPi into thalamus, and finally Thalamus into pri-
mary motor cortex (M1) to select a response. To better under-
stand the top-down dynamics of this network we next focused
on connection strengths (regression values derived from AG)
from PFC into STN region or STR in 2 steps.
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Figure 6. Schematic of the theoretical frontobasal ganglia pathways and effective connectivity results. (a) Theoretical frontobasal ganglia model with the direct, indi-
rect and hyperdirect pathways. Gray arrows represent excitatory connections; black arrows represent inhibitory connections. (b) Graphical representation of the most
representative effective connectivity network for all test-phase trials. Directed arrows represent effective connectivity (EC); undirected lines represent functional con-
nectivity. For lose-lose trials, weaker PFC-into-STN connections related to a more exploitative choice strategy in the past and more uncertainty about the lose-lose

options (c).

First, the strength of top-down connections was investigated
using a repeated measure ANOVA with the factors Conflict (win—
win, lose-lose, win-lose) and Connection (PFC —> STN region,
PFC —> STR). There was a main effect of connection: PFC effec-
tive connectivity towards the STR (mean = —0.17, SD = 0.007)
was stronger compared with that toward STN region (mean =
—0.15, SD = 0.007; F[1,44] = 10.38, P = 0.002). There were no addi-
tional main effects or interactions modulated by conflict.

Second, we explored how past choice strategies, SSRTs, and
test-phase decision times (RTs) each relate to the strength of
connectivity (estimated regression strengths) from PFC into
either the STN region or STR. The relationships are evaluated
with N = 45 for RT and 7, or with N = 43 for SSRT, and reported
with Bonferoni corrected P-values for the 3 behaviors evaluated
using a critical alpha of 0.0167 (i.e., a Bonferroni corrected value
of 0.05 given 3 tests). For lose-lose trials, PFC-into-STN connec-
tivity correlated significantly with past choice strategies t (r =
0.41, P_bonferoni=0.015; Fig. 6c); such that participants with the
most exploitative strategies, and hence most uncertain about
values of lose-lose options, exhibited the weakest PFC-into-
STN region communication. No significant relationships were
observed in the evaluation of PFC-into-STN region connectivity
against SSRTs (r = 0.21, P_bonferoni=0.53), or lose-lose RTs (r =
0.30, P_bonferoni=0.14). Moreover, no relationships were
observed in the evaluation of PFC-into-STN region connectivity
during win-win or win-lose trials, or for PFC-into-STR connec-
tivity (P’s > 0.05).

These evaluations suggest that the communication between
the PFC and STN region (the so called hyperdirect pathway) is
disrupted during lose-lose trials because of choice, or informa-
tion, uncertainty. The lack of a relationship between PFC-into-
STN connectivity and stop-task performance is consistent with
our previous work focusing on the stop-signal task (Jahfari
et al. 2011, 2015), and possibly relates to the fast signal conduc-
tion within the hyperdirect pathway.

Discussion

A large body of work focuses on the neural mechanisms of
reinforcement learning and value-based decision making, and
how animals and humans can optimize learning and choice
performance in stochastic environments. However, here we
provide evidence for a tradeoff: subjects that appear to perform

better during learning are less able to quickly avoid the worst
of low value options in a later generalization test. Because
exploitative subjects during learning did not sample the less
valuable options, they obtained less information about their
precise probabilities. The concomitant increased choice uncer-
tainty for later decisions and was marked by altered communi-
cation strengths from the PFC into the STN region and slower
response times. We additionally focused on the mechanisms of
this lose-lose slowing and the related neural response in the
STN region to show how both relate to the estimated stop sig-
nal reaction times (SSRTs), or the ability to rapidly and tran-
siently implement inhibitory control.

The frontosubthalamic connections are thought to support
conflict-induced slowing, and allow the integration of addi-
tional information by slowing or fully suppressing the motor
output (Frank 2006; Cavanagh et al. 2011; Ratcliff and Frank
2012; Wiecki and Frank 2013; Herz et al. 2016). With the use of a
model-driven connectivity approach, we found that the
dynamic coupling between PFC and the STN region was weak-
est for the most uncertain and slowed participants. This rela-
tionship was further clarified by 3 additional findings. First, we
observed that the magnitude of lose-lose slowing is best
explained by considering not only past choice strategies (and
hence uncertainty), but also, independently, SSRT. The SSRT is
an estimate for one’s efficiency to implement control (Logan
and Cowan 1984; Verbruggen and Logan 2008) and extensively
related to the STN region, which provides a fast and transient
brake on all responses (Aron and Poldrack 2006; van den
Wildenberg et al. 2006; Frank, Samanta, et al. 2007; Li et al.
2008; Schmidt et al. 2013; Obeso et al. 2014; Jahanshahi et al.
2015; Aron et al. 2007, 2016; Benis et al. 2016; Mallet et al. 2016;
Fife et al. 2017). Accordingly, those subjects who were least effi-
cient at rapid response inhibition (long SSRTSs) exhibited more
lose-lose slowing and a stronger STN surge during high-conflict
trials. Moreover, while no direct relationship was observed
between choice strategies and SSRT, the fast (and transient)
implementation of control was especially helpful in the preven-
tion of overly slow lose-lose choices, especially for uncertain
exploitative learners.

In the last decade 2 parallel lines of literature have focused
on the specific role of the STN in the modulation of evidence
requirements/decision threshold adjustments (Bogacz 2007;
Cavanagh et al. 2011; Ratcliff and Frank 2012; Herz et al. 2016),
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or full response suppression (Aron and Poldrack 2006; Swann
et al. 2011; Obeso et al. 2014; Jahanshahi et al. 2015). Response
conflict has been consistently associated with the adaptation of
evidence requirements (Verbruggen and Logan 2009; Jahfari
et al. 2012; Wiecki and Frank 2013; White et al. 2014), including
win-win and lose-lose conflict after reinforcement learning
(Simen et al. 2006; Cavanagh et al. 2011; Cavanagh, Masters,
et al. 2014; Cavanagh, Wiecki, et al. 2014). In this study, we eval-
uated the efficacy of control against the STN BOLD response dur-
ing the experience of conflict, after learning, and in a separate
task during full response suppression. We observed that the effi-
cacy to implement a fast and full brake on all responses (SSRT)
is differentially related to the STN region in each process.

In the stop-signal task, the activity pattern of the STN region
was only related to stopping times when inhibition was suc-
cessful. Here, the rise of the STN BOLD was highest for fast
inhibitors. We note that this effect was only marginal in the 43
participants evaluated but consistent with the literature
describing the STN in the stop task with rodents, or humans
(Aron and Poldrack 2006; Aron et al. 2007; Schmidt et al. 2013;
Schmidt and Berke 2017). The strongest BOLD response in the
STN region was observed for trials where participants failed to
inhibit a response on time (Li et al. 2008; De Hollander et al.
2017). Here, participants fail to inhibit the growth of activity for
the go decision on time, and as a result might compensate by
activating the STN without restraint or any regulation (Salinas
and Stanford 2013; Greenhouse et al. 2015). This compensation
effort could increase estimates of the slow BOLD response, but as
observed, should have no causal contribution to the stop process
for which the average inhibition time is estimated with SSRT.

In contrast to successful stop trials, slower inhibition times
were associated with increased STN BOLD responses in the
evaluation of value-based decisions. Critically, however, this
relationship was specific to the high-conflict win-win and lose-
lose trials, and not observed for easy win-lose decisions.
Supporting the contrast between stopping and conflict, recent
recordings from the STN have shown power increases in the
STN to differ in the frequency range for conflict (2-8 Hz range)
(Cavanagh et al. 2011; Zavala et al. 2014), or response inhibition
(13-30 Hz) (Swann et al. 2009; Bastin et al. 2014; Aron et al. 2016;
Wessel et al. 2016). However, beta-band adaptations (15-35 Hz)
also occur at the resolve of conflict (Brittain et al. 2012). Our
results suggest that a fast but transient STN brake, as posited
by models showing a collapse in STN activity, might be helpful
during conflicted-choices.

The efficiency to suppress all responses correlated with the
STN region BOLD response during lose-lose and win-win con-
flict. Behaviorally, however, responses were only slowed and
related to uncertainty, or SSRTs during lose-lose trials. Possibly,
with the presentation of 2 negative options, the lack of informa-
tion, negative value, and conflict all conspire to delay the selec-
tion process, or decision (Ratcliff and Frank 2012; Cavanagh and
Frank 2013). In contrast, when conflict is the result of 2 positive
options (win-win) there is more information, and the STN acti-
vates to counterbalance only the most impulsive choices with
the increase of evidence requirements (Frank et al. 2005; Frank,
Samanta, et al. 2007; Cavanagh et al. 2011). The lack of response
slowing for win-win choices can largely be attributed to the
impact of predicted reward on the decision process itself.
Indeed, when the normal counterbalancing function of the STN
is disrupted win-win choices become even faster than the easy
win-lose (Frank, Samanta, et al. 2007; Ratcliff and Frank 2012).

The strength of fronto-STN connectivity or the magnitude of
the STN BOLD both did not differ when compared between low-

conflict (win-lose), or high-conflict (win-win, lose-lose) trials.
Nevertheless, we observed selective relationships between uncer-
tainty and fronto-STN connectivity during lose-lose decisions, or a
relationship between control and the STN BOLD only at times of
high conflict. These data imply frontosubthalamic involvements
and activity to be condition specific—despite any differences in
magnitude. In the literature, condition specific relationships
between PFC-theta and RT are found for learned high-conflict
choices—an effect that is reversed by deep brain stimulation of
the STN—whereas no difference is found in overall theta power
across conditions (Cavanagh et al. 2011). Moreover, the oscillatory
activity of STN is related to behavior in opposing directions for
low or high-conflict conditions (Herz et al. 2016). Our results com-
plement these observations with the analysis of BOLD to show
how high-conflict responses can be specifically tied to disrupted
fronto-STN region dynamics, or inefficient control mechanisms.

Finally, previous time-sensitive reports have shown that the
coherence between medial PFC and STN is increased in early
periods of high-conflict (Zavala et al. 2014; Frank et al. 2015),
with slower and more accurate responses when increases in
the STN follow adaptations in medial PFC (Isoda and Hikosaka
2008). At first glance, our connectivity results contradict these
findings. The critical difference here is that we evaluate con-
nectivity, or coactivation patterns, with the use of trial-by-trial
estimates of the slow BOLD response in PFC and BG nodes. In
the STN region, these BOLD estimates include both the rise
(implementation), and fall (release) (Ratcliff and Frank 2012) of
the brake that is implemented to allow more time in conflicted
decisions. With an identical rise, the trial-by-trial estimates of
the STN region BOLD should be lower with faster releases of
the brake. We found stronger negative PFC-into-STN region
connections for the most certain participants, who responded
faster, and chose the lesser options more often during learning.
This pattern may suggest that when activity levels across PFC
are raised sufficiently by information, the STN brake is released
to allow choice. Consistently, PFC-into-STN region connectivity
was disrupted, and tied to slowing, for the most uncertain parti-
cipants who mostly avoided the lesser options during learning.
Future work should refine this interpretation with high temporal
resolution approaches to evaluate connectivity in both early and
late phases of conflict-based decisions (Cohen 2011).

To summarize, these results describe the profound lose-lose
slowing as a function of past learning choices, and individual
differences in active but transient response suppression
through the STN region (i.e., “hold and release your horses”).
Moreover, they provide novel insights into the frontosubthala-
mic (“hyperdirect”) pathway involvement during the regulation
of value-driven conflict.

Supplementary Material

Supplementary material is available at Cerebral Cortex online

Authors’ Contributions

SJ., KR.R. and MJ.F. designed the study. S.J. collected the data.
S.J.,A.C, TXK., and L.W. contributed novel methods. S.J. and T.K.
analyzed the data. SJ. and M.J.F. wrote the first draft of the
article.

Funding

This project was funded by an ABC Talent Grant from the
University of Amsterdam to SJ. and a National Science

€20z 2unr z| uo 1senb Aq /8YS/67/696 1/5/62/9101ME/100180/W00"dNO"0ILSPEDE//:SARY WOl PSPEojUMO(



Conflict and Control in Frontobasal Ganglia Circuitry Jahfarietal. | 1981

Foundation (Grant #1460604) to M.J.F. The code and processed
files supporting the findings can be downloaded from: https://
github.com/sarajahfari/Control_Conflict.git. The raw data is
available from the corresponding author in BIDS format upon
reasonable request (sara.jahfari@gmail.com). To get an intui-
tion for fitting the AG method using the stop-signal data
reported in the supplementary see: https://github.com/
sarajahfari/AG_example.git.

Notes

Conflict of Interest: None declared.

References

Ahn W-Y, Krawitz A, Kim W, Busemeyer JR, Brown JW. 2011. A
model-based fMRI analysis with hierarchical Bayesian
parameter estimation. ] Neurosci Psychol Econ. 4:95-110.

Aron AR, Behrens TE, Smith SM, Frank M]J, Poldrack RA. 2007.
Triangulating a cognitive control network using diffusion-
weighted magnetic resonance imaging (MRI) and functional
MRI. ] Neurosci. 27:3743-3752.

Aron A, Herz D, Brown P, Forstmann B, Zaghloul K. 2016.
Fronto-subthalamic circuits for control of action and cogni-
tion. ] Neurosci. 36:11485-11495.

Aron AR, Poldrack RA. 2006. Cortical and subcortical contribu-
tions to stop signal response inhibition: role of the subthala-
mic nucleus. ] Neurosci. 26:2424-2433.

Bastin ], Polosan M, Benis D, Goetz L, Bhattacharjee M, Piallat B,
Krainik A, Bougerol T, Chabardés S, David O. 2014. Inhibitory
control and error monitoring by human subthalamic neu-
rons. Transl Psychiatry. 4:e439.

Benis D, David O, Piallat B, Kibleur A, Goetz L, Bhattacharjee M,
Fraix V, Seigneuret E, Krack P, Chabardés S, et al. 2016. Response
inhibition rapidly increases single-neuron responses in the sub-
thalamic nucleus of patients with Parkinson’s disease. Cortex.
84:111-123.

Bogacz R. 2007. Optimal decision-making theories: linking neu-
robiology with behaviour. Trends Cogn Sci. 11:118-125.

Brittain J-S, Watkins KE, Joundi RA, Ray NJ, Holland P, Green AL,
Aziz TZ, Jenkinson N. 2012. A role for the subthalamic
nucleus in response inhibition during conflict. ] Neurosci.
32:13396-13401.

Cavanagh JF, Frank MJ. 2013. Stop! Stay tuned for more infor-
mation. Exp Neurol. 247:289-291.

Cavanagh JF, Masters SE, Bath K, Frank MJ. 2014. Conflict acts as
an implicit cost in reinforcement learning. Nat Commun. 5:
5394.

Cavanagh JF, Wiecki TV, Cohen MX, Figueroa CM, Samanta J,
Sherman §J, Frank MJ. 2011. Subthalamic nucleus stimulation
reverses mediofrontal influence over decision threshold. Nat
Neurosci. 14:1462-1467.

Cavanagh JF, Wiecki TV, Kochar A, Frank MJ. 2014. Eye tracking
and pupillometry are indicators of dissociable latent deci-
sion processes. ] Exp Psychol Gen. 143:1476-1488.

Cieslik EC, Zilles K, Caspers S, Roski C, Kellermann TS, Jakobs O,
Langner R, Laird AR, Fox PT, Eickhoff SB. 2013. Is There
“One” DLPFC in cognitive action control? Evidence for het-
erogeneity from co-activation-based parcellation. Cereb
Cortex. 23:2677-2689.

Cohen MX. 2011. It’s about time. Front Hum Neurosci. 5:2.

Cohen JD, McClure SM, Yu AJ. 2007. Should I stay or should I
go? How the human brain manages the trade-off between

exploitation and exploration. Philos Trans R Soc Lond B Biol
Sci. 362:933-942.

Collins AGE, Frank M]J. 2014. Opponent actor learning (OpAL):
modeling interactive effects of striatal dopamine on rein-
forcement learning and choice incentive. Psychol Rev. 121:
337-366.

Daw ND. 2011. Trial-by-trial data analysis using computational
models. In: Delgado MR, Phelps EA, Robbins TW, editors.
Decision making, affect, and learning: Attention and perfor-
mance XXIII. Oxford: Oxford University Press. pp. 3-38.

De Hollander G, Keuken MC, Forstmann BU. 2015. The subcorti-
cal cocktail problem; mixed signals from the subthalamic
nucleus and substantia nigra. PLoS One. 10:e0120572.

De Hollander G, Keuken MC, van der Zwaag W, Forstmann BU,
Trampel R. 2017. Comparing functional MRI protocols for
small, iron-rich basal ganglia nuclei such as the subthala-
mic nucleus at 7 and 3 T. Hum Brain Mapp. 38:3226-3248.

Fife KH, Gutierrez-Reed NA, Zell V, Bailly ], Lewis CM, Aron AR,
Hnasko TS. 2017. Causal role for the subthalamic nucleus in
interrupting behavior. eLife. 6. doi:10.7554/eLife.27689.

Frank MJ. 2006. Hold your horses: a dynamic computational
role for the subthalamic nucleus in decision making. Neural
Netw. 19:1120-1136.

Frank MJ. 2016. Computational cognitive neuroscience
approaches to deconstructing mental function and dysfunc-
tion. Comput Psychiatry New Perspect Ment Illn. 20:101-120.

Frank MJ, Gagne C, Nyhus E, Masters S, Wiecki TV, Cavanagh JF,
Badre D. 2015. fMRI and EEG predictors of dynamic decision
parameters during human reinforcement learning.
J Neurosci. 35:485-494.

Frank MJ, Moustafa AA, Haughey HM, Curran T, Hutchison KE.
2007. Genetic triple dissociation reveals multiple roles for
dopamine in reinforcement learning. Proc Natl Acad Sci
USA. 104:16311-16316.

Frank MJ, Samanta ], Moustafa AA, Sherman SJ. 2007. Hold your
horses: impulsivity, deep brain stimulation, and medication
in parkinsonism. Science. 318:1309-1312.

Frank MJ, Seeberger LC, O'Reilly RC. 2004. By carrot or by stick:
cognitive reinforcement learning in parkinsonism. Science.
306:1940-1943.

Frank MJ, Woroch BS, Curran T. 2005. Error-related negativity
predicts reinforcement learning and conflict biases. Neuron.
47:495-501.

Gelman A, Rubin DB. 1992. Inference from iterative simulation
using multiple sequences. Stat Sci. 7:457-472.

Gittins J. 1979. Bandit processes and dynamic allocation indices.
J R Stat Soc Ser B. 41:148-177.

Green N, Bogacz R, Huebl ], Beyer AK, Kiihn AA, Heekeren HR.
2013. Reduction of influence of task difficulty on perceptual
decision making by STN deep brain stimulation. Curr Biol.
23:1681-1684.

Greenhouse I, Sias A, Labruna L, Ivry RB. 2015. Nonspecific inhi-
bition of the motor system during response preparation.
J Neurosci. 35:10675-10684.

Herz DM, Tan H, Brittain J-S, Fischer P, Cheeran B, Green AL,
FitzGerald ], Aziz TZ, Ashkan K, Little S, et al. 2017. Distinct
mechanisms mediate speed-accuracy adjustments in cortico-
subthalamic networks. eLife. 6:357-381.

Herz DMM, Zavala BAA, Bogacz R, Brown P. 2016. Neural correlates
of decision thresholds in the human subthalamic nucleus.
Curr Biol. 26:916-920.

Homan MD, Gelman A. 2014. The No-U-turn sampler: adap-
tively setting path lengths in Hamiltonian Monte Carlo.
J Mach Learn Res. 15:1593-1623.

€20z 2unr z| uo 1senb Aq /8YS/67/696 1/5/62/9101ME/100180/W00"dNO"0ILSPEDE//:SARY WOl PSPEojUMO(


https://github.com/sarajahfari/Control_Conflict.git
https://github.com/sarajahfari/Control_Conflict.git
https://github.com/sarajahfari/AG_example.git
https://github.com/sarajahfari/AG_example.git
http://dx.doi.org/10.7554/eLife.27689

1982 | Cerebral Cortex, 2019, Vol. 29, No. 5

Isoda M, Hikosaka O. 2007. Switching from automatic to controlled
action by monkey medial frontal cortex. Nat Neurosci. 10:
240-248.

Isoda M, Hikosaka O. 2008. Role for subthalamic nucleus neu-
rons in switching from automatic to controlled eye move-
ment. ] Neurosci. 28:7209-7218.

Jahanshahi M, Obeso I, Rothwell JC, Obeso JA. 2015. A fronto-
striato-subthalamic-pallidal network for goal-directed and
habitual inhibition. Nat Rev Neurosci. 16:719-732.

Jahanshahi M, Rothwell JC. 2017. Inhibitory dysfunction contri-
butes to some of the motor and non-motor symptoms of
movement disorders and psychiatric disorders. Phil Trans R
Soc B. 372. d0i:10.1098/rstb.2016.0198.

Jahfari S, Theeuwes J. 2017. Sensitivity to value-driven attention
is predicted by how we learn from value. Psychon Bull Rev.
24:408-415.

Jahfari S, Verbruggen F, Frank MJ, Waldorp L, Colzato L,
Ridderinkhof KR, Forstmann BU. 2012. How preparation
changes the need for top-down control of the basal ganglia
when inhibiting premature actions. ] Neurosci. 32:10870-10878.

Jahfari S, Waldorp L, Ridderinkhof KR, Scholte HS. 2015. Visual
information shapes the dynamics of corticobasal ganglia
pathways during response selection and inhibition. J] Cogn
Neurosci. 27:1344-1359.

Jahfari S, Waldorp L, van den Wildenberg WP, Scholte HS,
Ridderinkhof KR, Forstmann BU. 2011. Effective connectivity
reveals important roles for both the hyperdirect (fronto-sub-
thalamic) and the indirect (fronto-striatal-pallidal) fronto-basal
ganglia pathways during response inhibition. ] Neurosci. 31:
6891-6899.

Jocham G, Klein T a., Ullsperger M. 2011. Dopamine-mediated
reinforcement learning signals in the striatum and ventro-
medial prefrontal cortex underlie value-based choices.
J Neurosci. 31:1606-1613.

Kahnt T, Park SQ, Cohen MX, Beck A, Heinz A, Wrase J. 2009.
Dorsal striatal-midbrain connectivity in humans predicts
how reinforcements are used to guide decisions. ] Cogn
Neurosci. 21:1332-1345.

Keuken MC, Bazin P-L, Crown L, Hootsmans J, Laufer A, Miiller-
Axt C, Sier R, van der Putten EJ, Schéfer A, Turner R, et al.
2014. Quantifying inter-individual anatomical variability in
the subcortex using 7 T structural MRI. Neurolmage. 94:
40-46.

Knapen T, Gee JW De. 2016. FIRDeconvolution.

Kravitz AV, Tye LD, Kreitzer AC. 2012. Distinct roles for direct
and indirect pathway striatal neurons in reinforcement. Nat
Neurosci. 15:816-818.

Langner O, Dotsch R, Bijlstra G, Wigboldus DH, Hawk ST,
Knippenberg A. 2010. Presentation and validation of the
Radboud Faces Database. Cogn Emot. 24:1377-1388.

Lee MD. 2011. How cognitive modeling can benefit from hierar-
chical Bayesian models. ] Math Psychol. 55:1-7.

Li CR, Yan P, Sinha R, Lee TW. 2008. Subcortical processes of
motor response inhibition during a stop signal task.
Neurolmage. 41:1352-1363.

Logan GD, Cowan WB. 1984. On the ability to inhibit thought
and action: a theory of an act of control. Psychol Rev. 91:
295-327.

Mallet N, Schmidt R, Leventhal D, Chen F, Amer N, Boraud T,
Berke JD. 2016. Arkypallidal cells send a stop signal to stria-
tum. Neuron. 89:308-316.

Mink JW. 1996. The basal ganglia: focused selection and inhibi-
tion of competing motor programs. Prog Neurobiol. 50:
381-425.

Nambu A. 2009. Functions of direct, indirect and hyperdirect
pathways. Brain Nerve. 61:360-372.

Nambu A, Tokuno H, Takada M. 2002. Functional significance of
the cortico-subthalamo-pallidal “hyperdirect” pathway.
Neurosci Res. 43:111-117.

Niv Y, Edlund JA, Dayan P, O’'Doherty JP. 2012. Neural prediction
errors reveal a risk-sensitive reinforcement-learning process
in the human brain. ] Neurosci. 32:551-562.

Obeso I, Wilkinson L, Casabona E, Speekenbrink M, Luisa Bringas
M, Alvarez M, Alvarez L, Pavén N, Rodriguez-Oroz MC, Macias
R, et al. 2014. The subthalamic nucleus and inhibitory control:
impact of subthalamotomy in Parkinson’s disease. Brain. 137:
1470-1480.

Ratcliff R, Frank MJ. 2012. Reinforcement-based decision mak-
ing in corticostriatal circuits: mutual constraints by neuro-
computational and diffusion models. Neural Comput. 24:
1186-1229.

Salinas E, Stanford TR. 2013. The countermanding task revis-
ited: fast stimulus detection is a key determinant of psycho-
physical performance. ] Neurosci. 33:5668-5685.

Schmidt R, Berke JD. 2017. A Pause-then-Cancel model of stop-
ping: evidence from basal ganglia neurophysiology. Philos
Trans R Soc Lond B Biol Sci. 372. doi:10.1098/rstb.2016.0202.

Schmidt R, Leventhal DK, Mallet N, Chen F, Berke JD. 2013.
Canceling actions involves a race between basal ganglia
pathways. Nat Neurosci. 16:1118-1124.

Seabold S, Perktold J 2010. Statsmodels: econometric and statis-
tical modeling with Python. In: Proceedings of the 9th
Python in Science Conference. p. 57-61.

Shenhav A, Straccia MA, Cohen JD, Botvinick MM. 2014.
Anterior cingulate engagement in a foraging context reflects
choice difficulty, not foraging value. Nat Neurosci. 17:
1249-1254.

Simen P, Cohen JD, Holmes P. 2006. Rapid decision threshold
modulation by reward rate in a neural network. Neural
Netw. 19:1013-1026.

Stan Development Team. 2014. RStan: the R interface to Stan,
Version 2.5.0.

Steingroever H, Wetzels R, Wagenmakers E-J. 2013. Validating
the PVL-Delta model for the Iowa gambling task. Front
Psychol. 4:898.

Swann NC, Poizner H, Houser M, Gould S, Greenhouse I, Cai W,
Strunk J, George ], Aron AR. 2011. Deep brain stimulation of
the subthalamic nucleus alters the cortical profile of
response inhibition in the beta frequency band: a scalp EEG
study in Parkinson’s disease. ] Neurosci. 31:5721-5729.

Swann NC, Tandon N, Canolty R, Ellmore TM, Mcevoy LK,
Dreyer S, Disano M, Aron AR. 2009. Intracranial EEG reveals
a time- and frequency-specific role for the right inferior
frontal gyrus and primary motor cortex in stopping initiated
responses. ] Neurosci. 29:12675-12685.

van den Wildenberg WP, van Boxtel GJ, Van Der Molen MW,
Bosch DA, Speelman JD, Brunia CH. 2006. Stimulation of the
subthalamic region facilitates the selection and inhibition of
motor responses in Parkinson’s disease. ] Cogn Neurosci. 18:
626-636.

Verbruggen F, Logan GD. 2008. Response inhibition in the stop-
signal paradigm. Trends Cogn Sci. 12:418-424.

Verbruggen F, Logan GD. 2009. Models of response inhibition in
the stop-signal and stop-change paradigms. Neurosci Biobehav
Rev. 33:647-661.

Waldorp L, Christoffels I, van de Ven V. 2011. Effective connec-
tivity of fMRI data using ancestral graph theory: dealing
with missing regions. Neurolmage. 54:2695-2705.

€20z 2unr z| uo 1senb Aq /8YS/67/696 1/5/62/9101ME/100180/W00"dNO"0ILSPEDE//:SARY WOl PSPEojUMO(


http://dx.doi.org/10.1098/rstb.2016.0198
http://dx.doi.org/10.1098/rstb.2016.0202

Conflict and Control in Frontobasal Ganglia Circuitry Jahfarietal. | 1983

Watkins CJCH, Dayan P. 1992. Q-learning. Mach Learn. 8:
279-292.

Wessel JR, Ghahremani A, Udupa K, Saha U, Kalia SK, Hodaie
M, Lozano AM, Aron AR, Chen R. 2016. Stop-related subtha-
lamic beta activity indexes global motor suppression in
Parkinson’s disease. Mov Disord. 31:1846-1853.

Wetzels R, Vandekerckhove J, Tuerlinckx F, Wagenmakers E-J. 2010.
Bayesian parameter estimation in the Expectancy Valence
model of the Iowa gambling task. ] Math Psychol. 54:14-27.

White CN, Congdon E, Mumford JA, Karlsgodt KH, Sabb FW,
Freimer NB, London ED, Cannon TD, Bilder RM, Poldrack RA.
2014. Decomposing decision components in the stop-signal
task: a model-based approach to individual differences in
inhibitory control. ] Cogn Neurosci. 26:1601-1614.

Wiecki TV, Frank MJ. 2013. A computational model of inhibitory con-
trol in frontal cortex and basal ganglia. Psychol Rev. 120:329-355.

Wiecki TV, Sofer I, Frank MJ. 2013. HDDM: hierarchical Bayesian
estimation of the Drift-Diffusion Model in Python. Front
Neuroinform. 7:14.

Woolrich MW, Ripley BD, Brady M, Smith SM. 2001. Temporal
autocorrelation in univariate linear modeling of fMRI data.
Neurolmage. 14:1370-1386.

Yuan KH, Bentler P. 1997. Mean and covariance structure analy-
sis: theoretical and practical improvements. ] Am Stat
Assoc. 92:767-774.

Zaghloul KA, Weidemann CT, Lega BC, Jaggi JL, Baltuch GH,
Kahana MJ. 2012. Neuronal activity in the human subthala-
mic nucleus encodes decision conflict during action selec-
tion. J Neurosci. 32:2453-2460.

Zavala BA, Tan H, Little S, Ashkan K, Hariz M, Foltynie T, Zrinzo
L, Zaghloul KA, Brown P. 2014. Midline frontal cortex low-
frequency activity drives subthalamic nucleus oscillations
during conflict. ] Neurosci. 34:7322-7333.

Zavala B, Zaghloul K, Brown P. 2015. The subthalamic nucleus,
oscillations, and conflict. Mov Disord. 30:328-338.

Zhang J. 2008. On the completeness of orientation rules for
causal discovery in the presence of latent confounders and
selection bias. Artif Intell. 172:1873-1896.

€20z 2unr z| uo 1senb Aq /8YS/67/696 1/5/62/9101ME/100180/W00"dNO"0ILSPEDE//:SARY WOl PSPEojUMO(



	Cross-Task Contributions of Frontobasal Ganglia Circuitry in Response Inhibition and Conflict-Induced Slowing
	Materials and Methods
	Participants
	Tasks and Procedure
	Reinforcement Learning Task
	Stop-signal task
	Reinforcement-Learning Model
	Behavioral Analysis
	Magnetic Resonance Imaging Scanning Procedure
	Preprocessing
	fMRI Analysis Procedure and ROI Selection
	Deconvolution Analysis of the STN
	Ancestral Graphs Method
	ROI Definition for AG Connectivity
	Single-Trial Parameter Extraction for AG Connectivity
	Model Definition for AG Connectivity

	Results
	Uncertainty and Conflict-Induced Slowing
	Control and Conflict-Induced Slowing
	The Efficacy of Control in the STN During Full Stops and Conflict
	Conflict-Induced Slowing in Corticobasal Ganglia Pathways

	Discussion
	Supplementary Material
	Authors’ Contributions
	Funding
	Notes
	References


