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Abstract

■ In reinforcement learning (RL) experiments, participants
learn to make rewarding choices in response to different stim-
uli; RL models use outcomes to estimate stimulus–response
values that change incrementally. RL models consider any
response type indiscriminately, ranging from more concretely
defined motor choices (pressing a key with the index finger),
to more general choices that can be executed in a number of
ways (selecting dinner at the restaurant). However, does the
learning process vary as a function of the choice type? In Exper-
iment 1, we show that it does: Participants were slower and less
accurate in learning correct choices of a general format com-
pared with learning more concrete motor actions. Using com-
putational modeling, we show that two mechanisms contribute
to this. First, there was evidence of irrelevant credit assignment:

The values of motor actions interfered with the values of other
choice dimensions, resulting in more incorrect choices when
the correct response was not defined by a single motor action;
second, information integration for relevant general choices
was slower. In Experiment 2, we replicated and further
extended the findings from Experiment 1 by showing that
slowed learning was attributable to weaker working memory
use, rather than slowed RL. In both experiments, we ruled
out the explanation that the difference in performance between
two condition types was driven by difficulty/different levels of
complexity. We conclude that defining a more abstract choice
space used by multiple learning systems for credit assignment
recruits executive resources, limiting how much such processes
then contribute to fast learning. ■

INTRODUCTION

The ability to learn rewarding choices from nonrewarding
ones lies at the core of successful goal-directed behavior.
However, what counts as a choice? When a child tries a
pink yogurt in the left cup and a white yogurt in the right
cup, and then prefers the right cup, what choice should
they credit this rewarding outcome to? In their next deci-
sion, should they repeat their previously rewarding reach
to the yogurt on the right, independently of its color, or
should they figure out where the white yogurt is before
reaching for it? Selecting the type of yogurt is a more
abstract choice: It requires subsequently paying attention
to the other dimension (Where is the white yogurt?) and
applying the appropriate motor program to execute the
choice. Thus, making the more abstract choice addition-
ally involves less abstract choices, but in this case, only
the abstract choice should be credited for the yogurt’s tast-
iness. Knowing the relevant dimension of choice to assign
credit to is essential when learning. How does choice type
impact how we learn?

The theoretical framework of reinforcement learning
(RL) is highly successful for studying reward-based
learning and credit assignment (Sutton & Barto, 2018).
However, RL as a computational model of cognition
typically assumes a given action space defined by the
modeler, which provides the relevant dimensions of the

choice space (i.e., either the yogurt color or the cup
position)—there is no ambiguity in what choices are
(i.e., color such as pink/white, or side such as left/right),
and the nature of the choice space does not matter (Rmus,
McDougle, & Collins, 2021). As such, RL experiments in
psychology tend to not consider the type of choices (a
single motor action such as pressing a key with the index
finger; Collins, Ciullo, Frank, & Badre, 2017; Tai, Lee,
Benavidez, Bonci, &Wilbrecht, 2012), or themore general
selection of a goal stimulus that is not tied to a specific
motor action (Daw, Gershman, Seymour, Dayan, & Dolan,
2011; Foerde & Shohamy, 2011; Frank, Moustafa,
Haughey, Curran, & Hutchison, 2007) as important, and
researchers use the same models and generalize findings
across choice types. Recent research has shed some light
on how participants might identify relevant dimensions of
the state and choice space (Niv, 2019; Farashahi, Rowe,
Aslami, Lee, & Soltani, 2017); however, this research does
not address how learning occurs when the learner knows
the relevant choice space but multiple dimensions of
choice are nonetheless available, such as in our yogurt
example.
Examining learning of responses when multiple-choice

dimensions may be relevant is important, however, as
most of our choices in everyday life are ambiguous: Did
I pick the white yogurt or the one of the left? In some
cases, these dimensions are hierarchically interdepen-
dent: Choices can be represented at multiple levels of
abstraction (e.g., have breakfast; have yogurt; have pink
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yogurt; have the yogurt on the right; reach for the yogurt
on the right side). In such cases, a choice along a relevant
dimension (yogurt color) requires a subsequent choice on
a reward-irrelevant dimension (position/motor action),
which then needs to be considered for the choice’s execu-
tion, but not credited during learning. By contrast, in other
cases, some choice dimensions may neither be relevant
for learning nor for executing the choice—for example,
the child should learn to fully ignore the color of the plate
that the yogurt is on for both their choice and their credit
assignment.
Different types of choices may recruit different

cognitive/neural mechanisms (Rescorla & Solomon,
1967). For example, previous animal models of decision-
making suggest that the orbitofrontal cortex and the
anterior cingulate cortex index choice outcomes for goal
stimulus choices and motor action choices, respectively
(Luk & Wallis, 2013). Ventral striatum lesions in monkeys
impaired learning to choose between rewarding stimuli,
but not between rewarding motor actions (Rothenhoefer
et al., 2017). In humans, recent behavioral evidence
suggests that the credit assignment process is what
differentiates learning more relevant choice dimensions
from less relevant (here motor) ones (McDougle et al.,
2016), and that there might be a hierarchical gradation
of choices in terms of credit assignment. In particular,
while people are capable of learning the value of both
abstract rule choices and concrete action choices in
parallel (Eckstein, Starr, & Bunge, 2019; Ballard, Miller,
Piantadosi, Goodman, & McClure, 2018), they also seem
to assign credit to more concrete actions by default when
making abstract choices that need to be realized through
motor actions (Shahar et al., 2019).
The brain relies on multiple neurocognitive systems for

decision-making, but whether choice format impacts
learning similarly across systems remains unexplored. Spe-
cifically, although RL models provide a useful formalism of
learning, they do not easily relate to underlying processes.
Indeed, RL models are known to summarize multiple
processes that jointly contribute to learning (Eckstein,
Wilbrecht, & Collins, 2021), such as the brain’s RL mecha-
nism, but also episodic memory (Vikbladh et al., 2019;
Bornstein, Khaw, Shohamy, & Daw, 2017; Bornstein &
Daw, 2013; Wimmer & Shohamy, 2012; Poldrack et al.,
2001), or executive functions (EFs; Rmus et al., 2021;
Collins & Frank, 2012). Here, we focus on working mem-
ory (WM), which has also been shown to contribute to
learning alongside RL (Collins & Frank, 2012, 2018; Collins
et al., 2017). If choice type matters for learning, does it
matter equally for each cognitive system that contributes
to learning, or differently so?
In summary, there is a twofold gap in our understanding

of how choice format impacts learning. First, when
multiple-choice dimensions are available but only one is
relevant, does the type of the relevant choice dimension
impact learning, and if so, through what computational
mechanisms? We consider, in particular, the important

case where one relevant choice dimension needs to be
executed through a second, irrelevant choice dimension
(a motor action), and how this contrasts to learning when
one dimension is fully irrelevant to both choice and learn-
ing. Second, are the differences rooted in the brain’s RL
system, WM, or both? To address this gap, we designed a
task that directly compares learning tomake choices along
two orthogonal dimensions, with different levels of gener-
ality or interdependence, when there is no ambiguity
about which choices are relevant to the learning problem.
In our task, one choice dimension is a spatial position that
directly maps onto a consistent motor action, and the
other is a more general choice dimension, conceptualized
as the selection of stimulus goals that constrain a down-
stream selection of an overall irrelevant spatial position
and corresponding motor action. In a second experiment,
wemanipulated learning load to separately identifyWMand
RL contributions to learning, and investigated with compu-
tational modeling how choice matters in both systems.

Our results across two experiments suggest that choice
type strongly impacted learning, resulting in slower learn-
ing when the relevant choice dimension was more general
and required execution along another dimension. This
was in part driven by an incorrect, asymmetric credit
assignment to less general choices when they were irrele-
vant. Furthermore, WM (rather than RL) mechanisms
seemed to drive the deficits in performance in the more
general choice format condition, indicating that defining
a more general action space, shared by multiple-choice
systems, recruited limited executive resources. In both
experiments, we ruled out the simple explanation that
the performance difference was driven by an effect of dif-
ficulty by 1) implementing experimental controls that
minimize this concern and 2) ruling out predictions of a
pure difficulty effect in analyses and modeling.

METHODS

Participants

Experiment 1

Our sample for Experiment 1 consisted of 82 participants
(40 women, age mean = 20.5 years, SD = 1.93 years, age
range = 18–30 years) recruited from the University of
California, Berkeley, Psychology Department’s Research
Participation Program. We based our sample size on sam-
ples from previous similar behavioral experiments (Collins,
2018: 91 participants; Collins, Brown, Gold, Waltz, & Frank,
2014: 85 participants; Collins & Frank, 2012: 78 partici-
pants). In accordance with the University of California,
Berkeley, institutional reviewboard policy, participants pro-
vided written informed consent before taking part in the
study. They received course credit for their participation.
To ensure that the participants included in analyses were
engaged with the task, we set up an exclusion criterion of
or greater average accuracy across all task conditions. This
cutoff was determined based on an elbow point in the
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group’s overall accuracy in the task (Figure 12). We
excluded 20 participants based on this criterion, resulting
in a total sample of 62 participants for the reported
analyses.

Experiment 2

For the second experiment, we recruited 75 participants
(54 women, 1 preferred not to answer; age mean =
20.34 years, SD = 2.4 years, age range = 18–34 years)
from the University of California, Berkeley, Research
Participation Program. One of the prerequisites for partic-
ipating in Experiment 2 was that participants had not
previously taken part in Experiment 1. We also relied on
previous research to decide on the sample size, as in
Experiment 1. Participants completed the experiment
online (De Leeuw, 2015) and received course credit for
their participation. Using the same exclusion criteria as
the previous experiment (based on the distribution of
average accuracy), we excluded 18 participants, resulting
in the total sample of 57 participants.

Experimental Protocol

Experiment 1

Learning blocks. Participants were instructed that they
would be playing a card sorting game, and that on each
trial, they would sort a card into one of three boxes. Their
goal was to use reward feedback to learn which box to sort
each card into. The boxes were labeledwith three different
colors (green, blue, and red), and participants chose one
of the boxes by pressing one of three contiguous keyboard

keys (corresponding to the box position) with their index,
middle, and ring finger. Importantly, the color of the boxes
changed positions on different trials (i.e., the blue box
could appear on the right side on trial n, and in the middle
on trial n + 1). Participants received deterministic feed-
back after each selection (+1 if they selected the correct
box for the current card, 0 otherwise).
Before the experiment, participants read detailed

instructions and practiced each task condition. The task
then consisted of eight blocks, divided into three condi-
tions. Each of the three conditions was defined by its dis-
tinct sorting rule. In the label condition, the correct box for
a given card was defined deterministically by the box’s
color label (Figure 1A). For instance, if the blue box was
the correct choice for a given card, participants were
always supposed to select the blue box in response to that
card, regardless of which key mapped onto the blue box
on a given trial. In the position condition, the correct
box was defined deterministically by the box’s position
(left/middle/right). For example, the correct response of
a given card would always be achieved by pressing the left-
most key with the index finger, regardless of the box color
occupying the left position (Figure 1B). The sorting rule in
the position control condition was identical to the sorting
rule in the position condition, but the boxes were not
tagged with color labels. This condition allowed us to
assess participants’ baseline performance when only one
response type (e.g., position, but not the label) was
available. Importantly, participants were explicitly told
the sorting rule (position or label) at the beginning of each
block, to avoid any performance variability that may arise
as a function of rule inference and uncertainty. Following
the eight learning blocks, participants performed two

Figure 1. Experiment design. (A) Participants played a card-sorting game with three different conditions: label (learning which box color is correct
for each card –more general choice), position (learning which motor action/position is correct for each card – less general choice), control (identical
sorting rules as position condition, but without labeled boxes). (B) We assumed that participants track card-dependent reward history for both
positions and labels, and that both of these contribute to the choice selection process, sometimes resulting in interference errors. Note that the card-
dependent reward history is cumulative (tracked across all past trials during which the given card was presented, rather than only one-trial back), but
for simplicity of illustration, we only show 1-back trial in (B).
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additional tasks; these are not the focus of the current
article and are not analyzed here.
Out of eight blocks in total, two were control condition

blocks, three were position conditions, and three were
label conditions. Block order was pseudorandomized: Par-
ticipants completed a control block first and last, whereas
the conditions of Blocks 2–7 were randomly chosen within
participants, but counterbalanced across participants. In
each block, participants learned how to sort six different
cards; we used a different set of images to represent cards
in each block. The boxes were labeled with the same three
colors across all blocks, except the position control blocks,
where the boxes were not labeled. Participants experi-
enced 15 repetitions of each card, resulting in 90 trials
per block; trial order was pseudorandomized to ensure
a uniform distribution of delays between repetitions of
the same card in a block. We controlled for the card-
dependent position–label combinations across trials.
Specifically, each label occurred in each position an
equal number of times (i.e., the blue label occurred 5
times on the left, right, and middle box for each card).
We also ensured that the position–label combinations
were evenly distributed across the task (i.e., the blue–
middle combination did not occur only during the first
quarter of block trials).

Single trial structure. Oneach trial, participants first saw
the three boxes with their color labels underneath a fixa-
tion cross at the center of the screen. After 1 sec, the card
appeared in the center of the screen, replacing the fixation
cross. Participants were allowed to press a key only when
the card appeared, with a 1-sec deadline. Following their
response, participants received feedback (+1 or 0) that
remained on the screen for 1 sec, followed by a 1-sec inter-
trial interval (fixation cross). This trial structure was
designed to mitigate the concern that condition-based dif-
ferences in performance might stem from the label condi-
tion being more difficult, by giving participants time to
identify where each color label was positioned. This min-
imizes a potential advantage of the position condition,
where participants did not need to know where colors
were on a trial-by-trial basis to make a correct response.
Giving participants time to identify where each color is
positioned before card presentation decreases the differ-
ence between the conditions in terms of difficulty, making
this confound less likely.
We designed the label and position conditions to

engage choice processes with different degrees of gener-
ality. The position condition should capture the less gen-
eral choice process in which the rewarding response is
defined by a single motor action, and the label is irrelevant
to both choice and learning. The label condition, on the
other hand, captures a more general choice process in
which the rewarding response (i.e., choice of the correct
label) can be made by identifying one of three positions
and executing any of the three motor actions, depending
on where the correct box label is positioned on the given

trial, such that the other dimension (position) remains
irrelevant for learning but becomes relevant for choice.

Experiment 2

The task design for Experiment 2 was the same as the task
design for Experiment 1, with one important exception—
we varied the number of cards per block between 2 and 5,
for both position and label conditions. This manipulation
has previously been shown to enable computational
modeling to disentangle WM and RL processes (Collins
& Frank, 2012).The order of blocks was counterbalanced
across participants; they completed either label or posi-
tion blocks first, with the order of set sizes randomized
for the first completed condition, and then repeated for
the second. In addition, we removed the control condi-
tion, given that we previously observed no difference
between position and control. Participants completed four
blocks of position and label each, where each block within
each condition had a different set size.

Analyses

Model-independent Analyses

In addition to general diagnostics and standard statistical
analyses (see Results), we sought to analyze participants’
choices and RTs as a function of how often each motor
action and each label had been rewarded for each card.
Specifically, we computed card-dependent cumulative
reward history (CRH) for both positions P and labels L
on each trial for a card C, in each condition:

CRHP
k C;Pð Þ ¼

Xt

k¼1

rk � 1 Cardk ¼ C;Choicek ¼ Pð Þð Þ

CRHL
k C; Lð Þ ¼

Xt

k¼1

rk � 1 Cardk ¼ C;Choicek ¼ Lð Þð Þ

(1)

where rk is the outcome at trial k in the block, and 1 is the
indicator function that takes a value of 1 if the card and
position/label match C and P/L, and 0 otherwise. We used
this metric to analyze how the integration of two value
sources shaped choices when choice format was
less/more general. In particular, in the example of the posi-
tion condition, the position CRH for a card and its associ-
ated correct position indicated the past number of correct
choices, whereas the CRH for other positions was 0. By
contrast, in the same position condition, the label CRH
for a card reflected how often each label had been
rewarded because of this label being in the correct posi-
tion. All label CRH values in the position condition were
expected to be close to each other because label positions
were counterbalanced, but slight differences because
of past choice randomness could be predictive of biases
in future choices. The opposite was true in the label
condition.
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To analyze how the value integration for each type of
choice shaped decisions, we focused on the error trials
and computed the proportion of errors driven by the
other irrelevant choice dimension. We reasoned that if
participants were randomly lapsing, any of the two possi-
ble errors should be equally likely. However, if participants
experienced value interference, they should be more
likely to select the error with the higher CRH in the irrel-
evant dimension. In the label condition, such an interfer-
ence error would look like selecting the position/motor
action that was rewarded on the previous trial, although
the correct label had switched positions since (Figure 1B).
In the position condition, an interference error would
occur when participants selected the previously rewarded
label that had switched positions, instead of the label cur-
rently corresponding to the position/motor action that is
always correct for the given card (Figure 1B).

We ran a trial-by-trial analysis using a mixed-effects
general linear model to characterize choices. We used trial-
by-trial reward history difference (RHD) = CRH(chosen) −
mean(CRH(unchosen)) between chosen and unchosen
boxes, for both positions and labels, and tested whether
this discrepancy modulated accuracy and RTs. If partici-
pants implemented an optimal decision strategy, their
accuracy and RTs should increase and decrease, respec-
tively, with an increased RHD in the relevant choice
dimension (i.e., label RHD in label condition, position
RHD in position condition). Alternatively, contribution
by the irrelevant dimension RHD (i.e., position RHD in
label condition or vice versa) would serve as evidence of
value interference. Our mixed-effects models had the
following general structure:

Performance ¼ 1þ β1pRHDþ β2lRHDþ β3t

þ β4blockþ ð1þ β1pRHD

þ β2lRHDþ β3t þ β4block j SubjectÞ
(2)

where pRHD is RHD based on position reward history and
lRHD is RHD based on label reward history. Performance
can refer to either accuracy (coded as correct/incorrect) orRTs.

In the analysis of Experiment 2 data, we also ran mixed-
effects models including predictors that indexed WM
mechanisms (set size and delay between presentations
of the current stimulus and the most recently rewarded
stimulus, which, respectively, correspond to indexing
capacity and susceptibility to decay properties of WM)
and RL effects (dimension-relevant, card-dependent
reward history, calculated from the cumulative number
of earned points for each card, indexing reward-based
learning):

Performance ¼ 1þ βRLRLþ βWMWM þ βtt

þ βbblockþ ð1þ βRLRL

þ βWMWM þ βtt þ βbblock j SubjectÞ
(3)

where RL corresponds to RL factors such as reward history,
and WM corresponds to WM factors such as decay and set
size. Note that this is a general structure to demonstrate
how we structured the mixed-effects model, but set size
and decay were entered as separate predictors.
In other words, we explored the effects of interest on a

group level, as well as how the estimates of these effects
vary across individual participants. We included a predic-
tor for trial number in this model, to ensure that reduction
in RTs is not simply conflated with practice effects/task
progression. In addition, we added block number as one
of the regressors, to capture overall improvement in per-
formance across the task.

Computational Modeling

RL–WM. To computationally quantify the differences in
learning processes between the motor choice/general
choice conditions, we used a set of hybrid RL and WM
models. Our baseline assumption was that, in the RL
process, participants track and update two independent
sets of stimulus-action value tables, corresponding to the
two possible choice spaces: a card-position value table
and a card-label value table. We also assumed that the
choice policy may reflect a mixture of both the relevant
and the irrelevant value tables, potentially leading to
interference errors when the value of irrelevant choice
dimension (position/label) contributes to the choice pro-
cess (Figure 2A). In addition to the RL module, a WM
module allows us to capture the contribution of WM to per-
formance. The WMmemory module learns fast, but is sen-
sitive to short-term forgetting and cognitive load, and is
thus particularly identifiable in the second experiment
where the set size varies between 2 and 5 (Collins, 2018;
Collins & Frank, 2012, 2018). WM also potentially tracks
associations between cards and two choice types, and like
RL, its policymay reflect amixture of both relevant and irrel-
evant associations. We investigated a range of models to
pinpoint the computational mechanisms of divergence
between the learning processes in the two conditions, by
varying the extent to which the models allowed for
condition-dependent specificity/model-parameters.

RL Rule

The RL module assumes incremental learning through
a simple delta rule (Sutton & Barto, 2018). Specifically,
on each trial t, the values of labels QL(c, l) and positions
QP(c, p) for the trial’s card c and chosen labels and posi-
tions l and p are updated in proportion to the reward pre-
diction error:

QP
tþ1 c; pð Þ ¼ QP

t c; pð Þ þ α � r−QP
t c; pð Þ� �

QL
tþ1 c; lð Þ ¼ QL

t c; lð Þ þ α � r−QL
t c; lð Þ� � (4)

where α is the learning rate and r = 0/1 is the outcome
for incorrect and correct trials. Q-tables are initialized at
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1/3 (3 = total number of positions/labels) at the start of
each block to reflect initial reward expectation in the
absence of information about new cards.

WM Learning Rule

Unlike RL, WM processes can encode and retain the pre-
vious trial’s information perfectly, thus enabling one-shot
learning. Note that other cognitive processes (such as
episodic memory) could also support one-shot learning
and contribute to learning behavior in this experiment;
however, here, we focus on RL and WM processes only,
as our protocol does not allow us to disentangle other
contributions (Yoo & Collins, 2022). Following previous
works (Collins, 2018; Collins et al., 2014; Collins & Frank,
2012), we model the one-shot learning in WM by storing
the immediate outcome as the stimulus–response
weight:

WP
tþ1 ct; ptð Þ ¼ rt

WL
tþ1 ct; ltð Þ ¼ rt

(5)

Prior work in similar tasks (Katahira, 2018; Gershman,
2015; Niv, Edlund, Dayan, & O’Doherty, 2012; Frank
et al., 2007) has shown an asymmetry in learning based
on positive/negative feedback, such that individuals are
less likely to integrate negative feedback while learning
rewarding responses. Thus, we included a learning bias
(LB) parameter (0 ≤ LB ≤ 1), which scales the learning
rate α by LB when participants observe the negative feed-
back. We applied LB to both RL and WM (for both position
and label dimensions, showing only an example for posi-
tion here):

QP
tþ1 c; pð Þ ¼ QP

t c; pð Þ þ LB � α 0−QP
t c; pð Þ� �

WP
tþ1 c; pð Þ ¼ WP

t c; pð Þ þ LB � 0−WP
t c; pð Þ� � (6)

To capture the phenomenon that maintenance of infor-
mation in WM is short term and subject to interference,

the weights stored in WM are susceptible to decay (ϕ) at
each trial, which pulls all position and label weights to their
initial values (WP0, WL0) following the application of the
WM forgetting rule (5):

WP
tþ1 ¼ WP

t þ ϕ � WP0 −WP
t

� �
WL

tþ1 ¼ WL
t þ ϕ � WL0 −WL

t

� � (7)

Whereas information stored in WM decays over time,
reflecting the well-documented short time-scale of WM
maintenance, RL is assumed to be a more robust system
that is less susceptible to forgetting. Therefore, it is theo-
retically less justified to include a decay mechanism for
Q-values. Nevertheless, for completeness, we fit the ver-
sion of the model with a separate decay process in the
RL module as well and confirmed that it does not improve
the model fit. Thus, in further implementations of the
RL-WM model, we limited decay implementation to the
WM module only.

Policy

We used the softmax function to transform WM weights
and RL Q-values into choice probabilities to produce posi-
tion choice policies PP

RL and PPWM:

PP
RL pjcð Þ ¼ exp β � QP

t c; pð Þ� �
P3

i¼1 exp β � QP
t c; pið Þ� �

PPWM pjcð Þ ¼ exp β �WP
t c; pð Þ� �

P3
i¼1 exp β �WP

t c; pið Þ� �
(8)

We applied the same softmax transformation to the
label Q- and W-tables to obtain the label and choice poli-
cies PPRL and PPWM . This policy permits the selection of
choices with higher Q-values/weights with higher proba-
bility. The softmaxβ is the inverse temperature parameter,
which controls how deterministic the choice process is.

Figure 2. (A) In Experiment 1, we used RL model variants, which assume incremental, feedback-driven learning. In Experiment 2, we combined RL
and WM modules, under the assumption that learning is a weighted interaction between RL and WM systems. (B) The extent to which participants
relied on WM was determined by the WM weight parameter (ω), proportional to participants’ WM capacity (K), and inversely proportional to set size.
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For each module, the overall choice policy is a mixture of
both policies, determined by mixture parameters, ρ:

PRL pi j pos:blockð Þ ¼ ρP � PPRL pið Þ þ 1− ρPð Þ
� PL

RL label pið Þð Þ
PWM pi j pos:blockð Þ ¼ ρP � PPWM pið Þ þ 1− ρPð Þ

� PL
WM label pið Þð Þ

(9)

We apply the samemixture process withmixture weight
ρL for the label dimension blocks:

PRL li j lab:blockð Þ ¼ ρL � PL
RL lið Þ þ 1− ρLð Þ

� PP
RL position lið Þð Þ

PWM li j lab:blockð Þ ¼ ρL � PL
WM lið Þ þ 1− ρLð Þ

� PPWM position lið Þð Þ

(10)

The RL-WM model posits that choice comes from a
weighted mixture of RL and WM, where one’s reliance
on WM is determined by the WM weight (ω) parameter:

P p j cð Þ ¼ ω � PWM p j cð Þ þ 1− ωð Þ � PRL p j cð Þ
p l j cð Þ ¼ ω � PWM l j cð Þ þ 1− ωð Þ � PRL l j cð Þ (11)

where ω reflects the likelihood of an item being stored in
WM and is proportional to the ratio of capacity parameter
(K) and block set size (or number of stimuli; ns), scaled by
the baseline propensity to rely on WM (ω0; Figure 2):

ω ¼ min 1;
K
ns

� �
� ω0 (12)

We further modified the policy to parameterize addi-
tional processes. For instance, individuals often make
value-independent, random lapses in choice while doing
the task. To capture this property of behavior, we derived
a secondary policy by adding a random noise parameter in
choice selection (Nassar & Frank, 2016):

P 0 ¼ 1− εð Þ � Pþ ε � 1
nA

(13)

where nA is the total number of possible actions and 1/nA

is the uniform random policy and is the noise parameter
capturing the degree of random lapses.

We fit the different configurations of the full RL-WM
model to the data from Experiment 2, where we varied
set size, which permitted us tomodulateWM involvement.
Note that previous research with experiments including
multiple set sizes has shown that single process models
(such as RL with decay or interference) are insufficient
to capture set-size effects; indeed, these processes can
be decomposed into both pure cognitive load and
increased forgetting with longer delays between stimuli
across set sizes. Thus, in Experiment 2, we do not consider
RL-only models.

In the absence of a set-size manipulation, it is not pos-
sible to separately identify the WM module from the RL
module. Thus, in the first experiment, where set size is
fixed, we only consider the RL module as approximating

the joint contributions of both, and do not include a WM
module. Because the RL module summarizes both RL and
WM contributions, we add to it a short-term forgetting fea-
ture of the RL-WM’s WM module: Specifically, we imple-
mented decay in Q-values for all cards and all choices at
each trial:

QP
tþ1 ¼ QP

t þ ϕ � Q0 −QP
t

� �
QL

tþ1 ¼ QL
t þ ϕ � Q0 −QL

t

� � (14)

whereas in the RL-WM model, the forgetting parameter is
limited to theWMmodule only. The list of baseline param-
eters for RL-WM model (Experiment 2) includes learning
rate (α), inverse temperature (β), lapse (ε), LB, decay
(ϕ), capacity (K), WM weight (ω), and value mixture (ρ).
The baseline RL model (Experiment 1) include learning
rate (α), inverse temperature (β), lapse (ε), LB, decay
(ϕ), and value mixture (ρ). We explored different model
variants by making different parameters fixed/varied
across conditions. In the RL-WM (Experiment 2) model,
the parameters did not vary as a function of set size (i.e.,
same label/position parameter values for all set sizes).

Model Fitting and Comparison

Fitting procedure. In both Experiment 1 and Experiment
2 modeling, we used maximum likelihood estimation to fit
participants’ individual parameters to their full sequence
of choices. All parameters were bound between 0 and 1,
with the exception of the β parameter, which was fixed
to 100 (found to improve parameter identifiability here
and in previous similar tasks; Master et al., 2020), and
the capacity parameter (K) of Experiment 2models, which
could take on one of the discrete values between 2 and 5.
To find the best fitting parameters, we used 20 random
starting points with MATLAB’s fmincon optimization func-
tion (Wilson & Collins, 2019).

Model validation. To validate whether our models could
indeed capture the behavioral properties we set out to
model, we simulated performance from the best parame-
ter estimates for each participant 100 times per partici-
pant. We then compared whether the model predictions
from the simulated data captured the patterns we
observed in the actual data set.
These simulations also allowed us to ensure that our fit-

ting procedure could adequately recover parameters in
our experimental context, by fitting the model to the sim-
ulated data and evaluating the match between the true
simulation parameters and recovered parameters fit on
simulated data.

Model comparison. Exploring the full model space
would lead to a combinatorial explosion of models, given
the possible variations along all parameters. Thus, to
explore the model space, we took a systematic approach
by starting with the most complex model (all parameters
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varied across conditions), and gradually decreasing model
complexity, while also monitoring the goodness of model
fit. Specifically, we reduced the model complexity only if
we found that removing a parameter improved the model
fit. We chose this approach to conduct model comparison
systematically, testing out plausible parameter configura-
tions with varying complexity. We compared the models
using the Akaike Information Criterion (AIC; Wagenmakers
& Farrell, 2004), which evaluates model fit using likelihood
values and applies a complexity penalty based on the num-
ber of parameters. To ensure that our models were identi-
fiable with AIC, we computed a confusionmatrix (Wilson &
Collins, 2019) by creating synthetic data sets from each
model, fitting each model to the simulated data sets, and
performing AIC-based comparison where the ground truth
was known. This confirmed that AIC was adequately penal-
izing for model complexity in our situation.

RESULTS

Experiment 1: Behavioral Results

We first asked whether participants learned differently
across experimental conditions. Learning curves show that
participants learned well in all conditions, as their accuracy
increased with more exposure to each card (Figure 3A). A
repeated-measures one-way ANOVA confirmed that there
was a main effect of Condition (label/position/control) on
performance, F(2, 61) = 97.7, p< .001, η2 = .62. We next
tested which specific conditions contributed to this signif-
icant difference and found a marginal difference between
control and position conditions; however, this difference
did not reach statistical significance (paired t test: t(61) =
1.61, p = .11, Cohen’s d= 0.20). This result suggests that
the additional choice feature (the labels) in the position

condition did not have a strong impact on the choice
process. Performance in the label condition, however,
was significantly lower than that in the position and the
control conditions (paired t test: position: t(61) = 11.1,
p < .001, Cohen’s d = 1.42; control: t(61) = 12.9, p <:
001, Cohen’s d = 1.65).

We next examined why label condition performance was
worse. We hypothesized that choice was not simply noisier
in the label condition, but instead that choice might be
contaminated by the reward history of irrelevant motor
choices. To test this hypothesis, we computed the cumula-
tive card-dependent label/position reward history (see
Methods section) and quantified the proportion of error
trials in which participants incorrectly chose a box with
high reward history of an incorrect feature (Figure 1B).
In the position condition, participants did not make more
interference errors than expected at chance level (for two
possible errors; Figure 3B; t(61) = 0.13, p = .89, Cohen’s
d = 0.01). This confirms that the presence of labels in the
position condition did not impact choice compared with
the control condition. By contrast, in the label condition,
the proportion of interference errors was significantly
higher than chance (Figure 3B; t(61) = 2.54, p = .01,
Cohen’s d=0.32). Furthermore, the proportion of interfer-
ence errors in the label condition was significantly greater
than interference errors in the position condition, t(61) =
2.13, p = .03, Cohen’s d = 0.27. This result suggests an
asymmetry in interference betweendifferent choice spaces,
in that the values of less general/motor action choices seem
to contaminate the more general choice process (but not
the other way around). To rule out the possibility that the
effect we observed was driven by the block/condition order
(i.e., transfer of incorrect strategy from the previous block),
we ran amixed-effects general linearmodel predicting accu-
racy with previous versus current block conditions. The

Figure 3. Experiment 1model-independent results. (A) Proportion of correct choices as a function of number of previous rewards obtained for a given
stimulus. Participants performed worse in the label condition, compared with the position and control conditions. Performance in the position and
control conditions did not differ statistically. (B) Asymmetric value interference: The values of motor actions interfered with values of correct labels
in the label condition, thus resulting in the interference errors, but not the other way around. (C) Mixed-effects regression model shows that the
interference ofmotor action reward history/valuesmay have resulted in the longer RTs in the label condition. *Indicates statistical significance at p< .05.
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result of this analysis showed that participants’performance
was affected by the current block condition ( p< .001), but
not the previous block condition ( p= .45), thus ruling out
order effects as a possible explanation of our results. In
addition, our results were replicated in the second experi-
ment (as reported later), where we removed the control
condition altogether, and counterbalanced the remaining
condition blocks such that participants could either experi-
ence position or label condition blocks first. This further
supports the conclusion that the observed results are
unlikely to be explained by the order effects.

Next, we performed a trial-by-trial analysis to examine
the effect of card/label values on correct trials’ RTs. For
each condition, we used a mixed-effects linear model to
predict log(RT ) from the RHD between chosen and
unchosen choices (see Methods section), where choice
referred to label in one predictor and position in the other.
The rationale behind this analysis is that, if participants are
engaging in the appropriate decision strategy, then RTs
should decrease with the higher RHD in the condition-
relevant dimension (label or position), because a higher
RHD means greater evidence in favor of the correct
response. On the other hand, in the event of interference,
we expected participants’ RTs to be modulated by the
RHD of the incorrect dimension (e.g., position RHD in
label condition). We controlled for the trial number in
the model.

As predicted, in models for each condition (position
condition model f 2 = .27; label condition model f 2 =
.154), participants’ RTs decreased with increased respective
RHD (Figure 3C; label condition: βlabel = −.04, p < .001,
position condition: βposition = −.06, p < .001). Label RHD
did not affect the RTs in the position condition (βlabel =
−.004, p < .055). Hence, the mixed-effects model aligned
with interference errors, confirming that participants’
choices were not affected by the presence of an additional
feature (the labels) in the position condition. On the other
hand, the position RHD surprisingly increased RTs in the
label condition (βposition=−.034, p< .001), suggesting that
the interference ofmotor action values with label valuesmay
have resulted in the delay of choices (Figure 3C). We com-
pared the subject-level β estimates of the effect of incorrect
dimension RHD on RTs in position and label conditions, and
found that the incorrect RHD effect was significantly greater
in the label condition (paired t test: t(61) = 3.87, p < .001,
Cohen’s d= 0.49), confirming the asymmetry between con-
ditions that was revealed in previous analyses.

Experiment 1: Modeling Results

We used computational modeling to tease apart themech-
anisms driving condition effects. We fit several variants of
RL models and focus here on four models that represent
the main different theoretical predictions (Figure 4A and

Figure 4. Experiment 1: Modeling results. (A) Model validation comparing the observed data to predictions of tested models; M3 reproduces
behavior best. (B) Parameters used in models M1–4 (left); M3 has best group-average AIC. (C) Comparison of condition-dependent learning
rates shows that learning rates are correlated, and that label condition learning rates are significantly lower compared with position condition
learning rates.
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Figure 4B). The standard RL model (M1) assumes no dif-
ference between the conditions and serves as a baseline
that cannot capture the empirical effect of condition. RL
model M2 lets learning rates depend on condition and
tests the prediction that slower learning with labels is
driven by different rates of reward integration. Model M3
extends model M2 with an additional mechanism, param-
eterized by the value mixture (ρL), that enables the posi-
tion value to influence policy in the label condition.
Ruling out the difficulty explanation using computa-

tional modeling. Model M4, the dual-noise model, is an
RL model with a condition-dependent noise parameter
(ε). M4 captures the hypothesis that the label condition
is more difficult, resulting in a noisier choice process.
Models M1–4 all assume ρP=1, with no influence of labels
in position blocks. Other models considered separate
decay (ϕ) parameters and a free position condition ρP,
but did not improve fit.
Model M3 offered the best quantitative fit to the data, as

measured by AIC (Figure 4B). Furthermore, only model
M3 was able to qualitatively reproduce patterns of behav-
ior. Specifically, for each of the models, we simulated syn-
thetic data sets with fit parameters and tested whether the
model predictions matched the empirical results. We
focused on two key data features in our model validation:
performance averaged over the stimulus iterations (learn-
ing curves) and asymmetrical interference errors. Model
validation showed that only the model with two learning
rates and one ρ parameter (M3) captured both properties
of the data (Figure 4A). These results confirm that the
learned value of (irrelevant) motor actions influenced
the selection of more general label choices. Furthermore,
model comparison results show that slower learning in the
label condition was not because of a noisier choice
process, but because of a reduced learning rate. Indeed,
the position condition was significantly greater than the
label condition α (sign test; z= 6.35, p< .001, effect size:
.81; Figure 4C). Interestingly, the learning rates in the
two conditions were correlated (Spearman ρ = .39, p =
.003; Figure 4C), suggesting that the learning process in
the two conditions was driven by related underlying
mechanisms.

Experiment 2: Behavioral Results

The results of the first experiment suggest that the choice
type affects learning. However, given the experimental
design, our conclusions could not dissociate whether
the difference in RL parameters actually reflected a differ-
ence in RL mechanisms or in WM mechanisms. Recent
work (Collins, 2018; Collins & Frank, 2018), nevertheless,
suggest that RL behavior recruits other learning systems,
such as WM. Hence, the variations that may appear to be
driven by RL mechanisms might conceal what is actually a
WM effect. To address the question of whether the choice
definitionmatters for learning at the level of RL orWM, and
whether slowed learning stems from slowedWM or RL, we

ran a second experiment. In Experiment 2, we varied the
number of cards (set size) tomanipulateWM involvement.
Furthermore, we fit variants of the RL-WM model to test
the contribution of WM mechanisms.

Experiment 2 results replicated findings from Experi-
ment 1, showing that there was a main effect of Condition
(Figure 5A; repeated-measures one-way ANOVA, F(1, 56)=
98.95, p < .001, η2 = .63). Furthermore, we replicated the
pattern of interference errors, suggesting that the value of
position choices interferes with that of label choices, but
not the other way around (Figure 5B; t(55) = 2.89, p =
.006, Cohen’s d = 0.38).

We next investigated how set size manipulation affected
these results. As predicted, performance decreased with
set size in both conditions, position: F(3, 56) = 11.83,
p < .001, η2 = .38; label: F(3, 56) = 23.498, p < .001,
η2 = .55. There was an interaction between set size and
condition, F(3, 56) = 16.21, p< .001, η2 = .46 (Figure 5A).
There was a marginal set size effect in interference errors
that did not reach significance, F(3, 56) = 2.17, p = .09,
η2 = .20 (Figure 5C).

To better understand the source of the set size effect,
we ran a general linear mixed-effects model to predict
trial-by-trial performance. Our mixed-effects model
included predictors indexing WM mechanisms (set size
and delay between presentations of the current stimulus
and the most recently rewarded stimulus; indexing
capacity and susceptibility to decay properties of WM,
respectively) and RL effects (dimension-relevant, card-
dependent reward history, calculated from the cumulative
number of earned points for each card, indexing reward-
based learning). We also ran a model that tests for an
interaction between individual RL/WM factors and the task
condition.

A likelihood ratio test provided evidence in favor of the
interaction model over a model without interactions
(model without interactions f 2 = .42; model with interac-
tions f 2 = .43; LR p< .05). The interaction model showed
that, as expected, participants’ performance increased as
a function of reward history (β = .62, p < .001), and
decreased as a function of set size (β = −.18, p = .00011).
There was no effect of Block (β = .04, p = .58) or Delay
(β = −.04, p = .37), suggesting that neither overall
task exposure nor delay affected performance over and
above reward history and set size. The only significant
interaction term was the Condition × Reward History
interaction (β = .16, p = .01), suggesting that the reward
history more heavily contributed to an increase in perfor-
mance in the label condition. To understand our results
on a more mechanistic level, we turned to computational
modeling.

Experiment 2: Modeling Results

The set size manipulation in Experiment 2 enables us to
identify distinct contributions of RL and WM (Collins &
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Frank, 2012) with the full RL-WM model (see Methods
section). Briefly, RL-WM disentangles an incremental,
value-learning process (RL), as well as a rapid-learning,
but decay-sensitive, short-term, memory-based decision
process (WM). Choice policy is a weighted mixture of RL
and WM (Figure 2A, B), where the weighting is propor-
tional to one’s WM capacity. In other words, the model
architecture posits that if one’s WM capacity is low, one
might be more likely to rely on RL than WM, especially
when set size (number of items) is high. We first replicated
in Experiment 2 that models including only one of those
mechanisms could not adequately capture the set size
effect, as has been shown before (Collins & Frank,
2012). We then approached model comparison by sys-
tematically varying the complexity of the RL-WM model
(Figure 2A), to establish whether specificity in RL or
WM module parameters (or both) is necessary to capture
the divergence between behavioral patterns in the two
conditions. Because the RL-WM model assumes the
policy for choice generation at the level of both RL and
WM, we also tested if integrating irrelevant dimension
interference with a mixture parameter in the policy of
RL module or WM module (or both) could best capture
our data. We were interested in the condition-based dis-
sociation between parameters.

Exploring all possible parameter combinations was
computationally prohibitive. Thus, we explored a subset
of the most relevant models (see Methods section;
in the main text, we focus only on a subset of models).
Using AIC comparison, we identified the simplest model
that allowed us to capture the properties of the data

(M1, Figure 6A). In M1, the WM weight (ω) and ρ parame-
ters were condition-dependent (with free ρ parameter for
label condition, and position condition ρ fixed to 1).
Capacity (K), learning rate (α), decay (ϕ), LB, and noise
(ε) were shared across the two conditions—model com-
parison showed no benefits to making them independent
(Figure 9). We further consider three other variants of this
model: no value interference ρ (M2), ρ in RL policy alone
(M3), and ρ in WM policy alone (M4; Figure 6A). Last, we
consider a control model with condition-dependent ε
and α, which would primarily attribute the decline in label
condition performance to noise/RL system (M5). Consis-
tent with Experiment 1 results, the AIC comparison
revealed that M5 could not capture data well, and that
M1 without ρ (M2) fit worse (Figure 6A), providing
additional evidence for the necessity of the interference
mechanism to capture choice data and, thus, the existence
of motor value interference in label blocks. However, the
AIC comparison failed to significantly distinguish between
the remaining models M1 (ρ in RLWM), M3 (ρ in RL),
and M4 (ρ in WM; repeated-measures ANOVA: F(2, 56) =
2.63, p = .07, η2 = .08), although in RL, models fit
numerically worse, supporting the idea that we needed
to include motor value interference in the WM module
to account for the results. Therefore, we henceforth
focus on the simplest model, M1 with condition-
dependent ω and ρ in RL and WM policy, as this model
makes the fewest specific assumptions about RL-WM dis-
sociation between the two conditions. Note that model
comparison results were identical (and stronger) when
using Bayesian Information Criterion instead of AIC,

Figure 5. Experiment 2 results. (A) Participants’ overall performance varied by set size (a marker of WM contribution) and was worse in the label
condition. (B) The asymmetry in value interference replicated from Experiment 1, showing that values of position choices interfere with values of
label choices, but not the opposite. (C) The interference errors did not vary by set size.
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and that protected exceedance probability supported
M1 over other models.
The M1 model adequately captured the data patterns in

(1) learning curves (Figure 6B), (2) overall interference
errors (Figure 6C), and (3) interference errors by set size

(Figure 6D). Furthermore, the WM weight ω was signifi-
cantly reduced in the label condition compared with the
position condition in M1 (Figure 6E).

Overall, the results suggested that the performance
decrease in the label condition was driven primarily by

Figure 6. (A) AIC comparison allowed us to narrow down the space of models. Models with condition-specific WM weight (ω) fit the best (M1–M4).
Removing the mixture parameter (ρ) harmed the model fit (M2). A model assuming impairment in RL did not fit as well (M5). See main text for
model specifications. (B) Model simulations of the best model M1 captured the behavioral data patterns. (C) Model validation for M1 (ρ) and M2 (no
ρ) confirms the necessity of ρ parameter in capturing the interference error patterns. (D) M1 captured interference errors in different set sizes. We
note that the numerical dip in set size 3 is not statistically significant. While it is unclear why the model simulations reproduce it, it is possible that it
arises from a pattern in the stimulus sequences, which is used by participants and model simulations. (E) Comparison of condition-dependent
parameters shows that ω is lower in the label condition.
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deficits in WM, specifically by a smaller WM weight that
indexes the set-size-independent contribution of WM to
learning. Therefore, the choice type (more/less general)
impacted learning, and it seemed to do so by decreasing
participants’ ability to use WM for learning. However, the
value interference appeared to be present in both RL and
WM mechanisms.

DISCUSSION

Humans and animals make many types of choices, at mul-
tiple levels of generality, where some choices are depen-
dent on others. We designed a new experimental protocol
to investigate whether and how different choice types
impact learning. Across two experiments, behavioral anal-
yses and computational modeling confirmed our predic-
tion that the generality of choice type impacts learning,
with worse performance for choices that do not map onto
a simple motor action. Computational modeling revealed
two separable sources of impairment. First, value learning
for relevant choices of a more general type was slower, as
revealed by smaller learning rates (α) in Experiment 1. Sec-
ond, choices were contaminated by irrelevant motor
action values. Experiment 2 examined whether this disso-
ciation originated in different neurocognitive systems’
contributions to learning, namely, RL and/or WM. Our
results revealed that the reduction in learning speed for
general-format choices stemmed more from WM than
the RL process, with WM weight (ω) reduced but RL (α)
unchanged, when controlling for WM contributions. How-
ever, the interference of low level values appeared to be
present in both mechanisms. The selective reduction in
WM weight implies that participants’ executive resources
might be leveraged to define the choice space that is then
used by both the RL and WM system; a more generalized
choice space requires a higher degree of such computa-
tion, thus leaving reduced resources for actual learning.

In both experiments, we found an asymmetry in inter-
ference between choice types. When participants learned
to make more general choices (selecting a label) that
required a subsequent motor action (pressing the key cor-
responding to the label’s location), their choices were
influenced by the irrelevant reward history of motor
actions. By contrast, when participants learned to make
less general choices (the correct response is defined by
pressing the same key corresponding to the box location),
they were not influenced by the irrelevant reward history
of box labels. This result is consistent with a choice hierar-
chy interpretation, where participants may be unable to
turn off credit assignment to irrelevant choice dimensions
when the realization of their (abstract) choice does involve
this dimension (Eckstein & Collins, 2020), but are able to
do so when the irrelevant choice dimensions are more
abstract, as shown here.

Although our results imply that participants exhibit a
decision bias toward motor actions, we acknowledge that
our protocol cannot disambiguate between the motor

actions themselves and the corresponding spatial location
of the boxes. That is, we cannot confirm whether the par-
ticipants track the value of specific motor actions (index/
middle/ring finger key press) or of the corresponding box
positions (left/middle/right). Hence, a competing inter-
pretation of our results would be that spatial positions,
rather thanmotor actions, are prioritized in tracking value,
compared with other visual features such as labels. To
completely rule out this possibility, we would need to
modify the current task with a condition where the motor
actions are not aligned with the specific positions, and
inspect whether the interference effect persists in such a
condition. However, we think this account is less likely
than a choice abstraction account, which explains our
results more parsimoniously, without requiring a “special
status” for a “position” visual feature.
Furthermore, animal research supports this interpreta-

tion, as it shows differences in the neural code of choices,
which are defined primarily as motor actions versus more
abstract choices (Rothenhoefer et al., 2017; Luk & Wallis,
2013). Specifically, these studies have utilized recordings
from neurons of animals trained to perform a task that
contrasted motor action choices with stimulus goal
choices, to identify the neural substrates that differentiate
between the two. The results seem to implicate pFC, ACC,
OFC, and striatal regions (ventral striatum) as areas that
differentiate between how choices with different levels
of abstraction are coded in the brain. Therefore, it is likely
that it truly is a dissociation between motor actions, rather
than positions, and more abstract choices that led to the
interference and the effects we observed in our work. Our
results have implications for research on hierarchical rep-
resentations. Specifically, although simple RL algorithms
are useful to capture reward-based learning, they are com-
monly criticized because they fail to capture the flexibility
and richness of human learning. Hierarchical reinforce-
ment learning was developed in part to address limita-
tions of standard RL (Xia & Collins, 2021; Collins & Frank,
2013; Botvinick, Niv, & Barto, 2009; Stolle & Precup,
2002). Previous research suggests that the choice space
might be hierarchically represented, with the lower level
of hierarchy consisting of primitive actions, and the
higher level consisting of temporally extended actions
(state-dependent, extended policies), also known as
options (Stolle & Precup, 2002). Evidence from this
research suggests that hierarchical representations are
useful for enabling transfer; instead of learning from
scratch in the novel context, an agent can leverage
higher-level representations to speed up learning (Xia &
Collins, 2021). The transfer results also suggest that
choices at different levels of hierarchy show an asymmetry
in flexibility in novel contexts (lower level choices being
less flexible). Our results are consistent with this finding
because motor actions seem less flexible and less
impacted by competing reward information, providing
additional supporting claims for hierarchical representa-
tions in choice space.
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In addition to this, there is evidence of hierarchical
representations at the neural level. In particular, frontal
areas (primarily pFC) and BG are also frequently investi-
gated as neural mechanisms that support hierarchical
reasoning/learning (Collins & Frank, 2013). Converging
insights suggest that the cortico-BG loops support repre-
sentations of both low-level associations and abstract
rules/task sets, giving rise to latent representations that
can be used to accelerate learning in novel settings (Xia
& Collins, 2021; Eckstein et al., 2019; Collins & Frank,
2013; Stolle & Precup, 2002).
Both experiments implicated overall slowed learning,

in addition to value interference, in the worse perfor-
mance for more general choices. Our first experiment
(which allowed us to test RL models only) implicated
the learning rate (usually interpreted as a marker of the
RL system; Eckstein et al., 2019) as the mechanism driving
the difference between conditions with different choice
types. However, our second experiment enabled us to
test the more holistic hybrid model of RL and WM, and
revealed that the impairment in the more general choice
condition likely stemmed from the WM system, rather
than RL. Previous work has shown that EF, in its different
forms (i.e., WM, attention), contributes to RL computa-
tions (Niv, 2019; Collins, 2018). The general summary of
this work is that high-dimensional environments/tasks
pose difficulty to RL; EF then acts as an information
compressor, making the information processing more
efficient for RL (Rmus et al., 2021). Operating in a more
generalized choice space might more heavily rely on the
contribution of EF (in this case WM) relative to operating
in the less abstract condition. Therefore, resource-limited
WM might be leveraged to define the choice space (i.e.,
relevant features of the choice space, like labels in label
condition). As a result, the WM weight included in the
WM + RL hybrid model, which indexes the WM contribu-
tion to learning, appears to be reduced in the label
condition. Our interpretation of this result is that this
reduction in WM contribution may indicate that some
of participants’ limited WM resources are recruited else-
where, and specifically that it has already been used to
define the choice space over which learning and decision
making occurs.
Although we conclude that WM is used for defining the

choice space, consistent with prior results on EF contribu-
tions to RL computations (Todd, Niv, & Cohen, 2008), we
do not make any particular assumptions about how the
use of choice space is divided between RL and WM once
it is defined. We tested different model variations, with the
parameter mixing label/position values, to explain value
interference at the policy level of RL, WM, or both. If there
was clear evidence in favor of the mixture parameter in
either the RL or WM policy, it would imply that the policy
generation based on choice space is primarily driven by
that system. However, our model comparison revealed
no evidence that the mixture parameter is specific to
either RL or WM, suggesting that the choice space is

shared between the two. This will be important to further
explore in future research.

A competing interpretation for our findings of slowed
learning for more abstract choices is that the label condi-
tion required more attention and was more difficult.
Although this is true, we took steps to mitigate this poten-
tial confound on two levels—task design and modeling. In
the task design, we constructed the single trial structure
such that participants had a chance to see box labels first,
before the onset of the card. By doing this, we aimed to
eliminate potential advantages of the position condition,
where participants do not need to perform an additional
process of identifying the label location before executing
the response. Furthermore, our modeling enabled us to
validate the effects of our task design. Specifically, in
both experiments, we tested the model with condition-
dependent noise parameters, which predicts that different
noise/difficulty levels are what drive the performance dif-
ference in our conditions. This model did not fit the data
well (Experiment 1: best model AIC > 2 noise model AIC
t(56) = −5.179, p = 3.13e−06, Cohen’s d = 0.69; Experi-
ment 2: best model AIC > 2 noise model AIC t(56) =
−5.05, p=4.98e−06, Cohen’s d=0.67), making it unlikely
that difficulty-induced lack of attention/motivation could
explain our condition effect.

A competing interpretation of our results might be that
participants simply did not pay attention to the labels in
the position condition, accounting for the observed asym-
metry. That is, because the labels are not informative for
selecting a correct response in the position condition, par-
ticipants might simply not be attending to them at all, as
opposed to encoding them, with the choice process
remaining unaffected by the interfering information from
labels. However, we think this competing account is
unlikely, for multiple reasons. First, the labels were very
salient (colors, and presented before the stimulus); thus,
participants would need to actively avoid them to not per-
ceive them. While we have no direct measure of partici-
pants’ attention to the labels, it is unlikely that they did
not process them at all. Second, there is evidence from
previous work that participants encode and use informa-
tion from unattended stimuli, especially when the unat-
tended stimuli might be relevant for the reward structure
in the task (Sasaki, Nanez, & Watanabe, 2010; Gutnisky,
Hansen, Iliescu, & Dragoi, 2009). Therefore, the labels
(even if not strongly attended to in the position condition)
would be a part of the input in the choice process that,
according to the results, does not strongly impact the
choice of the position, which is consistent with our inter-
pretation. We thus consider themore probable interpreta-
tion to be that the participants do perceive and attend to
the irrelevant labels, but successfully avoid learning their
values. However, future work should investigate more
directly how much attention participants pay to irrelevant
labels.

Another limitation is that our design did not manipulate
the degree of value interference between the choice
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dimensions, because we equally counterbalanced the
position of labels. Instead, introducing a systematic bias
such that, in a label block, for example, some positions
had higher value because of overlapping with correct
labels more frequently, would provide an opportunity to
induce and measure different magnitudes of interference.
This would be an interesting question to explore in the
future.

Surprisingly, we found that participants’ RTs on correct
trials increased as a function of position RHD in the label
condition. This implies that when both label and position
sorting rules were in agreement on the best choice to
make (i.e., the blue box was the correct box and was in
the position that had beenmost rewarded so far), RTs tend
to be longer (the corresponding effect was not observed in
the position condition, where label RHD had no effect on
RTs). This is, therefore, a counterintuitive effect, as we
would expect the congruent information to accelerate
response execution, rather than slow it, as observed here.
One possibility might be that participants do engage in
a form of arbitration between selection of different
response types. Specifically, they might be biased to exe-
cute the motor action based on the RHD, as it seems to
present itself as a default option based on our results.
However, because they are informed that the response
based on label selection is correct for the given block,
they might delay the response execution, to override the
default. Nevertheless, this is a speculation—careful
modeling of RTs is required to further explain this effect,
which is beyond the scope of this article. This account
would also predict the highest degree of conflict in this
congruent situation, rather than in situations where both
rules disagree. It will be an important question to solve
in future research.

Our results highlight the importance of correct credit
assignment and investigation of mechanisms, whichmight
lead to errors in the credit assignment process. Our results
are consistent with the previous research suggesting that
motor actions might have a stronger effect on the choice
selection process than is usually considered (Shahar et al.,
2019). Ourmodeling approach allowed us to show that the
mixture of Q values at the policy level is what may lead
to the interference effect/incorrect credit assignment.
However, as of now, we cannot conclusively say whether
the mixture happens selectively at the policy level of RL,
WM, or both.

Identification of correct rewarding responses is a critical
building block of adaptive/goal-directed behavior. Impair-
ments in one’s ability to identify the appropriate choice
space, which is then used for one’s inference process,
may consequently result in maladaptive/suboptimal
behavioral patterns. Our interference effect results sug-
gest that some aspects of the choice space might be incor-
rectly overvalued, thus resulting in choice patterns that
reflect repeated erroneous selection of incorrect choice
types or an inability to utilize flexible stimulus–response
mappings. These kinds of perseverative responses are

reminiscent of the inability to disengage from certain
actions, observed in conditions such as obsessive–
compulsive disorder (Rosa-Alcázar et al., 2020). It would
be interesting to use our task and computational modeling
approach to investigate whether the mixture/interference
of values at the policy level could also explain the behavior
of such populations.

Conclusion

In conclusion, our findings provide evidence that the
choice type and how we define a choice have important
implications for the learning process. The behavioral pat-
terns (i.e., value interference from less abstract choices)
are consistent with the premises of hierarchy in learning
and behavior (i.e., lower levels in hierarchy impacting pro-
cessing in higher levels), which has become an increas-
ingly promising topic of research (Eckstein & Collins,
2020; Collins & Frank, 2013; Stolle & Precup, 2002). We
also demonstrate additional evidence, relevant to the
definition of the choice space, that EF (specifically WM)
contributes to RL in reward-driven behaviors (Rmus
et al., 2021), further demonstrating the complex interplay
between various neurocognitive systems.
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