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Abstract

Human adaptive decision-making recruits multiple cogni-
tive processes for learning stimulus-action (SA) associations.
These proceses include reinforcement learning (RL), which
represents gradual estimation of values of choices relevant for
future reward-driven decisions, episodic memory (EM), which
stores precise event information for long-term retrieval, and
working memory (WM), which serves as flexible but tempo-
rary, capacity-limited storage. However, we have limited un-
derstanding of how these systems work together. Here, we in-
troduce a new one-shot RL task to disentangle their respective
roles. In 16 independent 8-trial blocks, 144 participants used
one-shot rewards to learn 4 new SA associations per block.
Each block provided one chance to obtain feedback for press-
ing one of two keys for each stimulus (trials 1–4), followed
by a chance to use this feedback to make a choice in a short-
term association task (trials 5–8; no feedback), primarily tar-
geting WM. In a subsequent testing phase designed to assess
long-term retention through RL or EM, all 64 stimuli were
shown in randomized order and subjects were asked to press
the correct key for each, without feedback. Trials 5–8 revealed
WM-dependent strategy effects on choice accuracy, as well as
a role for both RL and EM when WM is overwhelmed. Testing
phase accuracy depended on feedback interacting with initial
presentation order, revealing signatures of both RL and EM in
learning from one-shot rewards. Computational modeling sug-
gests that a mixture model combining RL and EM components
best fits group-level testing phase behavior. Our results show
that our new protocol can identify signatures of each of the
three memory systems’ contributions to reward-based learn-
ing. With this approach, we create new possibilities to bet-
ter understand how each integrates a single bit of information,
what their exact contributions to choice are, and how they in-
teract.

Keywords: Reinforcement learning; episodic memory; com-
putational modeling

Introduction
Learning is important to daily life, enabling humans to make
rewarding decisions and efficiently adapt to new situations.
Learning is often studied within the framework of rein-
forcement learning (RL) (Sutton & Barto, 2018; Eckstein,
Wilbrecht, & Collins, 2021), which assumes that agents learn
from past outcomes to estimate expected values of different
actions and use these values to inform future decisions. RL
algorithms have been successful at describing both behavior
and brain function (Eckstein et al., 2021).

However, recent evidence has shown that beyond RL, other
cognitive processes that store information in a different for-
mat also contribute to learning. One such process is work-
ing memory (WM) (Collins & Frank, 2012; Collins, 2018;
Yoo & Collins, 2021), which is a temporary, capacity-limited,

and effortful but extremely flexible form of short-term mem-
ory storage. Previous studies have shown how learning can
be slowed by the load effect characteristic of WM capac-
ity/resource limitations (Oberauer et al., 2018), and that WM
interferes with RL computations (Collins, 2018; Collins &
Frank, 2018). However, what exact information is stored
in WM on a trial-by-trial basis remains unclear. A second
cognitive process that contributes to learning alongside RL
is episodic memory (Bornstein, Khaw, Shohamy, & Daw,
2017), a hippocampal/medial temporal lobe-dependent sys-
tem that stores very precise information for long-term re-
trieval (Ritchey, Montchal, Yonelinas, & Ranganath, 2015).
Key characteristics of episodic memory (EM) are its tem-
poral and context sensitivity, which contribute to serial po-
sition effects where retrieval is more successful at the be-
ginning of an episode (primacy effect) or more recently (re-
cency effect) (Ebbinghaus, 1913). Past studies have leveraged
these features to identify EM contributions to learning, but
disentangling its precise contribution from RL also remains
challenging. Furthermore, EM also appears to interact with
WM in different experiments (Murty, FeldmanHall, Hunter,
Phelps, & Davachi, 2016; Poldrack & Packard, 2003; Wim-
mer, Braun, Daw, & Shohamy, 2014).

Thus, our goal was to design a new approach that simulta-
neously identifies contributions of all three systems in a sin-
gle learning context to better qualify them individually and in
interaction. We designed a novel experiment where partici-
pants learned stimulus-action (SA) associations from a single
instance of feedback. We investigated how this learning de-
pended on factors that may differently impact RL, WM, and
EM (e.g., reward, load, and primacy/recency). We predicted
that WM, RL, and EM would contribute to SA association
learning, while long-term retention would be predominantly
driven by RL and EM. While the whole task allows for an in-
vestigation of the role of WM, we focused our computational
modeling efforts toward RL and EM as a preliminary step.

Methods
Participants
The research was approved by UC Berkeley’s Institutional
Review Board. We recruited young adults through Ama-
zon Mechanical Turk (MTurk; n = 160, 49 women, age
= 31.9±4.84 years) and the university’s psychology un-
dergraduate student population (RPP; n = 95, 74 women,
age=20.7±2.45 years). MTurk participants received monetary
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compensation ($6/hour), and student participants received
course credit. All participants provided informed consent be-
fore completing the task online (approximately 12 minutes
long).

We excluded participants based on poor training phase per-
formance: if they responded to more than 10 trials (15%) un-
reasonably fast (under 200 ms), performed below chance on
more than 5 out of the 16 blocks, or missed more than 5 trials
(9%). Following exclusion criteria, we analyzed a final sam-
ple size of 66 for MTurk (22 female, 31.8±5.42 years) and 78
for RPP (59 female, 20.8±2.68 years).

Task design
Participants completed a one-shot RL task (Fig. 1), where
the goal was to determine the correct key responses to visual
stimuli. The task consisted of a training phase and a testing
phase. The training phase comprised 16 blocks (stimuli were
categorically independent across blocks), each with 8 trials.
Participants’ goal was to use one-shot rewards to learn 4 SA
associations in each block. On trials 1–4, they saw 4 distinct
images presented sequentially, responded to each by press-
ing one of two keys (“J” or “K”) and immediately received a
truthful, positive (+1) or negative (0) feedback. On trials 5–8,
they saw the same 4 images in a different order and needed
to press the correct key given what they learned on trials 1–4.
Here, a trial was considered correct if the participant repeated
the rewarded choice or avoided the unrewarded choice, and
incorrect otherwise. They did not receive immediate feed-
back on trials 5–8, but were instead told at the end of the
block how many of the four they answered correctly. Partici-
pants could rest for up to 30 s between training blocks.

The training phase was designed to assess how various fea-
tures of the task design, like feedback and stimulus presenta-
tion order, impacted how SA associations were learned. Al-
though positive and and negative feedback were of equal use
in identifying the correct response key, values are unlikely
to be updated equivalently in light of positive and negative
outcomes (Katahira, 2018). There is strong evidence that val-
ues are updated asymmetrically in RL-based learning, mak-
ing feedback valence sensitivity an important marker of RL.
Feedback could also impact WM or long-term EM storage,
as participants may choose to prioritize positive information
in WM or only remember the SA event (but not the outcome)
in EM. Similarly, stimuli encountered on trial 1, and those
seen on trial 4 then trial 5 may benefit respectively from pri-
macy and recency effects. We evenly pseudo-randomized the
sequence and distribution of trial features encountered in the
first 4 trials to analyze their impact on learning in a balanced
manner. Finally, a key feature of this task is that participants
may adopt different strategies to learn the correct key, affect-
ing how the three components of RL, WM, and EM interact
with each other. Variability in strategic approach could lead
to differences in what information is used by WM for learning
(see “Exploration strategy” below).

In the testing phase, participants saw all 64 stimuli again (4
images for each of 16 blocks) in a randomized order, and were

Figure 1: Experiment protocol. Participants first completed
16 independent training blocks where they learned stimulus-
action associations from one-shot rewards, then a testing
phase probing long-term retention of all previously learned
associations.

told to press the correct key for each image shown. Again,
they received no immediate feedback for each choice (to
avoid further learning), but were told that their performance
was still tracked (for motivation), and shown how many total
points they collected throughout this phase.

We aimed to test long-term retention in the testing phase—
specifically, contributions of RL and EM—as we expected
that randomization and delay in stimulus presentation would
wash out WM effects. Thus, manipulation of features like
feedback and presentation order related to RL and EM pro-
cesses would allow us to better understand their effects on
long-term retention of learned SA associations.

Participants viewed the instructions and completed a prac-
tice block prior to starting the true task. They could practice
3 times, and were allowed to move on with a score above
chance (50% correct); otherwise the experiment ended. We
implemented two attention checks for the MTurk population
to ensure data quality (Gureckis et al., 2016): one at the
end of the practice trials during the instructions, and one
halfway through the training phase. The experiment ended
early for participants who did not reach performance higher
than chance (50%) at these cutoff points.

Behavioral analysis
Exploration strategy. We observed a common action se-
lection pattern that emerged from exploratory behavior on
trials 1–4 of the training phase, where participants had no
prior information (Mohr et al., 2018). Multiple participants
adopted a same-key strategy, pressing the same-key for all tri-
als in the first half of a block. This strategy reduces the WM
load for computing the correct action following feedback. A
participant who presses different keys on trials 1–4 needs to
track the initial key press, the outcome, and compute a key
switch if the action was wrong. However, if they pressed the
same key for all trials, an unrewarded outcome would always
signal pressing the other key. Thus, the same-key strategy
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reduces WM load by collapsing the number of dimensions
of features participants need to track, as they no longer need
to remember the initial action by trial to generate the correct
response. As a subset of participants used this strategy con-
sistently throughout the training phase, we divided the sample
into those who used the same-key strategy for at least half of
the training phase, i.e., only using the strategy after block 9 or
earlier, and those who did not. As differences in strategy use
may introduce variation in WM contributions, we limited our
model-based analyses to only those in the same-key strategy
group (n = 75), since our modeling goal was to investigate
EM and RL processes behind testing phase behavior.
Statistical analysis Our primary outcome of interest was
choice accuracy. To evaluate the effect of different experi-
mental manipulations, we ran one mixed effects logistic re-
gression separately for data from trials 5–8 in the training
phase, and another for all trials in the testing phase. Predic-
tors included the feedback received for this stimulus during
trials 1–4 (FB; 1/0), presentation order (order; 1–4), block
number (1–16), and the strategy used (dummy coded as 1 if
the same-key strategy was used, 0 otherwise). For the train-
ing phase, we included two interactions with strategy: one
for FB and one for presentation order. For the testing phase,
we included the corresponding training phase performance of
this stimulus, as well as an interaction between FB and pre-
sentation order. For both phases, we included random effects
across participants.

Computational models

We focused our computational modeling on the testing phase
to model only the contributions of RL and EM. We did not
model WM, and to further reduce variance related to WM
use, we only included the subset of participants who used the
same-key strategy. To attempt to capture signatures of either
process in the testing phase behavior, we built 5 computa-
tional models that capture different assumptions about their
separate or mixed contributions.

Our first models capture different three nested RL models.
Each of these captures a different RL process by which an
agent could learn to maximize its cumulative reward based
on outcomes resulting from taking action on stimuli in its en-
vironment.
RL: In our base RL model, we implemented a classic delta-
rule learning algorithm, where the expected value Q at time
t of an action a for a stimulus s is updated by the reward
prediction error—the difference between outcome r and prior
expectations of Q(a,s)—scaled by learning rate α (0 < α <
1):

Qt(a,s) = Qt−1(a,s)+α (rt−1 −Qt−1(a,s)) (1)

After Q-values were initialized at 0.5, we assume that Q-
values are updated only when explicit feedback is received
as a reward rt on trials 1–4 of training.

Q-values are converted to action policy via softmax:

P(a|s) = exp(β Qt(a,s))
∑i exp(β Qt(ai,s))

(2)

All RL models used the same softmax equation to calculate
action probabilities. Because there is only one learning trial,
the learning rate and softmax inverse temperature parame-
ter β would not be jointly recoverable, as their product will
uniquely influence the choice policy on trials 5–8. Thus, we
fixed β to 10 and only estimated the learning rate(s).

RL2a: This model extends the base RL model by including
separate learning rates for gains and losses (α when rt = 1
and αneg when rt = 0), capturing an often observed effect of
feedback valence in RL (Katahira, 2018).

RLRe: This model extends the RL2a to include an addi-
tional parameter re, used to iteratively update expected values
of previously seen stimuli/action on following trials. In this
way, the RLRe model implements a form of offline rehearsal
of previously experienced trials in a block:

Q(ai,si,b) = Q(ai,si,b)+ re ·α (ri −Q(ai,si,b)) (3)

For trial i < t. When reward ri = 0:

Q(ai,si,b) = Q(ai,si,b)+ re ·αneg (ri −Q(ai,si,b)) (4)

This model allows us to consider the possibility of an RL-
family model that might nevertheless exhibit temporal order
effects.

EM model: Our descriptive EM model quantitatively im-
plements a memory process of probabilistic storage and re-
trieval of a trial’s information. It features within-block pri-
macy and feedback-dependent encoding/retrieval accuracy.

To model potential primacy effects, we assume that the
probability of retrieving a memory of a trial, p(ret), depends
on when in the block it was presented (i.e., presentation order
s at storage), via an exponentially decaying memory parame-
terized by time constant τ:

p(ret) = exp(−τ(s−1)) (5)

Furthermore, we assume that encoding and retrieval accura-
cies are not perfect, and can potentially be corrupted in a
feedback-dependent way. Specifically, probabilities of cor-
rect retrieval 0<m< 1 (when FB=1) and 0<mneg < 1 (when
FB=0) are combined with probability of retrieving p(ret) to
compute the final probability of choosing the correct action,
p(cor), under the assumption that choice is random (0.5) if
the memory was not stored or retrieved:

p(cor) = p(ret) ·m+(1− p(ret)) ·0.5 if FB = 1 (6)

p(cor) = p(ret) ·mneg +(1− p(ret)) ·0.5 if FB = 0 (7)

Note that values of mneg < 0.5 mean that memory encoding
is worse than chance, capturing the possibility that partici-
pants store the wrong memory. This could show up as par-
ticipants remembering an unrewarded action instead of the
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correct one. We tested a simpler model where m = mneg, but
did not present it here as it did not account for the data well.

Mixture model: Finally, we included a mixture model,
RLEM, that allows for RL and EM processes to jointly con-
tribute to testing phase behavior. The model’s policy is a
weighted sum of the RL2a model’s policy pRL and the EM
model’s policy pEM , as follows:

p(a|s) = ρ pRL(a|s)+(1−ρ) pEM(a|s) (8)

Where ρ is the mixture weight parameter (0 < ρ < 1).

Modeling methods
The goal of our computational modeling was to better under-
stand the mechanisms driving long-term retention in the test-
ing phase; accounting for short-term memory use during the
training phase was beyond the scope of this paper. Thus, we
limited our modeling to capturing RL and EM contributions
to learning in the testing phase, and our modeling dataset
to participants who used the same-key strategy (n = 75) to
keep WM effects consistent between subjects and remove
further confounds introduced by different WM strategies in
the training phase. We fit our models to testing phase choice
data, conditioned on information learned during training. The
models were updated on trials 1–4 of each block of the train-
ing phase; then we evaluated how well the policies predicted
the actions selected during the testing phase.

We used maximum likelihood estimation to fit our mod-
els via MATLAB’s fmincon function with 10 random start-
ing points (Wilson & Collins, 2019). We used AIC for model
comparison, and validated parameter identification and model
comparison procedures with simulation studies (Wilson &
Collins, 2019). We simulated data from each model of in-
terest and fitted all models on that simulated data to deter-
mine recoverability of the original simulated model. We cal-
culated the exceedance probability (Rigoux, Stephan, Friston,
& Daunizeau, 2014), or the probability that each model gen-
erated its own data, for each model.

For model validation, we generated 10 simulated datasets
using parameters obtained from model fitting. This al-
lowed us to qualitatively compare experimental result pat-
terns to those obtained from simulations (Palminteri, Wyart,
& Koechlin, 2017).

Results
Behavioral Results
Learning The RPP and MTurk groups both performed
above chance early in the training phase (Block 1 accuracy
around 80%). Because both groups performed similarly in
both the training (MTurk: M = 0.862,SD= 0.094; RPP: M =
0.862,SD = 0.094; independent t-test: t(142) = −0.18, p =
0.86) and testing phases (MTurk: M = 0.601,SD = 0.109;
RPP:M = 0.602,SD = 0.111; independent t-test: t(142) =
0.13, p = 0.89), we combined both groups into one dataset in
all further analyses.

Figure 2: Task performance in the training phase. A) Partic-
ipants from both groups perform similarly in trials 5–8, im-
proving their choice accuracy (P(cor)) across training blocks.
B) Participants from both groups adopt the same-key strat-
egy (P(same)) over training blocks (MTurk: ρ = 0.912; RPP:
ρ = 0.905, both p < 0.001).

Participants demonstrated meta-learning effects, improv-
ing mean accuracy for trials 5–8 across independent blocks
(Fig. 2a; block regressor β = 0.0363, p < 0.001 in Fig. 2a),
and learned to use a choice policy that limited WM load
throughout the training phase (Fig. 2b).

A mixed effects logistic regression revealed significant
main effects of strategy (β = 1.71, p < 0.001), presentation
order (order; β = 0.0806, p = 0.0323), and initial feedback
received (FB; β = 0.757, p < 0.001), as well as interactions
between strategy and FB (β = −0.788, p < 0.001) and strat-
egy and order (β =−0.147, p = 0.008) (Fig. 3a; Fig. 4, red).
However, while FB and order had significant effects on train-
ing phase performance, using the same-key strategy dimin-
ished these effects (Fig. 3a), indicating that WM storage was
not sensitive to FB or order when under minimal load.

Figure 3: Trial-level performance in each phase as a func-
tion of initial feedback received, presentation order, and WM
strategy. A) In the training phase, choice strategy interacts
with initial feedback received and presentation order. B) In
the testing phase, choice strategy has a main effect, while ini-
tial feedback and presentation order interact.

Testing We extended the previous analysis to the testing
phase (Fig. 3b; Fig. 4, blue). Controlling for whether par-
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ticipants made the correct choice in trials 5–8 (Train Cor-
rect; β = 0.336, p < 0.001), training phase choice strategy
(β = 0.281, p < 0.001) still had a significant effect on test-
ing phase performance, hinting at deep interactions between
short-term strategies and long-term memory systems RL and
EM.

Testing phase performance revealed signatures of mark-
ers associated with both RL and EM (Fig. 3b). Accuracy
was higher for initially rewarded SA associations, a positiv-
ity bias likely reflecting the involvement of feedback-based
learning via RL to learn stimulus-action-outcome (SAO) as-
sociations. There was a slight long-term recency effect (ef-
fect of block; β = 0.0191, p < 0.001). Accuracy also varied
as a function of within-block temporal order; within-block
primacy effects emerged, potentially indicating the role long-
term EM for learning SA associations (Ebbinghaus, 1913).
Main effects were significant for FB (β = 1.44, p < 0.001),
presentation order (β = 0.100, p < 0.001), and their interac-
tion (β = −0.307, p < 0.001). This interaction captures the
performance difference between rewarded and unrewarded
trials at t = 1, hinting at the possibility that participants re-
trieved SA events, rather than SAO events, determining long-
term memory retrieval in a feedback-independent way.

Figure 4: Regressor weights from linear mixed effects mod-
els for training (red) and testing (blue) phases. Points repre-
sent estimates of main effects and interactions, bars represent
standard error. All effects are significant (at p < 0.05).

Modeling results
Model comparison We first evaluated model-fitting results
at the subject-level (yielding one set of parameters per sub-
ject) via AIC score comparison (Fig. 5a). The EM model
(3 parameters) had the lowest AIC score, while the mixture
model RLEM (6 parameters) performed the worst. We sus-
pected that this outcome was due to insufficient trial data
at the subject level, leading to overfitting by RLEM, which
had 3 additional parameters. Indeed, simulations with the
winning EM model were unable to capture the key behav-
ior of failing to store unrewarded SAO associations on t=1,
showing the limitations of this model comparison approach
(Palminteri et al., 2017). In fitting the models at the group-
level, where we combined all data into one dataset to gener-
ate one set of parameters for the whole group, the AIC score

comparison showed that RLEM performed best, confirming
that it was previously disadvantaged by a shortage of trials
(Fig. 5b). Future work will use hierarchical modeling to over-
come this issue while accounting for individual differences
(Baribault & Collins, 2021).

Figure 5: Model comparison and validation of comparison.
A) and B) show AIC score differences between the 5 mod-
els fit at the subject-level and group-level, respectively. C)
Confusion matrix of exceedance probabilities indicate most
models are identifiable.

Model validation Simulations of the RLEM best captured
the qualitative trends observed in the real data, replicating the
main effects of feedback and the crucial performance gap at
t=1 (Fig. 6). As expected, the base RL model failed to cap-
ture feedback or order effects, the more complex RL mod-
els replicated the feedback effect but not order effects, and
the EM model failed to capture the interaction. A model
recovery studied verified the interpretability of our parame-
ter recovery results, which was successful for RLEM other
models. Furthermore, exceedance probabilities from model
recovery showed that most models, including the winning
RLEM model, were identifiable (Fig. 5c). Fit model param-
eters confirmed an RL asymmetric learning rate bias (α =
0.55,αneg = 0.33), a greater likelihood of encoding SA vs.
SAO for negative feedback (m = 0.72,mneg = 0.41), and a
greater contribution of EM than RL after a single feedback
(ρ = 0.38); individual parameter fits showed similar findings.
While our EM models did not account for experiment-wide
memory effects seen in model-independent analyses (block
effect in Fig. 4), simulations of a variant EM model with such
a global recency mechanism failed to capture key behaviors.

Discussion
Our model-independent analyses suggest that our task is able
to parse out distinct contributions of three systems in a one-
shot reward learning paradigm. The training phase was de-
signed to incorporate and counterbalance task features with
selective effects on each of the three systems—valenced feed-
back targeting RL’s asymmetrical learning mechanism, stim-
ulus presentation order targeting EM’s within-block primacy
effect, and a load around the WM limit depending on strategy
use—to evaluate their contributions and interactions. Indeed,
WM effects emerged in the training phase where short-term
memory effects should be more dominant: efficiency storage
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Figure 6: Model validation results. Simulations of all 5 mod-
els; RLEM replicates qualitative trends observed in real data
(grey lines) at the group and subject-level.

of SA associations in WM via the same-key strategy closes
feedback- and order-sensitive performance gaps indicative of
other systems. Thus, training performance appears to mostly
rely on close to perfect WM when the same-key strategy is
used, but relies on a mixture of all three components oth-
erwise. Future work is needed to better qualify this short
term contribution of RL and EM in the non-same-key strat-
egy blocks.

In the testing phase, there should be little direct contribu-
tion of WM because it is beyond both the capacity and tem-
poral scope of WM. Nevertheless, there is evidence for WM
interacting with RL and EM, as efficient WM use in training
mildly improves testing phase performance, controlling for
other factors. Regardless of choice policy, however, perfor-
mance in both groups was impacted by the initial feedback
received and its interaction with presentation order. The im-
proved performance for rewarded stimuli is non-trivial as par-
ticipants should have access to the same information in this
two-alternative forced choice design, independent of feed-
back. This bias can be interpreted in a number of ways. First,
it could be a marker of RL function, which has frequently
been shown to be positively biased (Palminteri et al., 2017;
Katahira, 2018; Xia, Master, Eckstein, Wilbrecht, & Collins,
2020; Master et al., 2020), though not always (Sugawara &
Katahira, 2021). Second, this could reflect an EM effect,
where only the SA components of the association was stored
and subsequently retrieved regardless of whether the action
was correct.

The interaction between presentation order and reward ef-
fect supports the second interpretation, whereby EM con-
tributes to the feedback effect. A purely RL-dependent re-
ward effect should be identical across all training phase pre-
sentation trials 1-4. However, this effect was stronger at t=1
where EM storage/retrieval was improved by within-block
primacy effects, potentially due to EM’s potential failure to

bind reward to event information, or a lower likelihood of EM
storage of unrewarded info. Our model comparison results
suggest that long-term retention observed in the testing phase
is described by a mixture model that captures the feedback-
dependent process of RL and the temporally-sensitive and
feedback-dependent process of EM, also supporting this in-
terpretation.

One study limitation is a shortage of trials to properly fit the
mixture model on individuals’ performance. This forced us to
sacrifice either the statistical power necessary for model com-
parison or the ability to account for individual differences. As
we continue our work with this approach, we will instead use
Bayesian hierarchical modeling methods, which will enable
us to have maintain sufficient estimation power while simul-
taneously capturing individual differences. This will allow
us reconcile the conflicting subject- and group-level accounts
in follow-up experiments designed to increase the number of
trials for modeling the training phase.

Another limitation lies in our limited ability to study WM
contributions. First, we could counterbalance the possible
feedback sequences evenly with possible presentation delay
durations at only trial 5. This is a minor issue, however, as our
priority for the no-feedback training trials was on trial 5, as
further trials would be confounded by decision-making pro-
cesses beyond the scope of this paper. Second, because most
participants eventually learned to use the same-key strategy
which enabled perfect WM performance (Fig. 3a, dark red),
there remained relatively few trials in which we could care-
fully analyze and model the roles of RL and EM in short-term
decision-making on trials 5–8 (Fig. 3a, dark red). Future ex-
periments are needed to better answer this question. Accord-
ingly, we focused our computational on the long-term mem-
ory and learning systems in the testing phase as they would be
better understood. We further controlled for WM confounds
by only modeling data from participants who employed the
same strategy that decreased WM load in a consistent way,
thereby decreasing potential variance in WM use). Neverthe-
less, we also conducted model-fitting on the remaining non-
same-key strategy participants. While we replicated patterns
in model comparison, behavioral simulations, and model re-
covery, the distribution of fitted RLEM parameter values dif-
fered between the strategy subgroups (e.g., for mixture ρ,
same-key subjects M = 0.42,SE = 0.05 vs. M = 0.27,SE =
0.03; independent t-test: t(142) = 3.66, p < 0.001). Our cur-
rent analyses cannot aptly account for individual differences
(visible in certain subject-level simulations). Future work
would address the role of WM and individual differences in
the testing phase.

Disentangling how multiple systems contribute to adaptive
decision-making is essential to better understanding where in-
dividual differences come from, in healthy individuals, across
development and in clinical populations. By demonstrating
how these three systems contribute distinct characteristics to
learning from one-shot rewards, our study represents an im-
portant step in this direction.
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