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Abstract. We consider minimizing a conic quadratic objective over a polyhe-

dron. Such problems arise in parametric value-at-risk minimization, portfolio

optimization, and robust optimization with ellipsoidal objective uncertainty;
and they can be solved by polynomial interior point algorithms for conic qua-

dratic optimization. However, interior point algorithms are not well-suited for
branch-and-bound algorithms for the discrete counterparts of these problems

due to the lack of effective warm starts necessary for the efficient solution of

convex relaxations repeatedly at the nodes of the search tree.
In order to overcome this shortcoming, we reformulate the problem us-

ing the perspective of its objective. The perspective reformulation lends it-

self to simple coordinate descent and bisection algorithms utilizing the sim-
plex method for quadratic programming, which makes the solution methods

amenable to warm starts and suitable for branch-and-bound algorithms. We

test the simplex-based quadratic programming algorithms to solve convex as
well as discrete instances and compare them with the state-of-the-art ap-

proaches. The computational experiments indicate that the proposed algo-

rithms scale much better than interior point algorithms and return higher pre-
cision solutions. In our experiments, for large convex instances, they provide

up to 22x speed-up. For smaller discrete instances, the speed-up is about 13x

over a barrier-based branch-and-bound algorithm and 6x over the LP-based
branch-and-bound algorithm with extended formulations.
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1. Introduction

Consider the minimization of a conic quadratic function over a polyhedron, i.e.,

(CO) min
x∈Rn

{
c′x+ Ω

√
x′Qx : x ∈ X

}
,

where c ∈ Rn, Q ∈ Rn×n is a symmetric positive semidefinite matrix, Ω > 0, and
X ⊆ Rn is a rational polyhedron. We denote by CDO the discrete counterpart
of CO with integrality restrictions: X ∩ Zn. CO and CDO are frequently used to
model utility with uncertain objectives as in parametric value-at-risk minimization
(El Ghaoui et al., 2003), portfolio optimization (Atamtürk and Jeon, 2017), and
robust counterparts of linear programs with an ellipsoidal objective uncertainty set
(Ben-Tal and Nemirovski, 1998, 1999; Ben-Tal et al., 2009).

Note that CO includes linear programming (LP) and convex quadratic program-
ming (QP) as special cases. The simplex method (Dantzig et al., 1955; Wolfe, 1959;
Van de Panne and Whinston, 1964) is still the most widely used algorithm for LP
and QP, despite the fact that polynomial interior point algorithms (Karmarkar,
1984; Nesterov and Nemirovski, 1994; Nemirovski and Scheinberg, 1996) are com-
petitive with the simplex method in many large-scale instances. Even though non-
polynomial, the simplex method has some distinct advantages over interior point
methods. Since the simplex method iterates over bases, it is possible to carry out
the computations with high accuracy and little cost, while interior point methods
come with a trade-off between precision and efficiency. Moreover, an optimal ba-
sis returned by the simplex method is useful for sensitivity analysis, while interior
point methods do not produce such a basis unless an additional “crashing” proce-
dure is performed (e.g. Megiddo, 1991). Finally, if the parameters of the problem
change, re-optimization can often be done very fast with the simplex method start-
ing from a primal or dual feasible basis, whereas warm starts with interior point
methods have limitations (Yildirim and Wright, 2002; Çay et al., 2017). In par-
ticular, fast re-optimization with the dual simplex method is crucial when solving
discrete optimization problems with a branch-and-bound algorithm.

CO is a special case of conic quadratic optimization (Lobo et al., 1998; Alizadeh
and Goldfarb, 2003), which can be solved by polynomial-time interior points algo-
rithms (Alizadeh, 1995; Nesterov and Todd, 1998; Ben-Tal and Nemirovski, 2001).
Although CO can be solved by a general conic quadratic solver, we show in this
paper that iterative QP algorithms scale much better. In particular, simplex-based
QP algorithms allowing warm starts perform orders of magnitude faster than inte-
rior point methods for CO.

For the discrete counterpart CDO, a number of different approaches are available
for the special case with a diagonal Q matrix: Ishii et al. (1981) give a polynomial
time for optimization over spanning trees; Bertsimas and Sim (2004) propose an
approximation algorithm that solves series of linear integer programs; Atamtürk
and Narayanan (2008) give a cutting plane algorithm utilizing the submodularity
of the objective for the binary case; Atamtürk and Goméz (2016) give nonlinear
cuts for the mixed 0-1 case; Atamtürk and Narayanan (2009) use parametric linear
programming for the binary case with a cardinality constraint.

The aforementioned approaches do not extend to the non-diagonal case or to
general feasible regions, which are obviously NP -hard as quadratic and linear inte-
ger optimization are special cases. The branch-and-bound algorithm is the method
of choice for general CDO. However, branch-and-bound algorithms that repeatedly
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employ a nonlinear programming (NLP) solver at the nodes of the search tree are
typically hampered by the lack of effective warm starts. Borchers and Mitchell
(1994) and Leyffer (2001) describe NLP-based branch-and-bound algorithms, and
they give methods that branch without solving the NLPs to optimality, reducing
the computational burden for the node relaxations. On the other hand, LP-based
branch-and-bound approaches employ linear outer approximations of the nonlinear
terms. This generally results in weaker relaxations at the nodes, compared to the
NLP approaches, but allows one to utilize warm starts with the simplex method.
Therefore, one is faced with a trade-off between the strength of the node relax-
ations and the solve time per node. A key idea to strengthen the node relaxations,
as noted by Tawarmalani and Sahinidis (2005), is to use extended formulations.
Atamtürk and Narayanan (2007) describe mixed-integer rounding inequalities in
an extended formulation for conic quadratic integer programming. Vielma et al.
(2015) use an extended formulation for conic quadratic optimization that can be
refined during branch-and-bound, and show that an LP-based branch-and-bound
using the extended formulations typically outperforms the NLP-based branch-and-
bound algorithms. The reader is referred to Belotti et al. (2013) for an excellent
survey of the solution methods for mixed-integer nonlinear optimization.

In this paper, we reformulate CO through the perspective of its objective function
and give algorithms that solve a sequence of closely related QPs. Utilizing the
simplex method, the solution to each QP is used to warm start the next one in
the sequence, resulting in a small number of simplex iterations and fast solution
times. Moreover, we show how to incorporate the proposed approach in a branch-
and-bound algorithm, efficiently solving the continuous relaxations to optimality
at each node and employing warm starts with the dual simplex method. Our
computational experiments indicate that the proposed approach outperforms the
state-of-the-art algorithms for convex as well as discrete cases.

The rest of the paper is organized as follows. In Section 2 we give an alternative
formulation for CO using the perspective function of the objective. In Section 3
we present coordinate descent and accelerated bisection algorithms that solve a
sequence of QPs. In Section 4 we provide computational experiments, comparing
the proposed methods with state-of-the-art barrier and other algorithms.

2. Formulation

In this section we present a reformulation of CO using the perspective function of
its objective. Let X = {x ∈ Rn : Ax = b, x ≥ 0} be the feasible region of problem
CO. For convex quadratic q(x) = x′Qx, consider the function h : Rn+1 → R+∪{∞}
defined as

h(x, t) =


x′Qx
t if t > 0,

0 if x′Qx = 0, t = 0,

+∞ otherwise.

Observe that

min
{
c′x+ Ω

√
x′Qx : x ∈ X

}
= min

{
c′x+

Ω

2
h(x, t) +

Ω

2
t : x ∈ X, t =

√
x′Qx

}
≥ ζ,
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where

(PO) ζ = min

{
c′x+

Ω

2
h(x, t) +

Ω

2
t : x ∈ X, t ≥ 0

}
.

We will show that problems CO and PO have, in fact, the same optimal objective
value and that there is a one-to-one correspondence between the optimal primal-
dual pairs of both problems.

Proposition 1. Problem PO is a convex optimization problem.

Proof. It suffices to observe that h is the closure of the perspective function tq(x/t)
of the convex quadratic function q(x), and is therefore convex (e.g. Hiriart-Urruty
and Lemaréchal, 2013, p. 160). Since all other objective terms and constraints of
PO are linear, PO is a convex optimization problem. �

Proposition 2. Problems CO and PO are equivalent.

Proof. If t > 0, the objective function of problem PO is continuous and differen-
tiable, and since the feasible region is a polyhedron and the problem is convex, its
KKT points are equivalent to its optimal solutions. The KKT conditions of PO are

Ax = b, x ≥ 0, t ≥ 0

−c′ − Ω

t
x′Q = λ′A− µ (1)

Ω

2t2
x′Qx− Ω

2
= 0 (2)

µ ≥ 0

µ′x = 0,

where λ and µ are the dual variables associated with constraints Ax = b and
x ≥ 0, respectively. Note that t > 0 and (2) imply that t =

√
x′Qx. Substituting

t =
√
x′Qx in (1), one arrives at the equivalent conditions

Ax = b, x ≥ 0

−c′ − Ω√
x′Qx

x′Q = λ′A− µ (3)

t =
√
x′Qx (4)

µ ≥ 0

µ′x = 0.

Ignoring the redundant variable t and equation (4), we see that these are the KKT
conditions of problem CO. Therefore, any optimal primal-dual pair for PO with
t > 0 is an optimal primal-dual pair for CO. Similarly, we see that any optimal
primal-dual pair of problem CO with x′Qx > 0 gives an optimal primal-dual pair
of problem PO by setting t =

√
x′Qx. In both cases, the objective values match.

On the other hand, if t = 0, then PO reduces to problem

min
x∈Rn

{c′x : Ax = b, x ≥ 0, x′Qx = 0} ,

which corresponds to CO with x′Qx = 0, and hence they are equivalent. �

Since they are equivalent optimization problems, we can use PO to solve CO. In
particular, we exploit the fact that, for a fixed value of t, PO reduces to a QP.
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3. Algorithms

For simplicity, assume that PO has an optimal solution; hence, X is nonempty
and may be assumed to be bounded. Consider the one-dimensional optimal value
function

g(t) = min
x∈X

c′x+
Ω

2
h(x, t) +

Ω

2
t· (5)

As X is nonempty and bounded, g is real-valued and, by Proposition 1, it is convex.
Throughout, x(t) denotes an optimal solution to (5).

In this section we describe two algorithms for PO that utilize a QP oracle. The
first one is a coordinate descent approach, whereas, the second one is an accelerated
bisection search algorithm on the function g. Finally, we discuss how to exploit the
warm starts with the simplex method to solve convex as well as discrete cases.

3.1. Coordinate descent algorithm. Algorithm 1 successively optimizes over x
for a fixed value of t, and then optimizes over t for a fixed value of x. Observe that
the optimization problem in line 4 over x is a QP, and the optimization in line 5
over t has a closed form solution: by simply setting the derivative to zero, we find
that ti+1 =

√
xi+1

′Qxi+1.

Algorithm 1 Coordinate descent.

Input: X polyhedron; Q psd matrix; c cost vector; Ω > 0
Output: Optimal solution x∗

1: Initialize t0 > 0 . e.g. t0 = 1
2: i← 0 . iteration counter
3: repeat

4: xi+1 ← arg min
x∈X

{
c′x+ Ω

2ti
x′Qx+ Ω

2 ti

}
. solve QP

5: ti+1 ← arg min
t≥0

{
c′xi+1 + Ω

2txi+1
′Qxi+1 + Ω

2 t
}

. ti+1 =
√
xi+1

′Qxi+1

6: i← i+ 1
7: until stopping condition is met
8: return xi

First observe that the sequence of objective values
{
c′xi + Ω

2ti
x′iQxi + Ω

2 ti

}
i∈N

is non-increasing. Moreover, the dual feasibility KKT conditions for the QPs in
line 4 are of the form

−c′ − Ω

ti
xi+1

′Q = λ′A− µ. (6)

Let ‖ · ‖ be a norm and suppose that the QP oracle finds feasible primal-dual pairs
with ε > 0 tolerance with respect to ‖ · ‖. In particular xi+1 in line 4 violates (6)
by at most ε, i.e., ∥∥∥∥−c′ − Ω

ti
xi+1

′Q− λ′A+ µ

∥∥∥∥ ≤ ε.
Proposition 3 below states that, at each iteration of Algorithm 1, we can bound the
violation of the dual feasibility condition (3) corresponding to the original problem
CO. The bound depends only on the precision of the QP oracle ε, the relative
change of t in the last iteration ∆i

ti
, where ∆i = ti+1 − ti, and the gradient of the

function f(x) = Ω
√
x′Qx evaluated at the new point xi+1.
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Proposition 3 (Dual feasibility bound). A pair (xi+1, ti+1) in Algorithm 1 satisfies∥∥∥∥∥−c′ − Ω
x′i+1Q√
xi+1

′Qxi+1

− λ′A+ µ

∥∥∥∥∥ ≤ ε+
|∆i|
ti
· ‖∇f(xi+1)‖

Proof. ∥∥∥∥∥−c′ − Ω
xi+1

′Q√
xi+1

′Qxi+1

− λ′A+ µ

∥∥∥∥∥
=

∥∥∥∥−c′ − Ω
xi+1

′Q

ti + ∆i
− λ′A+ µ

∥∥∥∥
=

∥∥∥∥−c′ − Ω
xi+1

′Q

ti
− Ωxi+1

′Q

(
1

ti + ∆i
− 1

ti

)
− λ′A+ µ

∥∥∥∥
=

∥∥∥∥−c′ − Ω
xi+1

′Q

ti
− λ′A+ µ+ Ω

(
∆i

ti · ti+1

)
xi+1

′Q

∥∥∥∥
≤ε+

∥∥∥∥Ω
∆i

ti
· xi+1

′Q

ti+1

∥∥∥∥ = ε+ Ω
|∆i|
ti
·

∥∥∥∥∥ xi+1
′Q√

xi+1
′Qxi+1

∥∥∥∥∥ .
�

Let t∗ be a minimizer of g on R+. We now show that the sequence of values of
t produced by Algorithm 1, {ti}i∈N, is monotone and bounded by t∗.

Proposition 4 (Monotonicity). If ti ≤ t∗, then ti+1 =
√
xi+1

′Qxi+1 satisfies
ti ≤ ti+1 ≤ t∗. Similarly, if ti ≥ t∗, then ti ≥ ti+1 ≥ t∗.

Proof. If ti ≤ t∗, then Ω
2ti
≥ Ω

2t∗ . It follows that x(ti+1) is a minimizer of an

optimization problem with a larger coefficient for the quadratic term than x(t∗),
and therefore xi+1

′Qxi+1 = t2i+1 ≤ t∗2 = x∗′Qx∗, and ti+1 ≤ t∗. Moreover, the
inequality ti ≤ ti+1 follows from the convexity of the one-dimensional function g
and the fact that function g is minimized at t∗, and that g(ti+1) ≤ g(ti). The case
ti ≥ t∗ is similar. �

Since the sequence {ti}i∈N is bounded and monotone, it converges to a supremum
or infimum. Thus {ti}i∈N is a Cauchy sequence, and lim

i→∞
∆i = 0. Corollaries 1 and

2 below state that Algorithm 1 converges to an optimal solution. The cases where
there exists a KKT point for PO (i.e., there exists an optimal solution with t∗ > 0)
and where there are no KKT points are handled separately.

Corollary 1 (Convergence to a KKT point). If PO has a KKT point, then Algo-
rithm 1 converges to a KKT point.

Proof. By convexity, the set of optimal solutions to (5) is an interval, [t`, tu]. Since
by assumption there exists a KKT point, we have that tu > 0. The proof is by
cases, depending on the value of t0 in line 1 of Algorithm 1.

Case t` ≤ t0 ≤ tu: Since t0 is optimal, we have by Proposition 4 that t1 = t0.
Since ∆0 = 0 and t0 =

√
x′i+1Qxi+1 > 0, we have that ‖∇f(xi+1)‖ < ∞

in Proposition 3, and |∆i|
ti
· ‖∇f(xi+1)‖ = 0.
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Case t0 < t`: We have by Proposition 4 than for all i ∈ N, ti =
√
x′iQxi ≥

t0 > 0. Therefore, there exists a number M such that 1
ti
‖∇f(xi+1)‖ < M

for all i ∈ N, and we find that |∆i|
ti
· ‖∇f(xi+1)‖ ∆i→0−−−−→ 0.

Case t0 > tu: We have by Proposition 4 than for all i ∈ N, ti =
√
x′iQxi ≥

tu > 0. Therefore, there exists a number M such that 1
ti
‖∇f(xi+1)‖ < M

for all i ∈ N, and we find that |∆i|
ti
· ‖∇f(xi+1)‖ ∆i→0−−−−→ 0.

Therefore, in all cases, Algorithm 1 convergences to a KKT point by Proposition 3.
�

Corollary 2 (Convergence to 0). If t∗ = 0 is the unique optimal solution to
min{g(t) : t ∈ R+}, then for any ξ > 0 Algorithm 1 finds a solution (x̄, t̄), where
t̄ < ξ and x̄ ∈ arg min

{
c′x :

√
x′Qx = t̄, x ∈ X

}
.

Proof. The sequence {ti}i∈N converges to 0 (otherwise, by Corollary 1, it would

converge to a KKT point). Thus, limi→∞
√
x′iQxi = 0 and all points obtained in

line 4 of Algorithm 1 satisfy xi+1 ∈ arg min
{
c′x :

√
x′Qx = ti+1, x ∈ X

}
. �

We now discuss how to initialize and terminate Algorithm 1, corresponding to
lines 1 and 7, respectively.

Initialization. The algorithm may be initialized by an arbitrary t0 > 0. Neverthe-
less, when a good initial guess on the value of t∗ is available, t0 should be set to
that value. Moreover, observe that setting t0 =∞ results in a fast computation of
x1 by solving an LP.

Stopping condition. Proposition 3 suggests a good stopping condition for Algo-
rithm 1. Given a desired dual feasibility tolerance of δ > ε, we can stop when

ε + |∆i|
ti
· ‖∇f(xi+1)‖ < δ. Alternatively, if ∃k s.t. maxx∈X ‖∇f(x)‖ ≤ k < ∞,

then the simpler
∣∣∣∆i

ti

∣∣∣ ≤ δ−ε
k is another stopping condition. For instance, a crude

upper bound on ∇f(x) = Ω
∥∥∥ x′Q√

x′Qx

∥∥∥ can be found by maximizing/minimizing the

numerator x′Q over X and minimizing x′Qx over X. The latter minimization is
guaranteed to have a nonzero optimal value if 0 6∈ X and Q is positive definite.

3.2. Bisection algorithm. Algorithm 2 is an accelerated bisection approach to
solve PO. The algorithm maintains lower and upper bounds, tmin and tmax, on t∗

and, at each iteration, reduces the interval [tmin, tmax] by at least half. The algo-
rithm differs from the traditional bisection search algorithm in lines 7–11, where
it uses an acceleration step to reduce the interval by a larger amount: by Propo-
sition 4, if t0 ≤ t1 (line 7), then t0 ≤ t1 ≤ t∗, and therefore t1 is a higher lower
bound on t∗ (line 8); similarly, if t0 ≥ t1, then t1 is an lower upper bound on t∗

(lines 9 and 10). Intuitively, the algorithm takes a “coordinate descent” step as
in Algorithm 1 after each bisection step. Preliminary computations show that the
acceleration step reduces the number of steps as well as the overall solution time
for the bisection algorithm by about 50%.

Initialization. In line 1, tmin can be initialized to zero and tmax to xLP
′QxLP , where

xLP is an optimal solution to the LP relaxation minx∈X c
′x.
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Algorithm 2 Accelerated bisection.

Input: X polyhedron; Q psd matrix; c cost vector; Ω > 0
Output: Optimal solution x∗

1: Initialize tmin and tmax . ensure tmin ≤ t∗ ≤ tmax

2: ẑ ←∞ . best objective value found
3: repeat
4: t0 ← tmin+tmax

2

5: x0 ← arg min
x∈X

{
c′x+ Ω

2t0
x′Qx+ Ω

2 t0

}
. solve QP

6: t1 ←
√
x0
′Qx0

7: if t0 ≤ t1 then . accelerate bisection
8: tmin ← t1
9: else

10: tmax ← t1
11: end if
12: if c′x0 + Ω

√
x0
′Qx0 ≤ ẑ then . update the incumbent solution

13: ẑ ← c′x0 + Ω
√
x0
′Qx0

14: x̂← x0

15: end if
16: until stopping condition is met
17: return x̂

Stopping condition. There are different possibilities for the stopping criterion in line
16. Note that if we have numbers tm and tM such that tm ≤ t∗ ≤ tM , then c′x(tM )+

Ω
√
x(tm)

′
Qx(tm) is a lower bound on the optimal objective value c′x∗+Ω

√
x∗′Qx∗.

Therefore, in line 5, a lower bound zl on the objective function can be computed,
and the algorithm can be stopped when the gap between ẑ and zl is smaller than a

given threshold. Alternatively, stopping when |t1−t0|t0
·Ω
∥∥∥ x0

′Q√
x0
′Qx0

∥∥∥ < δ− ε provides

a guarantee on the dual infeasibility as in Proposition 3.

3.3. Warm starts. Although any QP solver can be used to run the coordinate
descent and bisection algorithms described in Sections 3.1 and 3.2, simplex methods
for QP are particularly effective as they allow warm starts for small changes in the
model parameters in iterative applications. This is the main motivation for the QP
based algorithms presented above.

3.3.1. Warm starts with primal simplex for convex optimization. All QPs solved
in Algorithms 1–2 have the same feasible region and only the objective function
changes in each iteration. Therefore, an optimal basis for a QP is primal feasible
for the next QP solved in the sequence, and can be used to warm start a primal
simplex QP solver.

3.3.2. Warm starts with dual simplex for discrete optimization. When solving dis-
crete counterparts of COwith a branch-and-bound algorithm one is particularly
interested in utilizing warm starts in solving convex relaxations at the nodes of
the search tree. In a branch-and-bound algorithm, children nodes typically have a
single additional bound constraint compared to the parent node.
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For this purpose, it is also possible to warm start Algorithm 1 from a dual
feasible basis. Let (x∗, t∗) be an optimal solution to PO and B∗ be an optimal
basis. Consider a new problem

min

{
c′x+

Ω

2t
x′Qx+

Ω

2
t : x ∈ X̄, t ≥ 0

}
, (7)

where the feasible set X̄ is obtained from X by adding new constraints. Note that
B∗ is a dual feasible basis for (7) when t = t∗. Therefore, Algorithm 1 to solve
problem (7) can be warm started by initializing t0 = t∗ and using B∗ as the initial
basis to compute x1 with a dual simplex algorithm. The subsequent QPs can be
solved using the primal simplex algorithm as noted in Section 3.3.1.

4. Computational experiments

In this section we report on computational experiments with solving convex
CO and its discrete counterpart CDO with the algorithms described in Section 3.
The algorithms are implemented with CPLEX Java API. We use the simplex and
barrier solvers of CPLEX version 12.6.2 for the computational experiments. All
experiments are conducted on a workstation with a 2.93GHz Intel R©CoreTM i7
CPU and 8 GB main memory using a single thread.

4.1. Test problems. We test the algorithms on two types of data sets. For the
first set the feasible region is described by a cardinality constraint and bounds, i.e.,
X = {x ∈ Rn :

∑n
i=1 xi = b, 0 ≤ x ≤ 1} with b = n/5. For the second data set the

feasible region consists of the path polytope of an acyclic grid network. For discrete
optimization problems we additionally enforce the binary restrictions x ∈ Bn.

For both data sets the objective function q(x) = c′x + Ω
√
x′Qx is generated as

follows: Given a rank parameter r and density parameter α, Q is the sum of a low
rank factor matrix and a full rank diagonal matrix; that is, Q = FΣF ′ +D, where

• D is an n× n diagonal matrix with entries drawn from Uniform(0, 1).
• Σ = HH ′ whereH is an r×r matrix with entries drawn from Uniform(−1, 1).
• F is an n × r matrix in which each entry is 0 with probability 1 − α and

drawn from Uniform(−1, 1) with probability α.

Each linear coefficient ci is drawn from Uniform(−2
√
Qii, 0).

4.2. Experiments with convex problems. In this section we present the com-
putational results for convex instances. We compare the following algorithms:

ALG1: Algorithm 1.
ALG2: Algorithm 2.
BAR: CPLEX’ barrier algorithm (the default solver for convex conic qua-

dratic problems).

For algorithms ALG1 and ALG2 we use CPLEX’ primal simplex algorithm as the
QP solver.

Optimality tolerance. As the speed of the interior point methods crucially depends
on the chosen optimality tolerance, it is prudent to first compare the speed vs
the quality of the solutions for the algorithms tested. Here we study the impact
of the optimality tolerance in the solution time and the quality of the solutions
for CPLEX’ barrier algorithm BAR and simplex QP-based algorithm ALG1. The
optimality tolerance of the barrier algorithm is controlled by the QCP convergence
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tolerance parameter (“BarQCPEpComp”), and in Algorithm 1, by the stopping

condition |∆i|
t ≤ δ.

In both cases, a smaller optimality tolerance corresponds to a higher quality
solution. We evaluate the quality of a solution as optgap = |(zmin − z)/zmin| , where
z is the objective value of the solution found by an algorithm with a given tolerance
parameter and zmin is the objective value of the solution found by the barrier
algorithm with tolerance 10−12 (minimum tolerance value allowed by CPLEX).
Table 1 presents the results for different tolerance values for a 30 × 30 convex
grid instance with r = 200, α = 0.1, and Ω = 1. The table shows, for varying
tolerance values and for each algorithm, the quality of the solution, the solution
time in seconds, the number of iterations, and QPs solved (for ALG1). We highlight
in bold the default tolerance used for the rest of the experiments presented in the
paper. The tolerance value 10−7 for the barrier algorithm corresponds to the default
parameter in CPLEX.

Table 1. The effect of optimality tolerance.

Tolerance
BAR ALG1

optgap time #iter optgap time #iter #QP

10−1 8.65× 10−2 29.9 10 5.48× 10−5 3.2 835 4
10−2 8.77× 10−3 41.5 15 3.24× 10−7 4.2 844 6
10−3 6.98× 10−4 54.6 23 2.60× 10−9 4.3 844 8
10−4 5.52× 10−5 62.9 27 2.12× 10−11 4.7 844 10
10−5 3.72× 10−6 66.8 29 6.80 × 10−13 5.2 844 12
10−6 7.12× 10−7 69.6 30 5.32× 10−13 5.4 844 13
10−7 2.04 × 10−8 72.0 32 5.15× 10−13 6.0 844 15
10−8 2.65× 10−9 74.0 33 5.15× 10−13 6.2 844 17
10−9 2.42× 10−10 75.9 34 5.15× 10−13 6.6 844 19
10−10 1.97× 10−11 78.7 35 5.15× 10−13 7.0 844 21
10−11 9.61× 10−12 79.6 36 5.15× 10−13 7.4 844 23
10−12 0 89.6 39 5.15× 10−13 7.8 844 25

First observe that the solution time increases with reduced optimality tolerance
for both algorithms. With lower tolerance, while the barrier algorithm performs
more iterations, ALG1 solves more QPs; however, the total number of simplex it-
erations barely increases. For ALG1 the changes in the value of t are very small
between QPs, and the optimal bases of the QPs are thus the same. Therefore,
using warm starts, the simplex method is able to find high precision solutions inex-
pensively. ALG1 achieves much higher precision an order of magnitude faster than
the barrier algorithm. For the default tolerance parameters used in our computa-
tional experiments, Algorithm 1 is several orders of magnitude more precise than
the barrier algorithm.

Effect of the nonlinearity parameter Ω. We now study the effect of changing the
nonlinearity parameter Ω. Tables 2 and 3 show the total solution time in seconds,
the total number of simplex or barrier iterations, and the number of QPs solved
in cardinality (1000 variables) and path instances (1760 variables), respectively.
Each row represents the average over five instances for a rank (r) and density(α)
configuration and algorithm used. For each parameter choice the fastest algorithm
is highlighted in bold.
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Table 2. The effect of nonlinearity (cardinality instances).

Method
Ω = 1 Ω = 2 Ω = 3

r α time #iter #QP time #iter #QP time #iter #QP

100 0.1
ALG1 1.0 22 20 1.1 53 24 1.3 104 29
ALG2 0.8 41 14 0.9 95 15 0.9 150 15
BAR 4.6 16 - 4.9 24 - 5.2 26 -

100 0.5
ALG1 1.1 33 23 1.1 69 24 1.5 144 37
ALG2 0.8 60 14 0.9 125 15 0.9 200 15
BAR 4.5 21 - 5.1 25 - 5.8 29 -

200 0.1
ALG1 0.9 33 19 1.1 73 25 1.2 110 25
ALG2 0.8 49 14 0.9 126 14 0.9 172 14
BAR 4.7 22 - 4.5 22 - 5.1 25 -

200 0.5
ALG1 1.0 48 22 1.1 99 22 1.2 151 25
ALG2 0.9 94 14 0.9 179 14 1.0 233 15
BAR 4.4 21 - 4.9 24 - 5.2 26 -

avg
ALG1 1.0 34 21 1.1 73 24 1.3 127 29
ALG2 0.8 61 14 0.9 131 15 0.9 189 15
BAR 4.3 20 - 4.9 24 - 5.3 27 -

Table 3. The effect of nonlinearity (path instances).

Method
Ω = 1 Ω = 2 Ω = 3

r α time #iter #QP time #iter #QP time #iter #QP

100 0.1
ALG1 4.4 940 12 6.4 1,307 16 7.5 1,505 18
ALG2 4.8 1,283 11 6.4 1,637 13 7.5 1,865 14
BAR 68.4 26 - 56.7 21 - 46.3 16 -

100 0.5
ALG1 4.7 902 14 7.4 1,191 21 8.3 1,391 21
ALG2 4.9 1,148 12 6.5 1,474 13 7.7 1,772 14
BAR 54.3 19 - 48.8 16 - 47.4 16 -

200 0.1
ALG1 4.5 836 14 5.7 1,053 15 7.3 1,220 18
ALG2 4.4 932 12 6.0 1,377 13 7.4 1,671 13
BAR 63.7 25 - 49.8 18 - 54.5 20 -

200 0.5
ALG1 4.1 858 12 5.5 1,048 15 6.8 1,237 16
ALG2 4.4 978 12 6.0 1,363 13 7.5 1,626 13
BAR 70.5 26 - 60.2 21 - 52.4 18 -

avg
ALG1 4.4 884 13 6.2 1,150 17 7.5 1,338 18
ALG2 4.6 1,086 12 6.2 1,463 13 7.5 1,734 13
BAR 64.2 24 - 53.9 19 - 50.2 17 -

First observe that in both data sets the barrier algorithm is the slowest: it is 3.5
and 6 times slower than the simplex QP-based methods for the cardinality instances,
and is up to 15 times slower for the path instances. The barrier algorithm does not
appear to be too sensitive to the nonlinearity parameter Ω, whereas the simplex
QP-based methods are faster for smaller Ω.

The number of simplex iterations in ALG1 increases with the nonlinearity pa-
rameter Ω. Indeed, the initial problem solved by ALG1 is an LP (corresponding to
Ω = 0), so as Ω increases the initial problem becomes a worse approximation, and
more work is needed to converge to an optimal solution. Also note that Algorithm 2
requires fewer QPs to be solved, but as a result it benefits less from warm starts (it
requires more simplex iterations per QP than ALG1). Indeed, in ALG2 the value
of t changes by a larger amount at each iteration (with respect to ALG1), so the
objective function of two consecutive QPs changes by a larger amount.
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Effect of the dimension. Table 4 presents a comparison of the algorithms for the
convex cardinality instances with sizes 400, 800, 1600, and 3200. Each row repre-
sents the average over five instances, as before, generated with parameters r = 200,
α = 0.1, and Ω = 2. Additionally, Figure 1 shows the solution time for each al-
gorithm and the speed-up factor of the simplex QP-based algorithms compared to
the barrier algorithm as a function of the dimension (n).

Table 4. The effect of dimension (cardinality instances).

Method
n = 400 n = 800 n = 1600 n = 3200

time #iter #QP time #iter #QP time #iter #QP time #iter #QP

ALG1 0.2 43 20 0.6 65 19 2.8 75 25 11.7 104 25
ALG2 0.2 73 14 0.5 116 14 2.2 129 15 9.1 175 15
BAR 0.3 21 - 2.4 22 - 22.1 27 - 204.9 30 -
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Figure 1. Barrier vs the simplex QP-based algorithms.

Observe in Table 4 that the number of QPs solved with the simplex-based al-
gorithms does not depend on the dimension. The number of simplex iterations,
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however, increases with the dimension. For n = 400 all algorithms perform simi-
larly and the problems are solved very fast. However, as the dimension increases,
the simplex-based algorithms outperform the barrier algorithm, often by many fac-
tors. For n = 3200, the fastest simplex-based algorithm ALG2 is more than 20
times faster than the barrier algorithm. Similar results are obtained for other pa-
rameter choices and for the path instances as well. In summary, the simplex-based
algorithms scale better with the dimension, and are faster by orders of magnitude
for large instances.

4.3. Discrete instances. In this section we describe our experiments with the
discrete counterpart CDO. As of version 12.6.2 of CPLEX, it is not possible to em-
ploy a user-defined convex solver such as Algorithm 1 at the nodes of the CPLEX’
branch-and-bound algorithm. Therefore, in order to test the proposed approach
for CDO, we implement a rudimentary branch-and-bound algorithm described in
Appendix A. The algorithm uses a maximum infeasibility rule for branching, and
does not employ presolve, cutting planes, or heuristics. We test the following con-
figurations:

BBA1: Branch-and-bound algorithm in Appendix A using Algorithm 1 as
the convex solver. The first QP at each node (except the root node) is
solved with CPLEX dual simplex method using the parent dual feasible
basis as a warm start (as mentioned in Section 3.3) and all other QPs are
solved with CPLEX primal simplex method using the basis from the parent
node QP as a warm start.

BBBR: Branch-and-bound algorithm in Appendix A, using CPLEX barrier
algorithm as the convex solver. This configuration does not use warm starts.

CXBR: CPLEX branch-and-bound algorithm with barrier solver, setting the
branching rule to maximum infeasibility, the node selection rule to best
bound, and disabling presolve, cuts and heuristics. In this setting CPLEX
branch-and-bound algorithm is as close as possible to our branch-and-bound
algorithm.

CXLP: CPLEX branch-and-bound algorithm with LP outer approximations,
setting the branching rule to maximum infeasibility, the node selection rule
to best bound, and disabling presolve, cuts and heuristics. In this setting
CPLEX branch-and-bound algorithm is as close as possible to our branch-
and-bound algorithm.

CXLPE: CPLEX branch-and-bound algorithm with LP outer approxima-
tions, setting the branching rule to maximum infeasibility, the node selec-
tion rule to best bound, and disabling cuts and heuristic. Since presolve
is activated, CPLEX uses extended formulations described in Vielma et al.
(2015). Besides presolve, all other parameters are set as in CXLP.

CXD: CPLEX default branch-and-bound algorithm with LP outer approxi-
mations.

In all cases the time limit is set to two hours.
Table 5 presents the results for discrete cardinality instances with 200 variables

and Table 6 for the discrete path instances with 1,740 variables (30 × 30 grid).
Each row represents the average over five instances with varying rank and density
parameters, and algorithm. The tables show the solution time in seconds, the
number of nodes explored in the branch-and-bound tree, the end gap after two
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hours as percentage, and the number of instances that are solved to optimality for
varying values of Ω. For each instance class we highlight in bold the algorithm with
the best performance.

Table 5. Comparison for discrete cardinality instances.

Method
Ω = 1 Ω = 2 Ω = 3

r α time nodes egap #s time nodes egap #s time nodes egap #s

100 0.1

BBA1 1 156 0.0 5 26 3,271 0.0 5 652 68,318 0.0 5
BBBR 16 156 0.0 5 349 3,270 0.0 5 4,664 43,695 0.1 3
CXBR 35 276 0.0 5 513 3,497 0.0 5 5,260 32,782 0.2 2
CXLP 34 9,562 0.0 5 7,200 209,576 0.7 0 7,200 244,911 2.2 0

CXLPE 2 374 0.0 5 81 7,640 0.0 5 2,629 111,293 0.0 5
CXD 3 368 0.0 5 37 5,152 0.0 5 604 58,076 0.0 5

100 0.5

BBA1 1 87 0.0 5 51 6,274 0.0 5 1,323 140,874 0.0 5
BBBR 10 87 0.0 5 686 6,274 0.0 5 6,134 56,394 0.3 1
CXBR 24 183 0.0 5 1,027 6,734 0.0 5 6,399 39,710 0.4 1
CXLP 294 26,957 0.0 5 7,200 229,641 0.8 0 7,200 263,810 2.3 0

CXLPE 2 349 0.0 5 191 14,737 0.0 5 4,967 215,292 0.1 3
CXD 3 373 0.0 5 144 16,070 0.0 5 3,300 245,251 0.0 5

200 0.1

BBA1 1 247 0.0 5 20 3,259 0.0 5 388 55,248 0.0 5
BBBR 24 247 0.0 5 321 3,259 0.0 5 4,573 39,647 0.1 3
CXBR 52 460 0.0 5 540 3,711 0.0 5 5,295 34,090 0.2 2
CXLP 221 17,205 0.0 5 7,200 208,874 0.6 0 7,200 230,304 2.0 0

CXLPE 4 473 0.0 5 122 6,064 0.0 5 3,376 111,205 0.0 4
CXD 4 360 0.0 5 52 6,413 0.0 5 1,062 67,577 0.0 5

200 0.5

BBA1 4 674 0.0 5 170 24,636 0.0 5 1,140 156,632 0.0 5
BBBR 77 674 0.0 5 2,106 17,743 0.0 4 5,590 47,725 0.2 2
CXBR 104 680 0.0 5 2,452 15,816 0.0 4 6,127 38,973 0.3 1
CXLP 3,514 120,007 0.1 4 7,200 212,082 1.0 0 7,200 240,445 2.3 0

CXLPE 18 1,461 0.0 5 1,722 61,593 0.0 4 5,020 198,891 0.2 2
CXD 16 1,612 0.0 5 1,068 75,098 0.0 5 4,647 299,723 0.1 4

avg

BBA1 2 291 0.0 20 67 9,360 0.0 20 876 105,268 0.0 20
BBBR 32 291 0.0 20 865 7,637 0.0 19 5,240 46,865 0.2 9
CXBR 54 400 0.0 20 1,133 7,440 0.0 19 5,770 36,389 0.3 6
CXLP 1,016 43,433 0.0 19 7,200 215,043 0.8 0 7,200 244,867 2.2 0

CXLPE 7 664 0.0 20 529 22,508 0.0 19 3,998 159,170 0.1 14
CXD 7 678 0.0 20 325 25,683 0.0 20 2,403 167,657 0.0 19

First of all, observe that the difficulty of the instances increases considerably for
higher values of Ω due to higher integrality gap. The problems corresponding to
high values of the density parameter α are also more challenging.

Performance of CPLEX branch-and-bound. Among CPLEX branch-and-bound al-
gorithms, CXD is the best choice when Ω ≥ 2. Configuration CXD is much more
sophisticated than the other configurations, so a better performance is expected.
However, note that for Ω = 1 configuration CXD is not necessarily the best. In
particular in the path instances (Table 6) CXLP and CXLPE are 2.3 times faster
than CXD. This result suggests that in simple instances the additional features
used by CXD (e.g. cutting planes and heuristics) may be hurting the performance.
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Table 6. Comparison for discrete path instances.

Method
Ω = 1 Ω = 2 Ω = 3

r α time nodes egap #s time nodes egap #s time nodes egap #s

100 0.1

BBA1 256 145 0.0 5 3,616 1,774 0.0 5 7,200 2,988 5.4 0
BBBR 3,577 91 0.2 4 7,200 184 4.9 0 7,200 236 11.7 0
CXBR 7,200 67 20.8 0 7,200 79 ∞ 0 7,200 129 ∞ 0
CXLP 533 2,428 0.0 5 7,200 24,776 4.5 0 7,200 20,099 15.0 0

CXLPE 713 315 0.0 5 6,337 2,432 1.9 1 7,200 2,837 23.2 0
CXD 1,309 164 0.0 5 3,361 1,176 0.0 5 7,200 2,644 6.4 0

100 0.5

BBA1 589 353 0.0 5 4,799 2,317 0.4 3 6,472 2,698 4.6 1
BBBR 6,071 134 0.7 2 7,200 175 4.9 0 7,200 162 11.5 0
CXBR 7,200 24 ∞ 0 7,200 56 ∞ 0 7,200 70 ∞ 0
CXLP 1,132 6,187 0.0 5 7,200 23,671 4.4 0 7,200 16,851 12.8 0

CXLPE 903 607 0.0 5 6,207 2,906 2.4 1 7,200 3,128 16.1 0
CXD 1,532 267 0.0 5 5,189 2,123 0.3 4 7,200 2,645 5.6 0

200 0.1

BBA1 149 77 0.0 5 1823 1,075 0.0 5 6,411 3,401 2.5 1
BBBR 3,245 76 0.0 5 7,200 171 2.4 0 7,200 180 10.5 0
CXBR 7,200 34 ∞ 0 7,200 45 ∞ 0 7,200 68 ∞ 0
CXLP 436 1,548 0.0 5 7,200 30,265 2.9 0 7,200 20,579 12.4 0

CXLPE 487 188 0.0 5 4,565 1,681 1.0 3 7,200 2,402 17.7 0
CXD 1,965 106 0.0 5 4,481 1,453 0.4 4 7,200 2,532 4.2 0

200 0.5

BBA1 292 196 0.0 5 3,862 2,337 0.3 4 7,200 3,703 3.7 0
BBBR 4,826 113 0.2 3 7,200 173 3.9 0 7,200 176 12.7 0
CXBR 7,200 20 ∞ 0 7,200 51 ∞ 0 7,200 89 ∞ 0
CXLP 859 4,989 0.0 5 7,200 28,007 4.4 0 7,200 18,873 13.3 0

CXLPE 923 399 0.0 5 5,730 2,363 1.7 3 7,200 2,691 17.9 0
CXD 2,028 177 0.0 5 4,752 1,899 0.3 4 7,200 2,775 6.3 0

avg

BBA1 322 193 0.0 20 3,525 1,876 0.2 17 6,821 3,198 4.1 2
BBBR 4,430 103 0.3 14 7,200 176 4.0 0 7,200 189 11.6 0
CXBR 7,200 36 ∞ 0 7,200 58 ∞ 0 7,200 89 ∞ 0
CXLP 740 3,788 0.0 20 7,200 26,680 4.1 0 7,200 19,101 13.4 0

CXLPE 757 377 0.0 20 5,710 2,346 1.8 8 7,200 2,765 18.7 0
CXD 1,708 178 0.0 20 4,446 1663 0.3 17 7,200 2,650 5.6 0

The extended formulations result in much stronger relaxations in LP based
branch-and-bound and, consequently, the number of branch-and-bound nodes re-
quired with CXLPE is only a small fraction of the number of nodes required with
CXLP. However, CXLPE requires more time to solve each branch-and-bound node,
due to the higher number of variables and the additional effort needed to refine the
LP outer approximations. For the cardinality instances, CXLPE is definitely the
better choice and is faster by orders of magnitude. For the path instances, however,
CXLP is not necessarily inferior: when Ω = 1 CXLP is competitive with CXLPE,
and when Ω = 3 CXLP performs better.

The barrier-based branch-and-bound CXBR, in general, performs poorly. For the
cardinality instances, it outperforms CXLP but is slower than the other algorithms.
For the path instances it has the worst performance, often struggling to find even
a single feasible solution (resulting in infinite end gaps).
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Performance of BBA1. Note that BBA1 and BBBR are very simple and differ only
by the convex node solver. BBA1 is faster than BBBR by an order of magnitude.
BBA1 is also considerably faster than the simplest CPLEX branch-and-bound al-
gorithms CXBR and CXLP.

We see that BBA1 outperforms CXLPE (which uses presolve and extended for-
mulations) in all instances. Observe that in the cardinality instances with Ω = 1, 2
and path instances with Ω = 1, BBA1 requires half the number of nodes (or less)
compared to CXLPE to solve the instances to optimality (since the relaxations
solved at each node are stronger), which translates into faster overall solution times.
In the more difficult instances BBA1 is able to solve more instances to optimality,
and the end gaps are smaller.

Despite the fact that BBA1 is a rudimentary branch-and-bound implementation,
it is faster than default CPLEX in most of the cases. Indeed, BBA1 is the better
choice in 21 of the instance classes considered, while CXD is better in only 2. More-
over, in the instances where CXD is better the difference between the algorithms is
small (around 10% difference in solution times), while in the other instances BBA1
is often faster by many factors. We observe that CXD is comparatively better for
the instances with a low factor rank (r = 100), and BBA1 is comparatively better
for the instances with a high factor rank (r = 200).

Warm starts. Algorithm BBA1 is faster than BBBR in part due to a faster convex
solver (as observed in Section 4.2), and in part due to node warm starts. To quantify
the impact of warm starts, we plot in Figure 2 the time per node (computed as
solution time divided by the number of branch-and-bound nodes) for BBA1, BBBR
and CXLPE, and also plot the solution time for the corresponding convex instances
with solvers ALG1 and BAR1.

0.076

0.008

0.069

0.112

0.025

0.000

0.020

0.040

0.060

0.080

0.100

0.120

Continuous Discrete

Ti
m

e 
(s

)

ALG1/BBA1 BAR/BBBR CXLPE

(a) Cardinality instances

6.039

2.026

56.093

40.348

2.548

0.000

10.000

20.000

30.000

40.000

50.000

60.000

Continuous Discrete

Ti
m

e
 (

s)

ALG1/BBA1 BAR/BBBR CXLPE

(b) Path instances

Figure 2. Time per node.

For the small cardinality instances with 200 variables, Algorithm 1 is slightly
worse than the barrier algorithm to solve the convex relaxations; however, it is 15
times faster than barrier when used in branch-and-bound due to the node warm
starts from dual feasible solutions. For the larger path instances with 1,740 vari-
ables, Algorithm 1 is 10 times faster than the barrier algorithm to solve the convex
relaxations, and is about 20 times faster for the discrete instances. Thus node
warm starts make the algorithm twice as fast. Finally, observe that the solve time

1The time per node is similar for all combinations of parameters Ω, r and α, and thus we plot
the average over all parameters.
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per node for BBA1 is smaller compared to CXLPE: the proposed simplex-based
algorithm is thus as effective as the simplex method for extended formulations in
exploiting warm starts. Moreover, it solves the nonlinear convex relaxations at each
node to optimality, whereas CXLPE solves its LP relaxation. The improved lower
bounds lead to significantly small search trees.

We conclude that Algorithm 1 is indeed suitable for branch-and-bound algo-
rithms since it benefits from node warms starts from the parent nodes, resulting in
a significant improvement in solution times.

5. Conclusions

We consider minimization problems with a conic quadratic objective and linear
constraints, which are natural generalizations of linear programming and quadratic
programming. Using the perspective function we reformulate the objective and
propose simplex QP-based algorithms that solve a quadratic program at each iter-
ation. Computational experiments indicate that the proposed algorithms are faster
than interior point methods by orders of magnitude, scale better with the dimen-
sion of the problem, return higher precision solutions, and, most importantly, are
amenable to warm starts. Therefore, they can be embedded in branch-and-bound
algorithms quite effectively.
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Appendix A. Branch-and-bound algorithm

Algorithm 3 describes the branch-and-bound algorithm used in computations.
Throughout the algorithm, we maintain a list L of the nodes to be processed. Each
node is a tuple (S,B, lb), where S is the subproblem, B is a basis for warm starting
the continuous solver and lb is a lower bound on the objective value of S. In
line 3 list L is initialized with the root node. For each node, the algorithm calls
a continuous solver (line 9) which returns a tuple (x, B̄, z), where x is an optimal
solution of S, B̄ is the corresponding optimal basis and z is the optimal objective
value (or ∞ if S is infeasible). The algorithm then checks whether the node can
be pruned (lines 10-11), x is integer (lines 12-15), or it further branching is needed
(lines 16-18).

Algorithm 3 Branch-and-bound algorithm

Input: P , discrete minimization problem
Output: Optimal solution x∗

1: ub←∞ . Upper bound
2: x∗ ← ∅ . Best solution found
3: L← {(P, ∅,−∞)} . list of nodes L initialized with the original problem
4: while L 6= ∅ do
5: (S,B, lb)← PULL(L) . select and remove one element from L
6: if lb ≥ ub then
7: go to line 4
8: end if
9: (x, B̄, z)← SOLVE(S,B) . solve continuous relaxation

10: if z ≥ ub then . if S is infeasible then z =∞
11: go to line 4 . prune by infeasibility or bounds
12: else if x is integer then
13: ub← z . update incumbent solution
14: x∗ ← x
15: go to line 4 . prune by integer feasibility
16: else
17: (S≤, S≥)← BRANCH(x) . create two subproblems
18: L← L ∪

{
(S≤, B̄, z), (S≥, B̄, z)

}
. add the subproblems to L

19: end if
20: end while
21: return x∗

We now describe the specific implementations of the different subroutines. For
branching (line 17) we use the maximum infeasibility rule, which chooses the vari-
able xi with value vi furtherest from an integer (ties broken arbitrarily). The sub-
problems S≤ and S≥ in line 18 are created by imposing the constraints xi ≤ bvic
and xi ≥ dvie, respectively. The PULL routine in line 5 chooses, when possible, the
child of the previous node which violates the bound constraint by the least amount,
and chooses the node with the smallest lower bound when the previous node has no
child nodes. The list L is thus implemented as a sorted list ordered by the bounds,
so that the PULL operation is done in O(1) and the insertion is done in O(log |L|)
(note that in line 18 we only add to the list the node that is not to be processed
immediately). A solution x is assumed to be integer (line 12) when the values of all
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variables are within 10−5 of an integer. Finally, the algorithm is terminated when
ub−lbbest

|lbbest+10−10| ≤ 10−4, where lbbest is the minimum lower bound among all the nodes

in the tree.
The maximum infeasibility rule is chosen due to its simplicity. The other rules

and parameters correspond to the ones used in CPLEX branch-and-bound algo-
rithm in default configuration.


