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Dimensionality of brain networks linked to life-long
individual differences in self-control

Marc G. Berman'?2, Grigori Yourganov'3, Mary K. Askren?, Ozlem Ayduk®, B.J. Casey®, lan H. Gotlib/,
Ethan Kross®, Anthony R. MclIntosh!, Stephen Strother!?, Nicole L. Wilson'©, Vivian Zayas”, Walter Mischel'?,
Yuichi Shoda'® & John Jonides®

The ability to delay gratification in childhood has been linked to positive outcomes in ado-
lescence and adulthood. Here we examine a subsample of participants from a seminal
longitudinal study of self-control throughout a subject’s life span. Self-control, first studied in
children at age 4 years, is now re-examined 40 years later, on a task that required control
over the contents of working memory. We examine whether patterns of brain activation on
this task can reliably distinguish participants with consistently low and high self-control
abilities (low versus high delayers). We find that low delayers recruit significantly higher-
dimensional neural networks when performing the task compared with high delayers.
High delayers are also more homogeneous as a group in their neural patterns compared with
low delayers. From these brain patterns, we can predict with 71% accuracy, whether a par-
ticipant is a high or low delayer. The present results suggest that dimensionality of neural
networks is a biological predictor of self-control abilities.
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he ability to delay gratification as a child has been linked to

I many imfortant health, social and cognitive outcomes later

in life!™. The neural mechanisms that underlie this
association, however, are not understood. The current study
draws on a seminal longitudinal examination of self-control over
much of the life span, first measured in children at 4 years of age.
A subsample of these participants was tested some 40 years later,
on a task that required self-control over the contents of working
memory. In this study we examined whether patterns of brain
activation on this task could distinguish reliably between
participants with consistently low and high self-control abilities.

One potential driving mechanism for delaying gratification is
the ability to keep unwanted or inappropriate information out of
working memory so that this information does not unduly
influence cognitive processing. For example, the ability to control
appetitive impulses that might be in the focus of working memory
should help individuals resist immediate temptation on the classic
marshmallow test’. This delay measure required foregoing an
appealing reward, such as a marshmallow, when delaying
immediate consumption would lead to increased rewards, two
marshmallows.

To examine the hypothesis that controlling the contents of
working memory is critical to the ability to delay gratification, we
capitalized on a unique resource: a group of adults who have a
documented life-long history of effective self-control, starting
40 years earlier at age 4 years, and a group of adults who differed
from the first group only in having an equally long history of less
effective self-control (Methods and Supplementary Information).
We refer to the former as ‘high delayers’ and the latter as ‘low
delayers.” Therefore, these two samples were quite homogeneous
aside from differences in self-control measures across the life
span. We examined whether these two groups differ in their
neural functioning during a task that requires controlling the
contents of working memory by expelling task-irrelevant
information.

The task was simple: On each trial, six words were presented
for storage in working memory, following which participants
were directed to forget three of these words. A probe word was
then presented, and participants had to indicate whether the
probe was one of the remaining stored words. The critical feature
of this task is that sometimes participants were presented probe
items (‘lures’) that had to be forgotten from working memory;
hence, requiring a negative response. Responses to these critical
lures were compared with responses to probes that had not been
presented in the memory set (‘controls’, that is, probes that were
not in memory to begin with; Fig. 1a).

If there is a difference between the groups in responses to lure
and control trials, it might reveal itself in one or both of two
outcomes. First, low-delay participants might have more difficulty
responding negatively to lures than high-delay participants
revealed as relatively longer response times and relatively poorer
accuracy to lure versus control trials. Second, the groups might
differ neurally, with low-delay participants exhibiting less efficient
neural recruitment during engagement with the working memory
task.

Dimensionality of neural responses may be an important
metric of the efficiency of cortical networks. In longitudinal
functional magnetic resonance imaging (fMRI) experiments of
stroke recovery, low principal component (PC) dimensionality
was found to be related to better post-stroke behavioural
recovery”. In simulated fMRI data, lower PC dimensionality has
been shown to correspond to stronger coupling and/or stronger
dynamic range®. In other words, intrinsic PC dimensionality is
related to the number of distinct strongly covarying networks in
fMRI data; if dimensionality is low, then the fMRI signal can be
described by a simpler model that contains fewer distinct
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Figure 1 | Directed-forgetting task and activations. (a) Schematic of the
working memory directed-forgetting task. The task is composed of three
trial types: lure, yes and control trials. Of most interest is the comparison of
accuracy and RT for lure versus control trials. (b) Activation patterns for the
lure—control contrast across all participants. Significant activation is seen
in the left inferior frontal gyrus (LiFG), the right inferior frontal gyrus (RiFG),
the anterior cingulate cortex (ACC)/superior frontral gyrus (sFG), the
caudate, the precuneus and the left inferior parietal lobule (LiPL). These
images are thresholded at P<0.005 uncorrected for ten contiguous voxels.

covarying networks (that is, PCs). Therefore, it is possible that
low PC dimensionality may reflect a more efficient recruitment of
cortical networks to achieve the same behavioural performance.
We define dimensionality by the number of PCs required to
optimize classification accuracy between lure and control trials
(that is, working memory control).

Here we show that low delayers recruited significantly higher-
dimensional neural networks when performing the task com-
pared with high delayers. In addition, results indicated that high
delayers were more homogeneous as a group in their activation
patterns than were low delayers. Finally, utilizing a quadratic
discriminant (QD) analysis, we could predict with 71% accuracy
whether a participant was a high or a low delayer from their brain
activity patterns. The present results suggest that dimensionality
of neural networks is a biological predictor of self-control abilities
into adulthood.

Results

Behavioural results. Replicating the standard directed-forgetting
effect of slower and less accurate performance on lure trials
compared with control trials”$, we found a significant main effect
of trial type for both reaction time (RT), F(1,22) =58.1, P<0.001
and n% =0.73, and accuracy, F(1,22) =9.6, P<0.01 and 71% =0.30.
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This main effect was present in the low-delay group in RT
F(1,11)=47.67, P<0.001 and 11%,:0.81, and  accuracy,
F(1,11)=6.71, P<0.05 and n2=0.38, and in the high-delay
group in RT, F(1,11) = 18.57, P<0.001 and r]% =0.63, and a trend
in accuracy, F(1,11)=3.62, P=0.08 and ng =0.25. Although
there was no interaction between group and trial type for either
RT, F(1,22) =0.61, NS, 11[2,:0.03, or ACC, F(1,22)=0.01, NS,
11%,:0.00, the trends for both measures were in the predicted
direction. Specifically, compared with high delayers, low delayers
are less accurate and take longer to respond for the lure trials than
to the control trials. We also examined differences in lure versus
control trials with the combined Z-score of the effects. Again, we
found no significant difference between the two groups,
#(22) =0.57, NS. We attribute the lack of significance to a small
number of experimental trials, high variability in the responses
and small overall sample size. Nonetheless, although not reliable
in the present experiment, these results hint at the possibility that
low-delay participants find it more difficult than do high-delay
participants to resolve interference between relevant and
irrelevant material in this experiment. More statistical power
may be needed to examine whether there is a significant
behavioural difference in this task. In addition, there was no
main effect of group on either RT, F(1,22) =0.78, NS or ACC,
F(1,22) =0.33, NS. Table 1 summarizes the RT and ACC effects
by group. Thus, although the difference in response times and
accuracy between lure and control trials was numerically greater
for the low than for the high delayers, this was not a reliable
effect.

Neural network dimensionality. It is important to note that
equivalent behavioural performance does not mean that the two
groups are resolving interference from lure trials in the same way.
Indeed, our neural analyses suggest quite different routes to the
same behavioural outcome.

What is impressive is that low delayers appear to be recruiting
neural networks less efficiently to achieve the same level of
behavioural interference control. Linear discriminant (LD) ana-
lysis on PCs revealed that low delayers recruited higher-dimen-
sional neural networks than did high delayers when controlling
the contents of working memory. In addition, high delayers were
more stereotyped in their patterns of brain activation (that is,
showed greater homogeneity) than were low delayers, who were
characterized by more varied neural networks. On the basis of
these findings, we were able to accurately distinguish neural
network patterns between high and low delayers with 71%
accuracy utilizing a QD analysis. The following three analyses
support these conclusions.

Dimensionality of individuals’ networks. Univariate analyses
are limited to treating each voxel in the brain independently,

Table 1| RT and ACC data by group with s.d. in parentheses.

Trial type

Control Yes Lure

ACC data (% correct)
High 93.3% (11.4)
Low 91.7% (12.2)

90.0% (6.0)
87.3% (7.7)

84.0% (12.2)
81.7% (9.7)

RT data (ms)
High
Low

876.6 (181.5)
920.3 (138.6)

867.0 (158.2)
900.7 (166.2)

1,036.1 (214.0)
1116.1 (182.2)

ACC, accuracy; RT, reaction time

ignoring the spatial patterns and distributions of voxels®, and the
interactions of different brain locations, all of which have proven
important in neuroimaging studies!®!!. To remedy this problem
and to examine neural networks, we conducted multivariate
analyses using LD analysis on PCs to examine differences in the
neural networks recruited for lure and control trials. LD attempts
to find a linear combination of voxels that define a plane (that is,
each voxel has a weight, and all of the weights together define the
plane) that optimally separates two classes of data. This method
can be used to classify fMRI volumes according to the task
performed during the volume’s acquisition!?. In addition, the
analysis provides a spatial map in which each voxel is assigned a
value, indicating the importance of that voxel in the
classification®. For each participant, 70% of the lure and control
trials were used to train the classifier, which was then tested on
the remaining 30% of the data to determine classification
accuracy'? (Methods). This splitting should provide sufficient
data to form a good model, at the same time preserving sufficient
data to test the model. In addition, we restricted the analysis to
the regions that showed the greatest difference in lure versus
control trials (Fig. 1b) as uncovered with univariate analyses, a
procedure shown to reduce classification errors'® and to provide
an unbiased and orthogonal method from our multivariate
analyses to select voxels. This network has been strongly
implicated in  controlling the contents of working
memory” 1415 and exhibited considerable spatial overlap with
previous results (Supplementary Fig. S1), which is why we
focused on these associated regions. There was a significant
difference between the groups in the number of PCs required to
achieve optimal accuracy in classifying trials as lure versus
control, #(22)=3.45, P<0.005 and ’1;2> =0.35. On average,
although 3 PCs were required to optimize classification for high
delayers, full 15 PCs were required for low delayers (Fig. 2). This
suggests that the network of high delayers is less dimensional and
potentially more efficient than is the network of low delayers.
These results were not a function of the splitting proportions
between training and test: our results were significant for a 90/10
split, an 80/20 split, a 60/40 split and a 50/50 split (Table 2).
In addition, these results were not idiosyncratic to the
feature-selected network. When the same analysis was

35
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Optimal number of PCs in linear discriminant

High-delaying
participants

Low-delaying
participants

Group
means

Figure 2 | The optimal number of dimensions to maximize classification
accuracy. The number of LD dimensions/components that were required to
achieve maximum classification between lure and control trials for each
participant with the group averaged data to the far right. High-delay
group =red; low-delay group = blue. Error bars represent s.e.m.
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conducted examining all brain voxels (that is, no masking), we
obtained the same effect, in which high delayers required fewer
PCs than did low delayers to distinguish lure from control trials
(6 versus 15), t(22) =2.18, P<0.05 and 11]23:0.18. Finally, there
were no group differences in physiological parameters (heart rate,
respiration rate or breath volume), or in the six rigid body motion
parameters either at the brain volumes that were analysed or
across all brain volumes in the entire functional runs, suggesting
that motion and physiology had no role. To control for motion
and physiology even further, we covaried motion and physiology
(Methods) from the raw signal while controlling for the task
design. Conducting the analysis on these data yielded the same
result of increased dimensionality for the low delayers versus the
high delayers (6 versus 14 PCs), #(22)=2.28, P<0.05 and
11%,:0.19. Therefore, the present findings do not appear to be
driven by differences in physiological parameters'® or motion,
nor are the results idiosyncratic to the splitting ratio of the
training and test sets or the voxels that were chosen for the
analysis.

Another potential confound in the data was an imbalance in
males and females. Our high-delay group contained more females
than males (9 out of 12), whereas our low-delay group contained
more males than females (8 out of 12). To examine whether
gender was a confounding variable in our analysis, we aggregated
the data from males and from females to compare the number of
PCs to distinguish lure versus control trials (that is, LD
dimensionality). This analysis yielded no reliable difference in
the number of PCs, #(22)=0.75, NS. Consequently, the
dimensionality ~ differences are not driven by gender.
Supplementary Figure S2 shows the results of this analysis.

Sometimes PC spaces can be difficult to interpret. To allay
concerns that our PCs may not be sensible, we plotted the average

Table 2 | Dimensionality differences between the high and
low delayers for different proportional splittings of the
training and test sets.

Split Dimensionality S.d. high S.d. low t-value P-value
High Low

90-10 split 6.5 20.27 7.317 16.4231 2.6171 0.0157

80-20 split  3.3333 17.25 22293 13.6657 3.4817 0.0021

70-30 split  3.3333 14.5833 22697 11.0656 3.450 0.0023

60-40 split 3.5 14.25 23549 10.8219 3.3624 0.0028

50-50 split 33333 125 21462 8.5013 3.6216 0.0015

of the first and second PC separately for each group (Fig. 3), and
the first and second PC for each individual participant
(Supplementary Figs S3-S6). Examining these plots, and in
particular Fig. 3, the first and second PCs are sensible in that their
values are well clustered in our feature-selected network and do
not represent disjointed random values spread throughout the
space (that is, the values are not salted and peppered throughout
the space). Thus, we are confident that the PCs are both plausible
and usable.

Finally, the same anatomical regions were involved in the
classification for both groups: only 16 of the 2,589 voxels showed
significant group differences in classification values with
univariate f-tests at a liberal threshold of P<0.05, and no
voxels surviving a P<0.005 threshold criterion. In sections 2 and
3, we examine these classification maps with multivariate
analyses.

In sum, this analysis indicates that when controlling the
contents of working memory, high delayers activate networks that
require fewer dimensions to optimize classification of lure versus
control trials than do low delayers, which we posit indicates more
efficient neural recruitment.

Homogeneity of networks across participants. On the basis of
the differences in LD dimensionality, we examined differences in
homogeneity of the classification maps across the two groups of
participants. To evaluate group homogeneity, we measured the
Euclidean distance across all voxels from each participant’s LD
maps to the mean LD map of all other group members of that
participant’s group (either high or low). From this analysis, we
could determine how similar or different each participant’s LD
classification map was from the mean map of his or her group
(excluding that particular participant from the mean map). High
delayers had significantly smaller Euclidean distances
(M =0.0022, s.d.=0.0018) than did low delayers (M =0.0262,
s.d. =0.0225), #(22)=3.69, P<0.005 and n%:0.38, suggesting
that they are more homogeneous as a group (Fig. 4).

To further examine group homogeneity and to obtain a
different visual representation of the data, we performed multi-
dimensional scaling (MDS)!7 to plot the first three dimensions
of individuals’ LD map values based on the LD map distance
matrix (that is, the Euclidean distance of all individual maps from
each other as calculated above). In this way, each participant’s
entire LD map was summarized by weightings on three
dimensions. It is apparent from Fig. 5 that the high-delay
group is clustered more tightly, whereas the low-delay group is
more heterogeneous.

Figure 3 | Averaged first and second PC for each group. (a) Average PC 1 for high delayers (b) Average PC 1 for low delayers (¢) Average PC 2 for high

delayers (d) Average PC 2 for low delayers.

4

| 41373 | DOI: 10.1038/ncomms2374 | www.nature.com/naturecommunications

© 2013 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2374

ARTICLE

0.09

0.08

0.07

0.06

0.05

0.04

0.03

Euclidean distance

0.02

0.01

High-delaying
participants

Low-delaying
participants

Group
means

Figure 4 | The Euclidean distances for each individual participant's LD
map from their group mean LD map. High-delay group =red; low-delay
group = blue. Error bars represent s.e.m.
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Figure 5 | MDS results for the first three dimensions of the LD map
distance matrix. The high (red) delayers are grouped together more closely
than the low delayers (blue).

Classification of individual participants. Examining how the
participants were clustered based on our MDS analysis, it was
apparent that participants could not be easily classified with a
linear decision boundary, though a LD classifier could classify the
groups with 58% accuracy, which was above chance. On the basis
of the MDS analysis, we classified the groups with a QD, where
the decision boundary is a quadratic surface rather than a plane.
We implemented a leave-two-out cross-validation framework
(Methods) and achieved classification accuracy as high as 71.3%
(s.d. = 0.24%).

Using a procedure similar to ref. 12, we created a sensitivity
map that identified the voxels important to the QD classification.
Examining the map in Fig. 6, positive and negative values are
distributed across the feature-selected network, particularly in left
inferior frontal gyrus, showing that the whole network was
involved in classification and that regions were not entirely
selective for one group. As a caveat, piecewise interpretations of
multivariate maps can be hazardous because of the inclusion of
voxel covariances into the analyses, which limits local inter-
pretations; therefore, one should be careful in interpreting the
map in Fig. 6.

The QD classifier was a bit more accurate in classifying high
delayers than low delayers (73.6 versus 69.0%). This was not
surprising given that high delayers were more homogeneous as a

—8000.0 0.0 80000.0

Figure 6 | QD sensitivity map for classifying high- versus low delayers’
LD maps. Areas in blue represent voxels that are higher in low delayers’
maps. Areas in orange/yellow represent voxels that are higher in high
delayers’ maps. The left hemisphere is shown.

group in their pattern of activation and, therefore, clustered
together more tightly. Considered collectively, these analyses
suggest that dimensionality of brain networks and subsequent
classification maps provide important information concerning
biological predictors of self-control ability.

Univariate fMRI analyses. We note that the univariate analyses
of these data reveal more commonality than differences between
the groups, which may not be surprising given the small beha-
vioural difference in interference between the groups. Across both
groups, univariate general linear model analyses revealed sig-
nificant differences (Fig. 1b) for the lure-control contrast in areas
such as the left inferior frontal gyrus, the anterior cingulate cortex
(ACC) and the left parietal cortex, replicating results from other
studies using a similar task”®!415 and exhibiting considerable
spatial overlap with previous results (Supplementary Fig. S1).
There were few and modest differences between the low and high
delayers in blood-oxygen-level-dependent (BOLD) activation
magnitude at liberal thresholds that are summarized in the
Supplementary Table S1.

Discussion

This study demonstrated that self-control ability across the life
span is reflected in intrinsic PC dimensionality when performing
a task that assesses the ability to control the contents of working
memory. Intrinsic PC dimensionality is related to the number of
distinct, strongly covarying networks in fMRI data% for high
delayers there are fewer strongly coupled networks to optimize
classification of lure versus control trials, and therefore their data
can be described by a simpler model that requires fewer PCs. The
opposite was true of the low-delay group. Therefore, it is possible
that low PC dimensionality reflects a more efficient recruitment
of cortical networks for high delayers relative to low delayers to
achieve the same behavioural performance on this working
memory task.

Note that the present findings were obtained in a task that does
not challenge participants with information that has emotional or
motivational content (as marshmallows do for children or as
money might for adults). It may be this lack of affective content
that leads to equivalent behavioural performance in high and low
delayers on this task; it is possible that with affectively laden
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stimuli, low delayers would have exhibited a different pattern of
behavioural performance in addition to their unique neural
signature!8, Of course, the pattern of neural activations found in
the present study must be examined with other cognitive control
tasks, but the results offer an important clue for the neural bases
of life-long differences in self-control abilities; it is remarkable
nonetheless that some 40 years after our participants with well-
documented and reliable life-long patterns of high versus low self-
control abilities exhibited distinct neural signatures that may
represent a biological marker of self-control ability. In this way,
the neural dimensionality differences are linked more broadly to
behavioural performance—that is, to self-control ability through
the life span.

Finally, the high-delay group was more homogeneous in their
activation patterns than was the low-delay group. This could be
interpreted as indicating that life-long self-control is instantiated
with more stereotyped neural activation patterns. These findings
bring to mind the first line in Leo Tolstoy’s Anna Karenina: ‘All
happy families are alike; each unhappy family is unhappy in its
own way.” Perhaps all self-control is alike, but lack of self-control
may be instantiated more uniquely.

Methods

Participants. We contacted 117 individuals from more than 500 original partici-
pants who completed the delay-of-gratification task at age 4 years at Stanford’s
Bing Nursery School during the late 1960s and early 1970s. These 117 individuals
were selected because they exhibited either a life-long trajectory of high self-control
(above average in their original delay-of-gratification performance, as well as in
self-report measures of self-control administered in their 20s and 30s), or a life-
long trajectory of low self-regulation (below average on these measures). Of these
individuals, 29 participated in this follow-up neuroimaging study and met fMRI
safety regulations. Two participants did not complete fMRI scanning, and 3 par-
ticipants did not complete all 5 runs of the task, leaving us with 24 participants who
had complete fMRI imaging data. Please see the Supplementary Information for
more details regarding the participants.

Directed-forgetting task. Participants performed a directed-forgetting working
memory task to examine their ability to remove irrelevant information from
working memory. Participants saw a display of six words on a screen. Three of the
words were presented in blue and three in teal colours. Participants were instructed
to encode and remember all six words. After a 4-s delay, participants saw a ‘forget’
cue, indicating the colour of the words they were now to forget; the words in the
other colour were to be remembered. Following a jittered cue-to-stimulus interval
of 2, 3, 5, or 6 (average cue-to-stimulus interval =4s), participants saw a single
probe word and pressed a ‘yes’ key if that word was one of the three words they
were to remember or a ‘no’ key if it was not one of the three words they were to
remember. The intertrial interval was jittered to be 2, 3, 5, or 6 s (average intertrial
interval =4 s), which included a 1-s warning display that the next trial was about to
begin.

Two types of ‘no’ trials were the trials of main interest: those with ‘control’
probes (words that were not seen in over 11 trials on average) and those with ‘Ture’
probes (words that were drawn from the to-be-forgotten set of the current trial).
Previous research has demonstrated that people are both slower and less accurate
in responding to lure trials than to control trials®!4. The difference in performance
between lure and control trials is an index of control over the contents of working
memory. There were 100 trials in the task: 50 ‘yes trials, 25 ‘Ture’ trials and 25
‘control’ trials. Participants first practiced 20 trials of the directed-forgetting task.
All words were of four letters and were taken from previous work!®.

Behavioural analysis parameters. A 2 (group: high versus low delay) X 2 (trial
type: lure versus control) repeated-measures analysis of variance was conducted on
RT (mean RT for correct trials) and accuracy (ACC) data for the ‘no’ trials. The
mean RT for correct trials was used in the analysis of RT. Z-scores combining RT
and ACC (errors) measures were computed to control for speed/accuracy trade-

offs.

Classification analysis parameters. The de-spiked, smoothed and normalized

functional data were mean-centred separately for each run per voxel across time.
When constructing within-subject classification maps that distinguished lure ver-
sus control trials, the second TR after the onset of the probe stimulus for lure and
control trials was analysed. These TRs corresponded to the peak activation of that
trial, without having activation bleed into the following trial. In this analysis, all 25
lure trials and 25 control trials were included. We performed feature-selection to
select only the voxels that were most active for the lure-control contrast across all

participants. This map contained 2,589 voxels that met a threshold of P<0.005
uncorrected at the voxel level for 10 contiguous voxels to reduce and balance type I
and type II errors?’, and also to increase the number of voxels in the feature-
selected network (for the subsequent multivariate analyses), because a voxel may
not contribute strongly to a univariate effect, but could contribute to a multivariate
effect.

Data from individual subjects were repeatedly split into training and test sets.
The training set was used to train the LD?, which was then applied to classify the
trials in the test set according to the task performed. The training test was formed
by randomly selecting 70% of the trials (with equal number of lure and control
trials selected), whereas the remaining 30% formed the test set; we performed 500
such training-test splits. Singular value decomposition?! was performed on the
training data to project it into PC space. Singular value decomposition ranks PCs
according to the amount of variance explained. To prevent over-fitting, we used a
subset of highest-ranked PCs in our LD analysis, as the lowest-ranked components
might contain irrelevant noise specific to the training set. The size of the subset was
varied iteratively; we started with only the first PC, then the first 2 PCs and so on,
up to the first 34 PCs. At each iteration, test-set data were projected into this PC
space, and LD was used to classify the trials into lure and control trials;
classification accuracy was recorded. The number of PCs that maximizes
classification accuracy serves as our estimate for intrinsic dimensionality of that
particular subject’s data. This number of PCs was then used to create LD maps for
each individual subject.

Motion and physiology covariation. To rule out that our dimensionality results
were not driven by motion or physiology, we covaried motion and physiology
parameters from the raw fMRI signal. We calculated 24 motion parameters, which
included the linear, squared, derivative and squared derivative of the six rigid body
movement parameters®2, In addition to these movement parameters, heart rate and
two respiratory physiological variables were also added to the analysis. We then
mean-centred these parameters and calculated the first PC of these 27 parameters,
which we found to account for 90% of the variance in the motion and physiological
data. We then regressed this first PC from the mean-centred fMRI signal, as well as
regressing out the task design’s convolved hemodynamic response function (HRF)
response (which was also mean-centred). We did this because motion and task can
be coupled. After performing this regression, we subtracted the beta x the first PC
of motion and physiology from the mean-centred fMRI signal and used that signal
in the analysis.

Leave-two-out cross-validation procedure. To examine if individual LD maps
could be accurately classified as coming from the high- or low-delay group, the set
of 24 LD maps was randomly split into the training set (20 maps, with 10 high and
10 low), the validation set (1 high and 1 low) and the test set (1 high and 1 low).
The training set was used to train the LD classifier using a specific number of PCs;
this classifier was then used to classify the validation set. The procedure was
repeated for different numbers of PCs, from 1 to 19, to determine the number of
PCs that optimized classification of the validation set. Finally, the test set was
classified using the optimal number of PCs determined on the validation set. This
procedure provides an unbiased estimate of classification accuracy of previously
unseen (out-of-sample) data. We created 2,000 distinct training-validation-test
splits. This same procedure was also conducted when we used the QD classifier
instead of the LD classifier.

Constructing QD group classification map. The spatial map for QD classification
was created similarly to the sensitivity map technique described in ref. 5, with a
small but important modification. We computed sensitivity of a voxel as a
derivative of the decision function with respect to that voxel, rather than the square
of that derivative. By not taking the square, we preserve the sign of the decision
function, which encodes the preferred category for that voxel (see also ref. 23 on
the sign information in sensitivity maps).

Details regarding our fMRI acquisition and pre-processing parameters can be
found in the Supplementary Methods.
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