
BCOL RESEARCH REPORT 15.02

Industrial Engineering & Operations Research
University of California, Berkeley, CA 94720-1777

Forthcoming in Networks

Three-partition Flow Cover Inequalities for Constant

Capacity Fixed-charge Network Flow Problems

Alper Atamtürk, Andrés Gómez

Department of Industrial Engineering & Operations Research, University of California,

Berkeley, CA 94720

atamturk@berkeley.edu, a.gomez@berkeley.edu

Simge Küçükyavuz

Department of Integrated Systems Engineering, Ohio State University, Columbus, OH 43210

kucukyavuz.2@osu.edu

April 2015; February 2016

Abstract

Flow cover inequalities are among the most effective valid inequalities for capacitated

fixed-charge network flow problems. These valid inequalities are based on implications

for the flow quantity on the cut arcs of a two-partitioning of the network, depending on

whether some of the cut arcs are open or closed. As the implications are only on the cut

arcs, flow cover inequalities can be obtained by collapsing a subset of nodes into a single

node. In this paper we derive new valid inequalities for the capacitated fixed-charge net-

work flow problem by exploiting additional information from the network. In particular,

the new inequalities are based on a three-partitioning of the nodes. The new three-partition

flow cover inequalities include the flow cover inequalities as a special case. We discuss the

constant capacity case and give a polynomial separation algorithm for the inequalities. Fi-

nally, we report computational results with the new inequalities for networks with different

characteristics.

Keywords: integer programming, lifting, superadditivity, fixed-charge network flow, three-

partition, facets.

1

1 Introduction

Many logistics, supply chain, and telecommunications problems are modeled as capacitated

fixed-charge network flow problems (CFNF). A CFNF is defined on a directed graph, with

given supply or demand on the nodes of the graph, and capacity, fixed and variable costs of

flow on the arcs of the graph. The problem is to choose a subset of the arcs and route the flow

on the chosen arcs while satisfying the supply, demand and capacity constraints, so that the

sum of fixed and variable costs is minimized.

Given a digraph G = (V,A), let ya be the flow on arc a ∈ A and let xa = 1 if the arc a is

used, 0 otherwise. Then, the CFNF problem can be formulated as

min
∑
a∈A

(paya + qaxa)

s.t.
∑

a∈δ(i)+
ya −

∑
a∈δ(i)−

ya = di, ∀i ∈ V (1)

ya ≤ caxa, ∀a ∈ A (2)

x ∈ Bn, y ∈ Rn+,

where δ(i)+ is the set of incoming arcs to i ∈ V , δ(i)− is the set of outgoing arcs,
∑
i∈V di = 0,

and pa and qa are the variable and fixed cost of flow on arc a ∈ A, respectively. The flow

conservation constraints (1) ensure that the demand is met at node i (when di > 0) and supply

is not exceeded (when di < 0), and the upper bound constraints (2) ensure that the arc capacity

ca, a ∈ A, is not exceeded.

Almost all previous work on valid inequalities for CFNF is based on cut-set relaxations.

Given a subgraph, a cut refers to the arcs that have one end in the subgraph, the other outside.

A cut set refers to the relaxation of the feasible set of CFNF given by the constraints for the

cut arcs and the aggregation of the supply/demand constraints for the nodes in the subgraph

defining the cut. Simply, valid inequalities based on a cut set are implications for the flow

quantity on the cut arcs depending on whether some of these arcs are open or closed. The

flow cover inequalities (e.g., [5, 10, 11, 13]) and the flow pack inequalities described in [2]

belong to this category of inequalities. Additionally, Gu et al. [7] show how to strengthen

the existing inequalities using superadditive lifting. These cut-set inequalities are based on

a two-partitioning of the network and ignore the network structure in each of the partitions,

essentially collapsing the corresponding subgraphs into a single node.

Valid inequalities that consider structures other than a two-partitioning of the network

have received less attention in the literature. Path inequalities are studied in [3] and [12]. The

submodular inequalities given in [15] are very general, but they are not given in closed form

since the coefficients of the inequalities are expressed as solutions to optimization problems.

Valid inequalities based on a three-partitioning of the network have been studied in the constant

capacity network design problem (e.g., [1, 4, 8, 9]), but they have not been considered for CFNF

problems.

2

In this work we consider three-partition relaxations for the constant capacity CFNF (i.e.,

ca = c for all a ∈ A). We present new valid inequalities for this problem, which include as

a special case the flow cover inequalities. We discuss their separation and implementation as

cutting planes to solve the constant capacity CFNF, and we present computational experiments

in networks with different characteristics.

The paper is organized as follows. In Section 2 we review the flow cover inequalities for

the constant capacity CFNF. In Section 3 we study the three-partition relaxation and provide

valid inequalities for this problem. In Section 4 we discuss the implementation and separation

problem for the three-partition flow cover inequalities. In Section 5 we give computational

results, and in Section 6 we conclude the paper. Throughout the paper, for a vector v ∈ Rn,

let v(S) =
∑
i∈S vi, i

+ = max{0, i} and i− = min{i, 0}.

2 Flow cover inequalities

Given disjoint sets N+ and N−, let N := N+ ∪N−, n := |N | and c > 0, let

X :=
{

(x, y) ∈ Bn × Rn+ : y(N+)− y(N−) = d, yj ≤ cxj , j ∈ N
}
,

and let X≤ be the relaxation where the equality is replaced with an inequality. The set X

arises in CFNF when several nodes are aggregated into one (i.e., adding the corresponding flow

conservation constraints), implicitly defining a two-partitioning of the network. For a subset of

vertices V ′ ⊆ V , d = d(V ′) is the aggregate demand on the vertices of V ′, N+ = {(i, j) ∈ E :

i ∈ V \ V ′, j ∈ V ′} is the set of incoming arcs to V ′, N− = {(i, j) ∈ E : i ∈ V ′, j ∈ V \ V ′} is

the set of outgoing arcs from V ′ and c is the (common) capacity of the arcs. Figure 1 depicts

a typical two-partitioning of a network.

𝑁+

𝑁−

𝑑

𝑽′

Figure 1: Two-partitioning of the network.

Padberg et al. [10] studied the convex hull of X and X≤. A set S+ ⊆ N+ is called a flow

cover if λ = c(S+)− d > 0. Moreover, when λ < c we say that the flow cover is minimal. Note

3

that λ = ddc ec− d in a minimal flow cover. Given a flow cover S+, the flow cover inequality∑
j∈S+

(yj + ρ(1− xj))−
∑
j∈N−

min {yj , (c− ρ)xj} ≤ d, (3)

where ρ = (c− λ)+, is valid for X≤ and X. Moreover, the lifted flow cover inequality∑
j∈S+

(yj + ρ(1− xj))−
∑
j∈N−

min {yj , (c− ρ)xj}+
∑

j∈N+\S+

max {yj − ρxj , 0} ≤ d (4)

is also valid for X≤ and X. Moreover, inequalities (4) together with the flow conservation and

bound constraints completely describe the convex hull of X. When applying inequalities (3)–(4)

to an aggregation of many nodes collapsed into one, only the arcs between the two partitions

are considered in the inequality, and the internal network structure of each of the partitions is

not taken into account in the inequality.

Note that optimizing a linear function over X is easy.

Proposition 1. There is an O(n) algorithm to solve the optimization problem

min{py + qx : (x, y) ∈ X}. (5)

Proof. By complementing variables in N−, that is, defining x̄i = 1−xi and ȳi = c−yi, i ∈ N−,

we write the equivalent problem

cp(N−) + q(N−) + min
(x,y)∈Bn×Rn

∑
i∈N+

(piyi + qixi)−
∑
i∈N−

(piȳi + qix̄i)

s.t. y(N+) + ȳ(N−) = d+ c(N−)

0 ≤ yi ≤ cxi, ∀i ∈ N+

cx̄i ≤ ȳi ≤ c, ∀i ∈ N−.

Observe that if qi < 0 for i ∈ N+, then xi = 1 in any optimal solution, and if qi < 0 for

i ∈ N−, then x̄i = 0 in any optimal solution. Therefore, we assume without loss of generality

that q ≥ 0. Denote by ξi the contribution to the objective function of arc i ∈ N if it is at full

capacity, i.e., ξi = cpi + qi for i ∈ N+ and ξi = −cpi − qi for i ∈ N−. Assume N is sorted in

nondecreasing order of ξi’s, and let N0 denote the first
⌊
d+c(N−)

c

⌋
elements of N in this order.

If λ = 0, then N0 gives the optimal solution. Otherwise, note that there exists an optimal

solution where there is only a single index k with corresponding flow equal to c − λ, where

λ = ddc ec− d, and
⌊
d+c(N−)

c

⌋
other arcs are at full capacity. There are two possibilities:

• k 6∈ N0: Then set all arcs in N0 at full capacity, and let k be the best choice between

arg mini∈N+\N0
(c− λ)pi + qi and arg mini∈N−\N0

− (c− λ)pi.

• k ∈ N0: Then set the first
⌈
d+c(N−)

c

⌉
elements of N at full capacity except for k, which

is the best choice between arg mini∈N+∩N0
− λpi and arg mini∈N−∩N0

λpi + qi.

4

Note that N need not be sorted; we only require the first
⌊
d+c(N−)

c

⌋
arcs (in any order), which

can be done in O(n) time with quickselect. Therefore, the complexity of the algorithm is

O(n).

We now show how to update an optimal solution after a small change in d. We will use this

result later in Section 3.

Remark 1. Suppose we have an optimal solution to problem (5), and the demand is changed

by ±c. We can compute a new optimal solution from the previous one by doing exactly one of

the following:

• Add one arc at full capacity.

• Remove one arc at full capacity.

• Complete the flow on the non-saturated arc, and increase the flow to c− λ in one of the

arcs with no flow.

• Make the flow on the non-saturated arc 0, and decrease the flow to c − λ in one of the

saturated arcs.

If we keep two sorted lists, one with the contributions of the arcs at full capacity and one with

the contributions of the arcs at partial capacity, then these operations are done in O(1) time.

3 Three-partition analysis

3.1 Preliminaries

In this section we study the constant capacity three-partition polytope T . Figure 2 shows a

graphical representation of T , where node 0 (implicit) is a supply node and nodes 1 and 2 are

demand nodes, and each node represents a partition in the original graph. Let N+
i , i = 1, 2, be

the set of arcs going from node 0 to node i, let N−i , i = 1, 2, be the set of arcs going from node i

to node 0, and let N12 and N21 be the sets of arcs going from node 1 to node 2, and from node

2 to node 1, respectively. Define N+ = N+
1 ∪N

+
2 , N− = N−1 ∪N

−
2 , N = N+ ∪N− ∪N12 ∪N21

and n = |N |. Finally, let di, i = 1, 2, be the demand at node i, and let d12 = d1 + d2. T is

defined as the convex hull of

y(N+
1)− y(N−1)− y(N12) + y(N21) = d1 (6)

y(N+
2)− y(N−2) + y(N12)− y(N21) = d2 (7)

yj ≤ cxj , ∀j ∈ N

x ∈ Bn, y ∈ Rn+.

Moreover let T≤ be the relaxation of T where equalities in (6) and (7) are replaced by inequal-

ities.

5

Figure 2: Three-partition graph.

Proposition 2. For any network, after aggregation, we may assume without loss of generality

that d1 ≥ 0 and d2 ≥ 0 in equalities (6)-(7).

Proof. Suppose that in a three-partitioning there are two supply nodes and one demand node.

In other words, d1 ≤ 0, d2 ≤ 0 and d0 = −d1 − d2. Letting N̄+
i = N−i , N̄−i = N+

i , i = 1, 2 and

N̄12 = N21, N̄21 = N12, and d̄i = −di, i = 1, 2, we get an equivalent model with a single supply

node and two demand nodes.

By Proposition 2 we assume throughout the rest of the paper that d1 ≥ 0 and d2 ≥ 0.

Proposition 3. There is an O(n log n) algorithm to solve the optimization problem

min{py + qx : (x, y) ∈ T}.

Proof. There exists an optimal solution in which at most two arcs have flow strictly between 0

and c. In particular, there exists a pair of nodes such that the flow between them is a multiple

of c. Keep sorted lists for N+
1 ∪N

−
1 , N+

2 ∪N
−
2 and N12 ∪N21 as described in Remark 1.

Suppose y(N12) − y(N21) = kc, where k = −|N21|, . . . , 0, . . . , |N12|. Set k = 0, and the

problem decomposes into two single node constant capacity fixed-charge network flow problems,

solvable in O(n) time. Then, changing k one unit at a time, we can compute optimal solutions

for all possible values of k, each one in O(1) time (Remark 1). Choose the one that results in

the best objective function value.

The cases when y(N+
1) − y(N−1) = kc and y(N+

2) − y(N−2) = kc are handled similarly in

O(n) time. The complexity is then given by sorting, which is done in O(n log n) time.

The existence of polynomial time algorithm for optimization over T implies that the sepa-

ration problem over T is also polynomial time solvable, as shown in [6].

6

We now characterize strong valid inequalities for T and T≤.

3.2 Valid inequalities

Definition 1 (Three-partition flow cover). For S+
1 ⊆ N+

1 , S+
2 ⊆ N+

2 and S12 ⊆ N12, we say

that the set S = S+
1 ∪ S

+
2 ∪ S12 is a three-partition flow cover if

1. λ1 := c(S+
1)− d1 > 0.

2. λ2 := c(S+
2 ∪ S12)− d2 > 0.

3. λ := c(S+
1 ∪ S

+
2)− d12 > 0.

Furthermore, we say that the three-partition flow cover S is minimal if

4. λ2 < c and λ < c.

Conditions 1, 2 and 3 imply that the arcs in S are sufficient to satisfy the demand in nodes

1 and 2. Condition 4 implies that if any arc is removed from S, then the demand can no longer

be met. Note that if the cover is minimal, then λ2 = dd2c ec− d2 and λ = dd12c ec− d12.

Given a minimal three-partition flow cover S = (S+
1 , S

+
2 , S12), consider the three-partition

flow cover inequalities∑
i=1,2

∑
j∈S+

i

(yj + ρi(1− xj))−
∑
i=1,2

∑
j∈N−i

min {yj , (c− ρi)xj}

+
∑
i=1,2

∑
j∈N+

i \S
+
i

max {yj − ρixj , 0}+
∑
j∈S12

(ρ2 − ρ1)(1− xj)

−
∑

j∈N12\S12

min{yj , (ρ2 − ρ1)xj}+
∑
j∈N21

max {0, yj + (ρ2 − ρ1 − c)xj} ≤ d12,

(8)

where (ρ1, ρ2) =

(c− λ, c− λ+ (λ− λ2)+)) (Type 1 three-partition flow cover inequalities)

((λ2 − λ)+, c− λ2 + (λ2 − λ)+) (Type 2 three-partition flow cover inequalities).

Remark 2. Note that when λ2 ≥ λ, the type 1 three-partition flow cover inequalities reduce to

the lifted flow cover inequalities for both nodes collapsed. Moreover, when λ2 ≤ λ, the type 2

three-partition flow cover inequalities are equivalent to the lifted flow cover inequalities for node

2 after adding the flow conservation constraint for node 1. In Section 3.3.2 we give conditions

under which inequalities (8) strictly dominate the flow cover inequalities.

Before proving the validity of inequalities (8), we provide examples of both types of three-

partition flow cover inequalities.

Example 1 (Type 1 three-partition flow cover inequalities). Consider the network depicted

in Figure 3, and assume that the arc capacity is 10. Note that λ2 = d 1510e10 − 15 = 5 and

λ = d 2210e10− 22 = 8, and since λ > λ2 the type 2 three-partition flow cover inequalities reduce

to the flow cover inequalities for node 2.

7

Figure 3: Type 1 three-partition example.

For this network the flow-cover inequality for both nodes aggregated with flow cover {1, 2, 5}
is

y1 − 2x1 + y2 − 2x2 + y5 − 2x5 ≤ 16, (9)

and the three-partition flow cover inequality with three-partition flow cover {1, 2, 3, 5} is

y1 − 2x1 + y2 − 2x2 + y5 − 5x5 + 3(1− x3) + (y6 − 7x6)+ −min{y4, 3x4} ≤ 13.

Example 2 (Type 2 three-partition flow cover inequalities). Consider the network depicted

in Figure 4, and assume that the arc capacity is 10. Note that λ2 = d 4
10e10 − 4 = 6 and

λ = d 6
10e10− 6 = 4, and since λ < λ2 the type 1 three-partition flow cover inequalities reduce

to the flow cover inequalities for both nodes collapsed.

Figure 4: Type 2 three-partition example.

For this network the lifted flow-cover inequality for node 2 with flow cover {2} is

y2 − 4x2 + (y3 − 4x3)+ + (y4 − 4x4)+ −min{y5, 6x5} ≤ 0,

and the three-partition flow cover inequality with three-partition flow cover {1, 2} is

y1 − 2x1 − 4x2 −min{y3, 4x3}+ (y4 − 6x4)+ −min{y5, 4x5} ≤ 0.

8

We now state and prove the main result of the paper.

Theorem 1. The three-partition flow cover inequalities (8) are valid for T and T≤.

To prove Theorem 1, we fix some of the variables at their upper or lower bounds in order

to apply the lifted flow cover inequalities of Section 2. We then use superadditive lifting to

include the variables assumed to be fixed in the inequalities.

We first state two propositions on superadditive functions that are used to prove Theorem 1.

Proposition 4. [7] The function ga,c : R→ R, where 0 < a < c, given by

ga,c(z) =

ia if ic ≤ z ≤ (i+ 1)c− a, i ∈ Z

z − i(c− a) if ic− a ≤ z ≤ ic, i ∈ Z

is superadditive on R.

Figure 5 depicts function ga,c(z).

Figure 5: Function g.

Proposition 5. Let g : R → R be a superadditive function and let h : R2 → R be defined as

h(x, y) = g(x+ y). Then, the function h is superadditive on R2.

Proof. For any (x1, y1), (x2, y2) ∈ R2 we have

h(x1 + x2, y1 + y2) = g((x1 + y1) + (x2 + y2))

≥ g(x1 + y1) + g(x2 + y2)

= h(x1, y1) + h(x2, y2).

We now proceed with the proof of Theorem 1.

9

Validity of type 1 inequalities. We prove the validity of type 1 three-partition flow cover

inequalities when λ > λ2. Let S be a minimal three-partition flow cover, and assume yj = c for

all j ∈ S12 (i.e., y(S12) = c(S12) = λ1+λ2−λ), xj = 0 for j ∈ (N+
2 \S

+
2)∪N−2 ∪(N12\S12)∪N21,

and xj = 1 for j ∈ S+
2 . Under these conditions the lifted flow cover inequality for nodes 1 and

2 collapsed, and with flow cover S+
1 ∪ S

+
2 is

y(S+
1 ∪S

+
2) +

∑
j∈S+

1

(c−λ)(1−xj) +
∑

j∈N+
1 \S

+
1

(yj − (c−λ)xj)
+−

∑
j∈N−1

min{yj , λxj} ≤ d12. (10)

To obtain a valid inequality for T≤, we lift inequality (10) first with the variables assumed

to be fixed in N+
2 ∪N

−
2 , and then with the variables in N12 ∪N21.

The lifting function associated with simultaneously lifting the inequality with the variables

xj for j ∈ S+
2 and pairs (xj , yj) for j ∈ (N+

2 \ S
+
2) ∪N−2 is given by

f2(z2, w2) = d12 + min
{
− y(S+

1 ∪ S
+
2)−

∑
j∈S+

1

(c− λ)(1− xj)

−
∑

j∈N+
1 \S

+
1

(yj − (c− λ)xj)
+ +

∑
j∈N−1

min{yj , λxj}
}

s.t. y(N+
1)− y(N−1) ≤ d1 + λ1 + λ2 − λ

y(S+
2) ≤ d2 − λ1 − λ2 + λ+ w2

y(S+
1) ≤ d1 + λ1

y(S+
2) ≤ d2 + λ− λ1 − z2

0 ≤ yj ≤ cxj , xj ∈ {0, 1}, j ∈ N+
1 ∪N

−
1 ,

where z2 is a nonnegative multiple of the capacity c and stands for the capacity closed on arcs

in S+
2 , w2 > 0 stands for the flow on arcs in N−2 and w2 < 0 stands for the flow on arcs in

N+
2 \ S

+
2 .

Note that the problem decomposes for the arcs in N+
1 ∪ N

−
1 and the arcs in S+

2 . The

objective function is nonincreasing in y(N+
1 ∪ N

−
1), and therefore, there exists an optimal

solution where y(N+
1)− y(N−1) = d1 +λ1 +λ2−λ. The optimal choice for parameters is to set

y(N−1) = x(N−1) = 0, y(N+
1 \S

+
1) = 0 and y(S+

1) = d1 +λ1−λ+λ2 > c(S+
1)−λ, so xj = 1 for

all j ∈ S+
1 . Similarly, in an optimal solution we have y(S+

2) = d2 +λ−λ1 + min{−z2, w2−λ2}.
Replacing these values in the objective, we get a closed form solution for the lifting function,

f2(z2, w2) = −w2 +

0 if z2 + w2 ≤ λ2
z2 + w2 − λ2 otherwise.

The exact lifting function f2 is not superadditive in R2. Note however that f2 and the superad-

ditive function gc−λ2,c of Proposition 4 are closely related, as shown by Figure 6. In particular,

we show that ψ(z2, w2) := −w2 + gc−λ2,c(z2 + w2) is a superadditive valid lifting function for

f2.

10

Figure 6: Functions f2(z2 + w2) + w2 and gc−λ2,c(z2 + w2).

Proposition 6. The function ψ is a superadditive lower bound of f2.

Proof. The function ψ1(z2, w2) = −w2 is linear and therefore superadditive. The function

ψ2(z2, w2) = gc−λ2,c(z2 + w2) is superadditive by Proposition 5. We have that ψ = ψ1 + ψ2 is

a sum of superadditive functions, and is therefore superadditive itself.

Moreover, since ψ2 is a lower bound of f2 + w2, ψ is a lower bound of f2.

Using the lifting function ψ of Proposition 6, we obtain the inequality

y(S+
1 ∪ S

+
2) +

∑
j∈S+

1

(c− λ)(1− xj) +
∑

j∈N+
1 \S

+
1

(yj − (c− λ)xj)
+ −

∑
j∈N−1

min{yj , λxj}

+
∑
j∈S+

2

(c− λ2)(1− xj) +
∑

j∈N+
2 \S

+
2

(yj − (c− λ2)xj)
+ −

∑
j∈N−2

min{yj , λ2xj} ≤ d12.
(11)

Inequality (11) assumes that yj = c for j ∈ S12 and xj = 0 for j ∈ (N12 \ S12) ∪ N21.

To obtain a valid inequality for T≤, we lift inequality (11) with the variable pairs (xj , yj) for

j ∈ N12 ∪N21. The corresponding lifting function is

11

f12(w12) = d12 + min
{
− y(S+

1 ∪ S
+
2)−

∑
j∈S+

1

(c− λ)(1− xj)−
∑
j∈S+

2

(c− λ2)(1− xj)

−
∑

j∈N+
1 \S

+
1

(yj − (c− λ)xj)
+ −

∑
j∈N+

2 \S
+
2

(yj − (c− λ2)xj)
+

+
∑
j∈N−1

min{yj , λxj}+
∑
j∈N−2

min{yj , λ2xj}
}

s.t. y(N+
1)− y(N−1) ≤ d1 + λ1 + λ2 − λ− w12 (12)

y(N+
2)− y(N−2) ≤ d2 − λ1 − λ2 + λ+ w12 (13)

y(S+
1) ≤ d1 + λ1

y(S+
2) ≤ d2 + λ− λ1

0 ≤ yj ≤ cxj , xj ∈ {0, 1}, j ∈ N+
i ∪N

−
i , i = 1, 2,

where w12 > 0 stands for the flow on arcs in N21 plus the unused capacity on S12 (i.e., y(N21)+∑
j∈S12

(cj − yj)) and w12 < 0 stands for the flow on arcs in N12 \ S12.

The problem decomposes again and since the objective function is nonincreasing in y(N+
i)−

y(N−i), i = 1, 2, we can set these values to their upper bounds, so that constraints (12) and

(13) are binding.

Note that for λ2−λ ≤ w12 ≤ λ2, we have c(S+
1)−λ ≤ y(N+

1)− y(N−1) ≤ c(S+
1). Therefore,

in this range there exists an optimal solution with y(S+
1) = d1 + λ1 + λ2 − λ − w12 and

y(N−1 ∪N
+
1 \ S

+
1) = 0. For w12 ≥ λ2 we need to sequentially close arcs in S+

1 or open arcs in

N−1 , and for w12 ≤ λ2 − λ we need to sequentially open arcs in N+
1 \ S

+
1 .

Moreover, for 0 ≤ w12 ≤ λ2, we have c(S+
2) − λ2 ≤ y(N+

2) − y(N−2) ≤ c(S+
2). Therefore,

in this range there exists an optimal solution with y(S+
2) = d2 − λ1 − λ2 + λ + w12 and

y(N−2 ∪ N
+
2 \ S

+
2) = 0. For w12 ≤ 0 we need to sequentially close arcs in S+

2 or open arcs in

N−2 , and for w12 ≥ λ2 we need to sequentially open arcs in N+
2 \ S

+
2 .

The lifting function, obtained by subtracting from d12 the contributions of arcs in N+
i ∪N

−
i ,

i = 1, 2, is then

f12(w12) =

i(λ− λ2) if ic ≤ w12 ≤ (i+ 1)c− λ+ λ2, i ∈ Z

w12 − ic+ i(λ− λ2) if ic− λ+ λ2 ≤ w12 ≤ ic, i ∈ Z.

Function f12 is of the form gλ−λ2,c defined in Proposition 4, and is, therefore, superadditive

12

in R. Using f12, we obtain the type 1 three-partition flow cover inequality

y(S+
1 ∪ S

+
2) +

∑
j∈S+

1

(c− λ)(1− xj) +
∑

j∈N+
1 \S

+
1

(yj − (c− λ)xj)
+ −

∑
j∈N−1

min{yj , λxj}

+
∑
j∈S+

2

(c− λ2)(1− xj) +
∑

j∈N+
2 \S

+
2

(yj − (c− λ2)xj)
+ −

∑
j∈N−2

min{yj , λ2xj}+
∑
j∈S12

(λ− λ2)(1− xj)

+
∑
j∈N21

max{0, yj + (λ− λ2 − c)xj} −
∑

j∈N12\S12

min{yj , (λ− λ2)xj} ≤ d12.

(14)

Validity of type 2 inequalities. The validity of the type 2 three-partition flow cover in-

equalities when λ2 > λ is proved similarly: We assume xj = 1 for j ∈ S+
1 ∪S

+
2 ∪S12 and xj = 0

for j ∈ (N+
i \ S

+
i)∪N−i , i = 1, 2. Under those assumptions, the lifted flow cover inequality for

node 2 yields

y(S+
2 ∪S12)+

∑
j∈S12

(c−λ2)(1−xj)+
∑

j∈N12\S12

max{yj−(c−λ2)xj , 0}−
∑
j∈N21

min{yj , λ2xj} ≤ d2.

We then lift first variables in N+
2 ∪N

−
2 and then N+

1 ∪N
−
1 to get a valid inequality. The

complete proof is in Appendix A.

We now give an alternative characterization of inequalities (8).

Remark 3. Note that we can rewrite inequalities (8) as∑
i=1,2

∑
j∈S+

i

(yj − ρixj)−
∑
i=1,2

∑
j∈N−i

min {yj , (c− ρi)xj}+
∑
i=1,2

∑
j∈N+

i \S
+
i

max {yj − ρixj , 0}

−
∑
j∈S12

(ρ2 − ρ1)xj −
∑

j∈N12\S12

min{yj , (ρ2 − ρ1)xj}+
∑
j∈N21

max (0, yj + (ρ2 − ρ1 − c)xj)

≤ d12 −
∑
i=1,2

ρi
∣∣S+
i

∣∣− (ρ2 − ρ1) |S12| .

(15)

Furthermore, from the conditions defining a minimal three-partition flow cover, we infer

that

Condition 1:
∣∣S+

1

∣∣ ≥ dd1c e.
Conditions 2 & 4:

∣∣S+
2

∣∣+ |S12| = dd2c e.

Conditions 3 & 4:
∣∣S+

1

∣∣+
∣∣S+

2

∣∣ = dd12c e.

Conditions 2, 3 & 4: |S12| −
∣∣S+

1

∣∣ = |S12|+
∣∣S+

2

∣∣− ∣∣S+
1

∣∣− ∣∣S+
2

∣∣ = dd2c e − d
d12
c e.

13

Therefore, we get that inequalities (8) are equivalent to∑
i=1,2

∑
j∈S+

i

(yj − ρixj)−
∑
i=1,2

∑
j∈N−i

min {yj , (c− ρi)xj}+
∑
i=1,2

∑
j∈N+

i \S
+
i

max {yj − ρixj , 0}

−
∑
j∈S12

(ρ2 − ρ1)xj −
∑

j∈N12\S12

min{yj , (ρ2 − ρ1)xj}+
∑
j∈N21

max (0, yj + (ρ2 − ρ1 − c)xj)

≤ d12 + (ρ1 − ρ2)dd2
c
e − ρ1d

d12
c
e.

(16)

3.3 Strength of the three-partition flow cover inequalities

In this section we study the strength of inequalities (8). We prove that, under mild conditions,

they are facet defining for T≤. We also show that, in some cases, they dominate flow cover

inequalities.

3.3.1 Facet-defining conditions

Proposition 7. T≤ is full dimensional when d1 > 0 and d2 > 0.

Proof. Let ei be i-th unit vector and let 0 < ε ≤ min{d1, d2, c}. The set

{0} ∪
n⋃
i=1

{(x, y) = (ei, 0)} ∪
n⋃
i=1

{(x, y) = (ei, εei)}

contains 2n+ 1 affinely independent points belonging to T≤.

Theorem 2. The three-partition flow cover inequalities (8) are facet defining for T≤ when

d1 > 0, d2 > 0, S+
2 6= ∅ and S12 6= ∅.

Proof. To prove that, under the conditions of the theorem, inequalities (8) are facet defining for

T≤, we provide, for each type of three-partition flow cover inequality, 2n affinely independent

points where the inequality holds at equality. Let 1̄ = (1, 1, . . . , 1), c̄ = (c, c, . . . , c) and let ei

be the i-th unit vector. For clarity, we give each point in the format(
xS

+
1 , yS

+
1 , xS

+
2 , yS

+
2 , xS12 , yS12 , xN\S , yN\S

)
,

where (yS , xS) are the (y, x) values for the arcs in the set S.

14

Facet proof for type 1 inequalities Let C+
i ⊆ N+

i \ S
+
i , S−i ⊆ N−i , i = 1, 2, and let

C12 ⊆ N12 \ S12, S21 ⊆ N21, and rewrite inequality (14) as

y(S+
1 ∪ S

+
2) +

∑
j∈S+

1

(c− λ)(1− xj) +
∑
j∈C+

1

(yj − (c− λ)xj)−
∑
j∈S−1

λxj −
∑

j∈N−1 \S
−
1

yj

+
∑
j∈S+

2

(c− λ2)(1− xj) +
∑
j∈C+

2

(yj − (c− λ2)xj)−
∑
j∈S−2

λ2xj −
∑

j∈N−2 \S
−
2

yj

+
∑
j∈S12

(λ− λ2)(1− xj) +
∑
j∈S21

(yj + (λ− λ2 − c)xj)−
∑
j∈C12

(λ− λ2)xj −
∑

j∈N12\(S12∪C12)

yj ≤ d12.

Note that λ2 − λ < 0 implies c(S12) = λ1 + λ2 − λ < λ1 < d1 + λ1 = c(S+
1). Therefore,

if S12 6= ∅ then we have
∣∣S+

1

∣∣ ≥ 2. Let ki ∈ S+
i , i = 1, 2, let k′1 ∈ S+

1 with k′1 6= k1 and let

k12 ∈ S12. Table 1 shows the affinely independent points for type 1 inequalities. Note that we

provide two points for each j ∈ N (and therefore there are 2n points). To check that the points

are indeed affinely independent, observe that the two points corresponding to each i ∈ N \ S
ensure that xi 6= 0 and yi 6= kxi (for some k ∈ R+).

Facet proof for type 2 inequalities Let C+
i ⊆ N+

i \ S
+
i , S−i ⊆ N−i , i = 1, 2, and let

C12 ⊆ N12 \ S12, S21 ⊆ N21. Rewrite inequalities (8) as

y(S+
1 ∪ S

+
2) +

∑
j∈S+

1

(λ2 − λ)(1− xj) +
∑
j∈C+

1

(yj − (λ2 − λ)xj)−
∑
j∈S−1

(c− (λ2 − λ))xj

−
∑

j∈N−1 \S
−
1

yj +
∑
j∈S+

2

(c− λ)(1− xj) +
∑
j∈C+

2

(yj − (c− λ)xj)−
∑
j∈S−2

λxj −
∑

j∈N−2 \S
−
2

yj

+
∑
j∈S12

(c− λ2)(1− xj) +
∑
j∈S21

(yj − λ2xj)−
∑
j∈C12

(c− λ2)xj −
∑

j∈N12\(S12∪C12)

yj ≤ d12.

Let ki ∈ S+
i , i = 1, 2, and let k12 ∈ S12. Table 2 shows the 2n affinely independent points

for type 2 inequalities. To check that the points are indeed affinely independent, observe that

that the point corresponding to i = k1 with ck1 = c is affinely independent from the previously

introduced points since it is the first point where y(S+
1) 6= y(S12) + d1, and the two points

corresponding to each i ∈ N \ S ensure that xi 6= 0 and yi 6= kxi (for some k ∈ R+).

3.3.2 Comparison with the flow cover inequalities

Recall from Remark 2 that, depending on the values of λ and λ2, either the type 1 or the type

2 three-partition flow cover inequalities reduce to lifted flow cover inequalities. We now give

conditions under which inequalities (8) dominate the regular flow cover inequalities.

Proposition 8. When λ > λ2 and S12 = N12, the type 1 three-partition inequalities with

minimal flow cover (S+
1 , S

+
2 , S12) dominate the corresponding flow cover inequalities for both

nodes aggregated with flow cover S+
1 ∪ S

+
2 .

15

Table 1: Affinely independent points for Type 1 inequalities.

Condition
S+
1 S+

2 S12 N \ S
y x y x y x y x

i ∈ S+
1

c̄− λei 1̄ c̄ 1̄ c̄− λ2ek12 1̄ 0 0
c̄− cei 1̄− ei c̄ 1̄ c̄− λ2ek12 1̄ 0 0

i ∈ S−1
c̄ 1̄ c̄ 1̄ c̄− λ2ek12 1̄ λei ei
c̄ 1̄ c̄ 1̄ c̄− λ2ek12 1̄ cei ei

i ∈ N−1 \ S
−
1

c̄− λek1 1̄ c̄ 1̄ c̄− λ2ek12 1̄ 0 ei
c̄ 1̄ c̄ 1̄ c̄− λ2ek12 1̄ λei ei

i ∈ S12
c̄− cek1 1̄− ek1 c̄ 1̄ c̄− (c− λ− λ2)ei 1̄ 0 0

c̄− cek1 − (λ− λ2)ek′1 1̄− ek1 c̄ 1̄ c̄− cei 1̄− ei 0 0

i ∈ S21
c̄− cek1 1̄− ek1 c̄ 1̄ c̄ 1̄ (c− λ+ λ2)ei ei

c̄− cek1 − (λ− λ2)ek′1 1̄− ek1 c̄ 1̄ c̄ 1̄ cei ei

i ∈ N21 \ S21
c̄− cek1 1̄− ek1 c̄ 1̄ c̄− λ2ek12 1̄ 0 ei
c̄− cek1 1̄− ek1 c̄ 1̄ c̄ 1̄ λ2ei ei

i ∈ S+
2

c̄− (λ− λ2)ek1 1̄ c̄− λ2ei 1̄ c̄ 1̄ 0 0
c̄− (λ− λ2)ek1 1̄ c̄− cei 1̄− ei c̄ 1̄ 0 0

i ∈ S−2
c̄− (λ− λ2)ek1 1̄ c̄ 1̄ c̄ 1̄ λ2ei ei
c̄− (λ− λ2)ek1 1̄ c̄ 1̄ c̄ 1̄ c̄ei ei

i ∈ N−2 \ S
−
2

c̄− (λ− λ2)ek1 1̄ c̄− λ2ek2 1̄ c̄ 1̄ 0 ei
c̄− (λ− λ2)ek1 1̄ c̄ 1̄ c̄ 1̄ λ2ei ei

i ∈ C+
1

c̄− cek1 1̄− ek1 c̄ 1̄ c̄− λ2ek12 1̄ (c− λ)ei ei
c̄− cek1 1̄− ek1 c̄− λ2ek2 1̄ c̄ 1̄ (c− λ+ λ2)ei ei

i ∈ N+
1 \ (S+

1 ∪ C
+
1)

c̄− cek1 1̄− ek1 c̄ 1̄ c̄− λ2ek12 1̄ 0 ei
c̄− cek1 1̄− ek1 c̄ 1̄ c̄− λ2ek12 1̄ (c− λ)ei ei

i ∈ C+
2

c̄− (λ− λ2)ek1 1̄ c̄− cek2 1̄− ek2 c̄ 1̄ (c− λ2)ei ei
c̄− λek1 1̄ c̄− cek2 1̄− ek2 c̄− λ2ek12 1̄ cei ei

i ∈ N+
2 \ (S+

2 ∪ C
+
2)

c̄− (λ− λ2)ek1 1̄ c̄− cek2 1̄− ek2 c̄ 1̄ 0 ei
c̄− (λ− λ2)ek1 1̄ c̄− cek2 1̄− ek2 c̄ 1̄ (c− λ2)ei ei

i ∈ C12
c̄− λek1 1̄ c̄ 1̄ c̄− cek12 1̄− ek12 (c− λ2)ei ei

c̄− (λ− λ2)ek1 1̄ c̄− λ2ek2 1̄ c̄− cek12 1̄− ek12 cei ei

i ∈ N12 \ (S12 ∪ C12)
c̄− (λ− λ2)ek1 1̄ c̄− cek2 1̄− ek2 c̄ 1̄ 0 ei

c̄ 1̄ c̄− cek2 1̄− ek2 c̄ 1̄ (λ− λ2)ei ei

Proof. Consider the type 1 three-partition inequalities when S12 = N12

y(S+
1 ∪ S

+
2) +

∑
j∈S+

1

(c− λ)(1− xj)−
∑
j∈N−1

min{yj , λxj}

+
∑
j∈S+

2

(c− λ2)(1− xj)−
∑
j∈N−2

min{yj ,λ2xj}

+
∑

j∈N12

(λ− λ2)(1− xj) +
∑

j∈N21

max{0, yj + (λ− λ2 − c)xj} ≤ d12,

(17)

16

Table 2: Affinely independent points for Type 2 inequalities.

Condition
S+
1 S+

2 S12 N \ S
y x y x y x y x

i ∈ S12
c̄− λek1 1̄ c̄ 1̄ c̄− λ2ei 1̄ 0 0

c̄− (c− λ2 + λ)ek1 1̄ c̄ 1̄ c̄− cei 1̄− ei 0 0

i ∈ S+
2

c̄ 1̄ c̄− λei 1̄ c̄− (λ2 − λ)ek12 1̄ 0 0
c̄ 1̄ c̄− cei 1̄− ei c̄− (λ2 − λ)ek12 1̄ 0 0

i = k1
c̄ 1̄ c̄− cek2 1̄− ek2 c̄ 1̄ 0 0

c̄− cek1 1̄− ek1 c̄ 1̄ c̄− cek12 1̄− ek12 0 0

i ∈ S+
1 \ {k1}

c̄− (c− λ2 + λ)ei 1̄ c̄ 1̄ c̄− cek12 1̄− ek12 0 0
c̄− cei 1̄− ei c̄ 1̄ c̄− cek12 1̄− ek12 0 0

i ∈ S21
c̄− λek1 1̄ c̄ 1̄ c̄ 1̄ λ2ei ei

c̄− (c− λ2 + λ)ek1 1̄ c̄ 1̄ c̄ 1̄ cei ei

i ∈ N21 \ S21
c̄− λek1 1̄ c̄ 1̄ c̄− λ2ek12 1̄ 0 ei
c̄− λek1 1̄ c̄ 1̄ c̄ 1̄ λ2 ei

i ∈ S−2
c̄ 1̄ c̄ 1̄ c̄− (λ2 − λ)ek12 1̄ λei ei
c̄ 1̄ c̄ 1̄ c̄− (λ2 − λ)ek12 1̄ cei ei

i ∈ N−2 \ S
−
2

c̄ 1̄ c̄− λek2 1̄ c̄− (λ2 − λ)ek12 1̄ 0 1
c̄ 1̄ c̄ 1̄ c̄− (λ2 − λ)ek12 1̄ λ 1

i ∈ S−1
c̄ 1̄ c̄ 1̄ c̄− cek12 1̄− ek12 (c− λ2 + λ)ei ei
c̄ 1̄ c̄ 1̄ c̄− cek12 1̄− ek12 cei ei

i ∈ N−1 \ S
−
1

c̄− (c− λ2 + λ)ek1 1̄ c̄ 1̄ c̄− cek12 1̄− ek12 0 ei
c̄ 1̄ c̄ 1̄ c̄− cek12 1̄− ek12 (c− λ2 + λ)ei ei

i ∈ C12
c̄ 1̄ c̄− cek2 1̄− ek2 c̄− cek12 1̄− ek12 (c− λ2 + λ)ei ei
c̄ 1̄ c̄− cek2 1̄− ek2 c̄− cek12 1̄− ek12 cei ei

i ∈ N12 \ (S12 ∪ C12)
c̄− λek1 1̄ c̄ 1̄ c̄− λ2ek12 1̄ 0 ei
c̄− λek1 1̄ c̄ 1̄ c̄− cek12 1̄− ek12 (c− λ2) ei

i ∈ C+
1

c̄− cek1 1̄− ek1 c̄− λek2 1̄ c̄− (λ2 − λ)ek12 1̄ c ei
c̄− cek1 1̄− ek1 c̄ 1̄ c̄− cek12 1̄− ek12 (λ2 − λ)ei ei

i ∈ N+
1 \ (S+

1 ∪ C
+
1)

c̄− cek1 1̄− ek1 c̄ 1̄ c̄− cek12 1̄− ek12 0 ei
c̄− cek1 1̄− ek1 c̄ 1̄ c̄− cek12 1̄− ek12 (λ2 − λ)ei ei

i ∈ C+
2

c̄− λek1 1̄ c̄− cek2 1̄− ek2 c̄− λ2ek12 1̄ cei ei
c̄ 1̄ c̄− cek2 1̄− ek2 c̄− (λ2 − λ)ek12 1̄ (c− λ)ei ei

i ∈ N+
2 \ (S+

2 ∪ C
+
2)

c̄ 1̄ c̄− cek2 1̄− ek2 c̄− (λ2 − λ)ek12 1̄ 0 ei
c̄ 1̄ c̄− cek2 1̄− ek2 c̄− (λ2 − λ)ek12 1̄ (c− λ)ei ei

and the flow cover inequalities

y(S+
1 ∪ S

+
2) +

∑
j∈S+

1

(c− λ)(1− xj)−
∑
j∈N−1

min{yj , λxj}

+
∑
j∈S+

2

(c− λ)(1− xj)−
∑
j∈N−2

min{yj ,λxj} ≤ d12.

Observe that the coefficients multiplying the terms (1 − xj) for j ∈ S+
2 and −xj for j ∈ N−2

are stronger for the three-partition flow cover inequality. Moreover, inequality (17) is further

strengthened by the nonnegative terms corresponding to the arcs in N12 ∪N21.

17

Example 1 (continued). Consider the network depicted in Figure 3. Note that if we delete

arc 4 from the network, then the corresponding three-partition flow cover inequality with flow

cover {1, 2, 5}

y1 − 2x1 + y2 − 2x2 + y5 − 5x5 + 3(1− x3) + (y6 − 7x6)+ ≤ 13

dominates the flow cover inequality (9).

Proposition 9. When λ < λ2 and S+
1 = N+

1 , the type 2 three-partition inequalities with

minimal flow cover (S+
1 , S

+
2 , S12) dominate the corresponding flow cover inequalities for node

2 with flow cover S+
2 ∪ S12.

Proof. Note that, after adding the flow conservation constraint (6) to the flow cover inequality

for node 2, we get the equivalent inequality

y(N+
1 ∪ S

+
2)− y(N−1) +

∑
j∈S+

2

(c− λ2)(1− xj)−
∑
j∈N−2

min{yj , λ2xj}

+
∑
j∈S12

(c− λ2)(1− xj)−
∑

j∈N12\S12

min{yj , (c− λ2)xj}+
∑
j∈N21

(yj − λ2xj)+ ≤ d12,

and compare it with the three-partition flow cover inequality

y(N+
1 ∪ S

+
2)− y(N−1) +

∑
j∈N

−
1

(yj − (c− (λ2 − λ))xj)
+ +

∑
j∈N

+
1

(λ2 − λ)(1− xj)

+
∑
j∈S+

2

(c− λ)(1− xj)−
∑
j∈N−2

min{yj ,λxj}+
∑
j∈S12

(c− λ2)(1− xj)

−
∑

j∈N12\S12

min{yj , (c− λ2)xj}+
∑
j∈N21

(yj − λ2xj)+ ≤ d12.

(18)

Observe that the coefficients multiplying the terms (1 − xj) for j ∈ S+
2 and −xj for j ∈ N−2

are stronger for the three-partition flow cover inequality. Moreover, inequality (18) is further

strengthened by the nonnegative terms corresponding to the arcs in N+
1 ∪N

−
1 .

Example 2 (continued). Consider the network depicted in Figure 4. Note that if we add the

flow conservation constraint of node 1 to the flow cover inequality, then we get the equivalent

inequality

y1 − 4x2 −min{y3, 4x3} −min{y5, 6x5} ≤ 2,

which is dominated by the three-partition flow cover inequality

y1 − 2x1 − 4x2 −min{y3, 4x3} −min{y5, 4x5} ≤ 0.

Remark 4. Note that the condition S12 = N12 for the type 1 inequalities is naturally satisfied

when there is a single arc between nodes 1 and 2. The observation suggests that the type 1

inequalities are particularly effective (with respect to the flow cover inequalities) when nodes

18

1 and 2 are single nodes (and the implicit node 0 corresponds to the aggregation of all other

nodes in the CFNF). Similarly, type 2 inequalities may be particularly effective when nodes 0

and 1 are single nodes, and node 2 corresponds to the aggregation of all other nodes in the

CFNF.

Finally, we close the section by noting that three-partition inequalities and flow cover in-

equalities are not sufficient to characterize T or T≤.

Example 2 (continued). Consider the network depicted in Figure 4. The inequality

−6x1 + 3y1 − 16x2 + y2 − 16x3 + y3 − 12x4 + 3y4 − 12x5 − y5 ≤ 0

is facet defining for T and T≤, but is neither a three-partition flow cover inequality nor a flow

cover inequality.

4 Separation

Given a fractional solution, the separation problem consists of finding a three-partition flow

cover inequality that cuts off that solution if there exists any. In Section 4.1 we describe an

algorithm that, given a three-partitioning of the nodes, finds a most violated three-partition flow

cover inequality. In Section 4.2 we provide different heuristics for choosing the three-partitions.

4.1 Choosing a minimal cover

In this section we give a polynomial separation algorithm for finding a most violated three-

partition flow cover inequality given a three-partitioning of the nodes.

From inequality (16), we observe that finding a most violated inequality for a given fractional

solution (y, x) consists of choosing sets C+
1 ⊆ N+

1 , C+
2 ⊆ N+

2 and S12 ⊆ N12 such that the

left-hand-side of∑
i=1,2

∑
j∈C+

i

(yj − ρixj)−
∑
i=1,2

∑
j∈N−i

min {yj , (c− ρi)xj} −
∑
j∈S12

(ρ2 − ρ1)xj

−
∑

j∈N12\S12

min{yj , (ρ2 − ρ1)xj}+
∑
j∈N21

max (0, yj + (ρ2 − ρ1 − c)xj)

≤ d12 + (ρ1 − ρ2)dd2
c
e − ρ1d

d12
c
e,

(19)

is maximized1, where ∣∣C+
1

∣∣ ≥ dd1
c
e∣∣C+

1

∣∣+
∣∣C+

2

∣∣ ≥ dd12
c
e∣∣C+

2

∣∣+ |S12| ≥ d
d2
c
e.

(20)

1Note that C+
i corresponds to S+

i plus the arcs in N+
i \ S

+
i with nonzero terms.

19

Let C+
i = {j ∈ N+

i : yj − ρixj ≥ 0}, i = 1, 2, and let S12 = {j ∈ N12 : yj ≥ (ρ2 − ρ1)xj}.
If conditions (20) are satisfied by this choice of C+

1 , C+
2 , S12 and the left-hand-side of (19) is

greater than or equal to the right-hand-side, then we have found a most violated inequality.

Otherwise, we need to add more elements to the sets C+
1 , C+

2 or S12 so that conditions (20)

are satisfied. In order to do so, we keep three sorted lists, for the arcs in Ki = N+
i \ C

+
i ,

i = 1, 2 and K12 = N12 \ S12 in which the elements in the list are sorted in descending order

of εj = yj − ρixj for j ∈ Ki, i = 1, 2 and εj = yj − (ρ2 − ρ1)xj for j ∈ K12. For i ∈ {1, 2, 12},
let Ki[0] = maxj∈Ki

εj , and let first(Ki) be a function that returns and removes the greatest

element of Ki. The separation algorithm is described in Algorithm 1. If the left-hand-side of

(19) is greater than the right-hand-side at termination of the algorithm, then we have found a

violated inequality. Otherwise, there exists no violated three-partition flow cover inequality.

Algorithm 1 Separation algorithm.

Input: C+
i , i = 1, 2; S12; Ki, i ∈ {1, 2, 12}; ddic e,i ∈ {1, 2, 12}.

Output: C+
i , i = 1, 2; S12, the sets that maximize the violation.

1: while
∣∣C+

1

∣∣ < dd1c e do . Ensures that
∣∣C+

1

∣∣ ≥ dd1c e
2: C+

1 ← first(K1)
3: end while
4: while dd12c e −

∣∣C+
1

∣∣− ∣∣C+
2

∣∣ > (dd2c e −
∣∣C+

2

∣∣− |S12|)+ do
5: if K1[0] ≤ K2[0] then
6: C+

2 ← first(K2)
7: else
8: C+

1 ← first(K1)
9: end if

10: end while
11: while (dd12c e −

∣∣C+
1

∣∣− ∣∣C+
2

∣∣)+ < dd2c e −
∣∣C+

2

∣∣− |S12| do
12: if K12[0] ≤ K2[0] then
13: C+

2 ← first(K2)
14: else
15: S12 ← first(K12)
16: end if
17: end while
18: while dd12c e −

∣∣C+
1

∣∣− ∣∣C+
2

∣∣ = dd2c e −
∣∣C+

2

∣∣− |S12| > 0 do
19: if K1[0] +K12[0] ≤ K2[0] then
20: C+

2 ← first(K2)
21: else
22: C+

1 ← first(K1)
23: S12 ← first(K12)
24: end if
25: end while
26: return C+

1 , C
+
2 , S12

Note that sorting the lists can be done in O(n log n) time. If the lists are sorted, then each

computation of Ki[0] and each call of first(Ki) can be done in constant time. Therefore, the

commands inside each loop of Algorithm 1 can be done in constant time. Since an element is

removed from the lists at each step, the loops finish in at most |K1 ∪K2 ∪K12| ≤ n steps, and

the complexity of the algorithm after sorting the arcs is O(n).

20

Proposition 10. Given a three-partitioning of the network, there exists an O(n log n) separa-

tion algorithm for inequalities (8).

4.2 Choosing three-partitions

For a general CFNF, the separation algorithm described in Section 4.1 assumes a three-

partitioning of the vertices has been chosen. In this section we propose strategies for finding

three-partitions that may lead to violated inequalities.

4.2.1 Single nodes

When describing the implementation of flow cover inequalities, Van Roy and Wolsey [14] con-

sider in turn each flow conservation constraint, which is equivalent to considering two-partitions

in which one of the partitions is a single node. In a similar spirit, we consider all three-partitions

in which two of the partitions are single nodes.

4.2.2 Spanning trees

Stallaert [11] describes a heuristic for finding two-partitions to apply flow cover inequalities.

We use an adaptation to the case of three-partitions, which is described next.

Given a solution (x, y) to a CFNF defined on the graph G = (V,A), define an active arc as

an arc j ∈ A that is neither void nor saturated, i.e., 0 < yj < c, and let Ā be the set of active

arcs in the current solution. The algorithm proceeds as follows:

Step 1 Construct a maximum spanning forest with arc weights 1 − (xj − yj
c) for j ∈ Ā and

−∞ otherwise.

Step 2A (Two-partition) For each arc k in the forest, let T k1 and T k2 be two trees that

result from the deletion of arc k, with node sets VTk
1

and VTk
2

. Then for each i = 1, 2 there is a

two-partition defined by VTk
i

and V \ VTk
i

. This is the original method reported in [11].

Step 2B For each arc k in the forest and i = 1, 2, define VTk
i

as above. Let vki be the single

node connected to VTk
i

by k. Then for each i = 1, 2 there is a three-partitioning defined by

VTk
i

, {vki } and V \ (VTk
i
∪ {vki }).

Step 2C For each node l in the forest with at least two adjacent nodes, let {T l} be the

collection of trees that result from the deletion of node l. Then for each pair of elements i and

j in {T l} there is a three-partitioning defined by VT l
i
, VT l

j
and V \ (VTk

i
∪ VTk

j
).

4.2.3 Extension methods

The idea of the extension methods is to generate new partitions from a set of existing partitions.

Given a three-partitioning P , define the characteristic function eP : V → {0, 1, 2} as the

function that maps each vertex to its partition (labeled as 0, 1 and 2), and define bP as the

21

value of the violation of a most violated three-partition flow cover inequality arising from P .

We generate new partitions in the following ways:

Mixture Given partitions P1 and P2, generate a new partition P such that for each v ∈ V

eP (v) =


eP1

(v) if eP1
(v) = eP2

(v) or eP2
(v) = 0

eP2
(v) if eP1

(v) = 0

ePm
(v) otherwise,

where m = 1 if bP1
≥ bP2

and m = 2 otherwise.

Modification Given a partition P0, generate a new partition P such that eP (v) = eP0(v) for

v ∈ V \{l}, and eP (l) 6= eP0(l). The vertex l and the new value eP (l) are chosen randomly.

Given ζ ∈ Z+, the algorithm proceeds as follows:

Step 0 Add all partitions in which two of the partitions are single nodes to a pool of partitions.

Step 1 Choose the ζ highest partitions in terms of bP .

Step 2 For each pair of the selected partitions, generate a new partition using the Mixture

operation. Add all new partitions to the pool.

Step 3 For each selected partition, generate a new partition using the Modification opera-

tion. Add all new partitions to the pool.

Step 4 If a termination criterion is met, then terminate the algorithm. Otherwise, return to

Step 1.

5 Computational experiments

In this section we report computational experiments with solving CFNF of varying sizes with a

cut-and-branch algorithm using CPLEX v12.6.0. All experiments are conducted on one thread

of a Dell computer with a 2.2GHz Intel R©CoreTM i7-2670QM CPU and 8 GB main memory. We

test the CPLEX branch-and-bound algorithm using the following configurations for generating

cuts:

ALL Adds three-partition flow cover inequalities for all three-partitions using complete enu-

meration.

FC Adds flow cover inequalities for single nodes and aggregating two nodes.

TP Adds three-partition flow cover inequalities in which two of the partitions are single nodes.

Note that configuration TP considers the same partitions as FC (instead of aggregating

the two nodes, each node is its own partition).

22

FC* Adds the inequalities from FC, plus flow cover inequalities derived from the spanning tree

heuristic from [11] and from an adaptation of the extension heuristics of Section 4.2.3 to

two partitions.

TP* Adds three-partition flow cover inequalities using the strategies proposed in Section 4.2

for selecting the three-partitions.

CP CPLEX in default setting.

With the exception of the configuration CP, CPLEX cuts and heuristics are turned off. For

FC* and TP*, we use ζ = 50 for the partition combination heuristic.

All instances are randomly generated as follows. Let α ∈ {40, 60, 80} be a density parameter

and let β ∈ {1.25, 2} be a capacity parameter. In each instance, 40% of the nodes are demand

nodes, 40% are supply nodes, and 20% are transhipment nodes. For each demand node, the

demand is randomly generated between 1 and 20. The total supply, equal to the total demand,

is distributed equally among the supply nodes. The capacity of the arcs is given by c = βd̄,

where d̄ denotes the average demand; note that instances with high β result in weaker LP

relaxations, and thus in more difficult instances. Between each pair of nodes there is an arc

with probability α/100, with fixed cost between 1 and 2000 and variable cost between 1 and

200; for this choice of parameters the fixed and variable costs of an arc at full capacity are of

the same order of magnitude.

ALL vs. TP and TP*. First, to test the effectiveness of the strategies for finding three-

partitions, we solve small instances with up to 14 nodes. For each instance, we compare the

gap improvement obtained by using only single node three-partitions (TP), using the proposed

heuristics to find additional partitions (TP*), and considering all partitions by doing complete

enumeration (ALL). Table 3 presents the results. Each row represents the average over five

randomly generated instances of similar characteristics. The table shows, from left to right:

The number of nodes in the instance; the initial gap; the algorithm configuration; the root

gap improvement, computed as 100 × (zroot − zinit)/(zub − zinit), where zroot is the

LP lower bound after adding the cuts, zub is the best integer solution found and zinit is

the initial LP solution; the number of cuts added by CPLEX; the end gap, as reported by

CPLEX; the number of nodes processed in the branch-and-bound tree; and the total time used

in seconds. Configuration TP* strikes a good balance between the quality of gap improvement

and the solution times. A gap improvement close to complete enumeration is achieved in only

a fraction of the time.

FC vs. TP and FC* vs. TP*. Next we test the impact of the three-partition flow cover

inequalities for larger instances without the interference of CPLEX cuts. To evaluate the

marginal impact of adding three-partition cuts on top of the flow cover cuts, we implemented

our version of the lifted flow cover inequalities and tested the versions of the algorithm without

separation heurisitics (FC and TP), and using the separation heuristics (FC* and TP*). Tables

4 and 5 present the results for 60-node instances with different capacity-to-demand ratios. Each

23

Table 3: Heuristics compared to complete enumeration.

Nodes.
Initial

Config.
Gap Root

Cuts
End

Nodes Time
Gap. Impr. Time Gap

10 24.9%
ALL 98.3% 16 96 0% 5 16
TP 85.6% 0 29 0% 37 0
TP* 98.2% 12 63 0% 8 12

11 23.1%
ALL 97.5% 64 140 0% 18 64
TP 85.0% 0 33 0% 180 0
TP* 97.5% 18 69 0% 30 18

12 23.1%
ALL 99.1% 309 121 0% 17 309
TP 85.4% 0 40 0% 127 0
TP* 99.1% 19 95 0% 6 19

13 17.8%
ALL 96.5% 930 130 0% 180 931
TP 79.1% 0 39 0% 283 0
TP* 96.1% 18 121 0% 163 19

14 26.8%
ALL 97.6% 4,599 123 0% 106 4,600
TP 81.8% 0 46 0% 257 1
TP* 97.3% 32 97 0% 74 32

Average
ALL 97.8% 1,184 122 0% 65 1,184
TP 83.4% 0 37 0% 177 0
TP* 97.6% 20 89 0% 56 20

row represents the average over five randomly generated instances of similar characteristics. We

set the time limit to 7200 seconds and the memory limit to 4 GB. The tables show, from left to

right: The arc density; the initial gap; the algorithm configuration; the root gap improvement;

the number of user cuts and cuts added by CPLEX; the end gap, as reported by CPLEX; the

number of nodes processed in the branch-and-bound tree; the total time used; the results of

the five instances, where S denotes the number of instances solved to optimality, T denotes the

number of instances that timed out and M denotes the number of instances that used all the

available memory.

Using configurations TP and TP* results in an additional root gap improvement of 12.7%

and 2.2% over configurations FC and FC*, respectively. We observe that option TP also

improves over FC in terms of end gaps, resulting in reductions of 2.8% and 8.7% in the low

and high capacity instances, respectively. In the low capacity instances option TP* results in a

small increase of 0.2% in end gaps with respect to FC*, but in the high capacity instances TP*

is clearly superior, with a decrease of 7.0% in end gaps. Overall we see that three-partition

flow cover inequalities are particularly effective for the high capacity instances. Indeed, three-

partition cuts increase the size of the formulation (making the LPs harder to solve), but on the

harder instances the stronger formulation typically results in better overall performance.

Note that since the memory limit is reached in many of the instances, high run times

indicate a better ability to prune in the branch-and-bound tree (instead of faster times to reach

24

Table 4: Instances with β = 1.25 and CPLEX cuts off.

Dens.
Initial

Config.
Gap Cuts End

Nodes Time
Result

Gap. Impr. User CPLEX Gap S T M

40 24.1%

FC 67.6% 153 0 5.3% 739,986 1,592 1 0 4
FC+TP 80.5% 232 0 4.5% 352,235 1,212 0 0 5
FC* 86.7% 289 0 1.9% 305,280 1,212 2 0 3
FC*+TP* 89.7% 255 0 0.6% 391,779 2,823 3 0 2

60 22.9%

FC 68.3% 164 0 6.1% 597,625 2,073 0 1 4
FC+TP 82.1% 243 0 5.8% 238,024 1,329 1 0 4
FC* 87.7% 273 0 1.7% 263,661 1,933 3 0 2
FC*+TP* 90.0% 271 0 3.2% 240,076 3,682 2 0 3

80 22.9%

FC 69.7% 169 0 16.3% 195,835 723 0 0 5
FC+TP 83.4% 284 0 9.0% 183,142 1,553 1 0 4
FC* 88.4% 306 0 1.6% 185,477 1,954 3 0 2
FC*+TP* 90.0% 286 0 1.9% 220,075 3,570 3 0 2

Average

FC 68.4% 162 0 9.2% 511,149 1,462
FC+TP 81.8% 253 0 6.4% 257,800 1,364
FC* 87.8% 289 0 1.7% 251,473 1,818
FC*+TP* 90.2% 273 0 1.9% 283,977 3,017

Table 5: Instances with β = 2 and CPLEX cuts off.

Dens.
Initial

Config.
Gap Cuts End

Nodes Time
Result

Gap. Impr. User CPLEX Gap S T M

40 33.7%

FC 73.2% 166 0 11.9% 433,320 830 0 0 5
FC+TP 83.9% 352 0 7.1% 311,385 1,441 0 0 5
FC* 88.1% 300 0 3.1% 457,307 2,063 2 0 3
FC*+TP* 90.0% 294 0 2.7% 465,086 3,394 2 0 3

60 33.66%

FC 73.5% 176 0 17.2% 531,709 1,279 0 0 5
FC+TP 83.8% 302 0 14.0% 247,659 1,552 0 0 5
FC* 87.8% 301 0 9.9% 311,026 2,064 3 0 2
FC*+TP* 89.7% 302 0 3.7% 223,304 2,908 3 0 2

80 36.2%

FC 69.8% 160 0 40.3% 228,745 595 0 0 5
FC+TP 83.0% 334 0 21.2% 147,863 1,504 0 0 5
FC* 88.3% 333 0 20.2% 201,030 1,957 0 0 5
FC*+TP* 90.6% 342 0 6.1% 234,303 4,126 0 0 5

Average

FC 71.6% 166 0 22.4% 471,001 1,295
FC+TP 83.6% 330 0 13.7% 259,186 1,815
FC* 88.1% 311 0 11.1% 323,121 2,028
FC*+TP* 90.1% 320 0 4.1% 307,565 3,476

optimality).

CP vs. TP* Finally, we test the benefit of adding three-partition flow cover inequalities

to CPLEX with default configuration. Note that CPLEX uses flow cover inequalities (among

other cuts) and considers many levels of aggregation. Tables 6 and 7 present the results for

different node sizes. Three-partition flow cover inequalities help to close an additional 2.9%

of the root gap on top of default CPLEX, and result in a better overall performance. For

25

the 60-node instances, configuration TP* solves 28/30 instances to optimality (as opposed to

26/30 of CP), with a reduction of 28% in solution times and 23% of the branch-and-bound

tree size. For the 100-node instances, although none of the instances are solved to optimality,

configuration TP* results in a reduction of 18% in the end gaps. Note that for the 100-node

instances, since the memory limit is reached in many instances, high run times may indicate a

better ability to prune in the branch-and-bound tree.

Table 6: 60-node instances with CPLEX cuts on.

Cap. Dens.
Initial

Config.
Gap Cuts End

Nodes Time
Result

Gap. Impr. User CPLEX Gap S T M

1.25

40 24.1%
CP 87.4% 0 666 0.0% 100,354 1,326 5 0 0
CP+TP* 90.9% 365 389 0.0% 66,957 972 5 0 0

60 22.9%
CP 87.0% 0 682 0.0% 47,993 836 5 0 0
CP+TP* 91.0% 352 352 0.0% 34,518 665 5 0 0

80 22.9%
CP 86.7% 0 763 0.2% 72,140 2,697 4 1 0
CP+TP* 91.3% 374 350 0.0% 40,145 1,187 5 0 0

2.00

40 33.7%
CP 88.6% 0 781 0.0% 115,583 1,241 5 0 0
CP+TP* 90.9% 471 456 0.0% 85,612 1,287 5 0 0

60 33.66%
CP 87.2% 0 897 0.5% 144,517 3,693 3 2 0
CP+TP* 90.2% 467 497 0.0% 156,200 3,922 4 1 0

80 36.2%
CP 88.1% 0 963 0.4% 122,928 4,584 4 1 0
CP+TP* 91.3% 439 495 0.4% 80,422 2,289 4 1 0

Average
CP 87.5% 0 792 0.2% 100,586 2,396
CP+TP* 90.9% 411 423 0.1% 77,309 1,720

6 Conclusion

We derived new valid inequalities for CFNF problems from three-partitions of a network. The

inequalities share the same spirit as flow cover inequalities, but exploit the internal network

structure that aggregated flow cover inequalities ignore. We implemented the inequalities as

cutting planes in a branch-and-bound approach using CPLEX, and compared the benefits of

using the three-partition flow cover inequalities under different algorithm configurations.

According to our computational experiments, using three-partition flow cover inequalities

results in stronger formulations, allowing additional gap improvement at the root node. The

improvement often translates to lower end gaps at termination and faster solution times.

The proof technique used in this paper can in principle be used to derive valid inequali-

ties for k-partitions, or for the general three-partition polytope with varying capacities: Fix

variables in order to apply known results for polytopes with fewer partitions, and then lift the

variables assumed to be fixed. Note, however, that computing the necessary lifting functions,

and finding suitable superadditive lower bounds, may become more difficult as the complexity

of the polytope increases.

26

Table 7: 100-node instances with CPLEX cuts on.

Cap. Dens.
Initial

Config.
Gap Cuts End

Nodes Time
Result

Gap. Impr. User CPLEX Gap S T M

1.25

40 24.7%
CP 85.5% 0 1,161 2.3% 116,824 7,200 0 5 0
CP+TP* 88.2% 547 586 2.1% 129,288 6,552 0 3 2

60 23.1%
CP 86.3% 0 1,127 2.0% 68,705 7,200 0 5 0
CP+TP* 89.1% 371 524 1.6% 112,761 6,211 0 2 3

80 23.4%
CP 85.7% 0 1,152 2.3% 51,214 7,200 0 5 0
CP+TP* 89.4% 367 593 1.5% 95,069 6,799 0 4 1

2.00

40 35.0%
CP 88.2% 0 1,276 2.4% 118,159 6,691 0 4 1
CP+TP* 90.3% 576 651 2.1% 126,190 6,270 0 3 2

60 35.4%
CP 89.5% 0 1,311 2.2% 71,460 7,200 0 5 0
CP+TP* 91.4% 464 610 1.9% 109,499 6,396 0 2 3

80 34.4%
CP 89.8% 0 1,297 2.0% 72,192 7,200 0 5 0
CP+TP* 91.5% 393 756 1.5% 121,486 6,630 0 3 2

Average
CP 87.5% 0 1,221 2.2% 83,092 7,115
CP+TP* 89.9% 453 620 1.8% 115,716 6,476

Acknowledgements

Alper Atamtürk is supported, in part, by grant 0970180 from the National Science Foundation

and grant FA9550-10-1-0168 from the Office of the Assistant Secretary of Defense for Research

and Engineering. Simge Küçükyavuz is supported, in part, by the National Science Foundation

grant 1055668.

References

[1] Y.K. Agarwal, k-partition-based facets of the network design problem, Networks 47 (2006),

123–139.

[2] A. Atamtürk, Flow pack facets of the single node fixed-charge flow polytope, Oper Res

Lett 29 (2001), 107–114.

[3] A. Atamtürk and S. Küçükyavuz, Lot sizing with inventory bounds and fixed costs: Poly-

hedral study and computation, Oper Res 53 (2005), 711–730.

[4] D. Bienstock, S. Chopra, O. Günlük, and C.Y. Tsai, Minimum cost capacity installation

for multicommodity network flows, Math Program 81 (1998), 177–199.

[5] M.X. Goemans, Valid inequalities and separation for mixed 0-1 constraints with variable

upper bounds, Oper Res Lett 8 (1989), 315 – 322.

[6] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in

combinatorial optimization, Combinatorica 1 (1981), 169–197.

27

[7] Z. Gu, G.L. Nemhauser, and M.W. Savelsbergh, Lifted flow cover inequalities for mixed

0-1 integer programs, Math Program 85 (1999), 439–467.

[8] O. Günlük, A branch-and-cut algorithm for capacitated network design problems, Math

Program 86 (1999), 17–39.

[9] T. Magnanti, P. Mirchandani, and R. Vachani, The convex hull of two core capacitated

network design problems, Math Program 60 (1993), 233–250.

[10] M.W. Padberg, T.J. Van Roy, and L.A. Wolsey, Valid linear inequalities for fixed charge

problems, Oper Res 33 (1985), 842–861.

[11] J. Stallaert, Valid inequalities and separation for capacitated fixed charge flow problems,

Discr Appl Math 98 (2000), 265 – 274.

[12] T.J. Van Roy and L.A. Wolsey, Valid inequalities and separation for uncapacitated fixed

charge networks, Oper Res Lett 4 (1985), 105 – 112.

[13] T.J. Van Roy and L.A. Wolsey, Valid inequalities for mixed 0-1 programs, Discr Appl

Math 14 (1986), 199 – 213.

[14] T.J. Van Roy and L.A. Wolsey, Solving mixed integer programming problems using auto-

matic reformulation, Oper Res 35 (1987), 45–57.

[15] L.A. Wolsey, Submodularity and valid inequalities in capacitated fixed charge networks,

Oper Res Lett 8 (1989), 119 – 124.

28

A Validity of type 2 inequalities

Let S be a cover, and assume xj = 1 for j ∈ S+
1 ∪S

+
2 ∪S12 and xj = 0 for j ∈ (N+

i \S
+
i)∪N−i ,

i = 1, 2. Under these assumptions, the lifted flow cover inequality for node 2 yields

y(S+
2 ∪S12)+

∑
j∈S12

(c−λ2)(1−xj)+
∑

j∈N12\S12

max{yj−(c−λ2)xj , 0}−
∑
j∈N21

min{yj , λ2xj} ≤ d2.

By adding the flow conservation for node 1, y(S+
1)− y(N12) + y(N21) ≤ d1, we get

y(S+
1 ∪S

+
2)+

∑
j∈S12

(c−λ2)(1−xj)−
∑

j∈N12\S12

min{(c−λ2)xj , yj}+
∑
j∈N21

max{0, yj−λ2xj} ≤ d12.

(21)

The lifting function associated with simultaneously lifting inequality (21) with variables xj

for j ∈ S+
2 and pairs (yj , xj) for j ∈ (N−1 ∪ (N+

1 \ S
+
2)) is given by

f̄2(w2, z2) = min
{
d12 − y(S+

1 ∪ S
+
2)−

∑
j∈S12

(c− λ2)(1− xj)

+
∑

j∈N12\S12

min{(c− λ2)xj , yj} −
∑
j∈N21

max{0, yj − λ2xj}
}

s.t. y(S+
1)− y(N12) + y(N21) ≤ d1 (22)

y(S+
2) + y(N12)− y(N21) ≤ d2 + w2 (23)

y(S+
1) ≤ d1 + λ1 (24)

y(S+
2) ≤ d2 + λ− λ1 − z2 (25)

y(S12) ≤ λ1 + λ2 − λ

0 ≤ yj ≤ xj , xj ∈ {0, 1} j ∈ N12 ∪N21,

where z2 is a nonnegative multiple of the capacity c and stands for the capacity closed on

arcs in S+
2 , w2 ≥ 0 stands for the flow on arcs in N−2 , w2 < 0 stands for the flow on arcs in

N+
2 \S

+
2 . Note that either (22) or (24) is binding (otherwise we can increase y(S+

1) and obtain

a better solution), and either (23) or (25) is binding. We consider then the following four cases,

depending on which equations are binding:

(24) and (25) In this case c(S12)− λ2 + λ = λ1 ≤ y(N12)− y(N21) ≤ λ1 − λ+w2 + z2 (which

implies w2 + z2 ≥ λ). An optimal solution exists by setting y(S12) = λ1, in which case

f̄2(w2, z2) = −λ+ z2.

(24) and (23) In this case an optimal solution exists where y(S+
2) is as high as possible and

y(N12) − y(N21) is as low as possible. Therefore, we have y(S12) = λ1 and y(S+
2) =

d2 − λ1 +w2 (which implies w2 + z2 ≤ λ and is only feasible if d2 − λ1 +w2 ≥ 0). In this

case f̄2(w2, z2) = −w2.

29

(22) and (25) In this case y(N12)−y(N21) ≤ λ1−λ+w2+z2 and y(S+
1) ≤ d1+λ1−λ+w2+z2.

An optimal solution exists where y(S+
1) is as high as possible and, therefore, we have

y(S+
1) = d1 + λ1 − λ + w2 + z2 (which implies w2 + z2 ≤ λ) and y(N12) − y(N21) =

λ1 − λ + w2 + z2. Note that if z2 + w2 ≤ 0 then it may be optimal to sequentially open

arcs in N21∪(N12\S12) or close arcs in S12, but for z2+w2 ≥ 0 we have f̄2(w2, z2) = −w2.

(22) and (23) Since y(S+
1 ∪S

+
2) = d12 +w2 for all values y(N12)− y(N21), an optimal solution

exists where y(N12)− y(N21) is as low as possible. This value is obtained when y(S+
2) is

maximal, and this case reduces to case (22) and (25).

Combining the different cases, we get the lifting function

f̄2(z2, w2) = −w2+



−λ+ z2 + w2 if λ ≤ w2 + z2

0 if 0 ≤ w2 + z2 ≤ λ

iλ2 if −ic ≤ z2 + w2 ≤ −ic+ λ2, i ∈ Z+

−(i− 1)c− z2 − w2 + (i− 1)λ2 if −ic+ λ2 ≤ z2 + w2 ≤ −(i− 1)c, i ∈ Z+.

The exact lifting function f̄2 is not superadditive in R2, but we can use the superadditive valid

lifting function ψ̄(z2, w2) = −w2 + gc−λ,c(z2 + w2) where gc−λ,c is the superadditive function

of Proposition 4. Figure 7 shows gc−λ,c(z2 + w2) and f̄2(z2, w2) + w2. The proof that ψ̄ is

superadditive is analogous to the proof of Proposition 6.

Figure 7: Functions gc−λ,c(z2 + w2) and f̄2(z2, w2) + w2.

Using ψ̄, we get the valid inequality

y(S+
1 ∪ S

+
2) +

∑
j∈S+

2

(c− λ)(1− xj) +
∑

j∈N+
2 \S

+
2

(yj − (c− λ)xj)
+ −

∑
j∈N−2

min{yj , λxj}

+
∑
j∈S12

(c− λ2)(1− xj)−
∑

j∈N12\S12

min{(c− λ2)xj , yj}+
∑
j∈N21

max{0, yj − λ2xj} ≤ d12.

(26)

30

Inequality (26) still assumes xj = 1 for j ∈ S+
1 and yj = 0 for j ∈ (N+

1 \ S
+
1) ∪N−1 .

The lifting function associated with simultaneously lifting (26) with variables xj for j ∈ S+
1

and pairs (yj , xj) for j ∈ (N+
1 \ S

+
1) ∪N−1 is given by

f̄1(z1, w1) = min
{
d12 − y(S+

1 ∪ S
+
2)−

∑
j∈S+

2

(c− λ)(1− xj)−
∑

j∈N+
2 \S

+
2

(yj − (c− λ)xj)
+

+
∑
j∈N−2

min{yj , λxj} −
∑
j∈S12

(c− λ2)(1− xj) +
∑

j∈N12\S12

min{(c− λ2)xj , yj}

−
∑
j∈N21

max{0, yj − λ2xj}
}

s.t. y(S+
1)− y(N12) + y(N21) ≤ d1 + w1

y(N+
2)− y(N−2) + y(N12)− y(N21) ≤ d2

y(S+
1) ≤ d1 + λ1 − z1

y(S+
2) ≤ d2 + λ− λ1

y(S12) ≤ λ1 + λ2 − λ

0 ≤ yj ≤ xj , xj ∈ {0, 1} j ∈ N12 ∪N21 ∪N+
2 ∪N

−
2 ,

where z1 is a nonnegative multiple of the capacity and stands for the capacity closed on S+
1 ,

w1 ≥ 0 stands for y(N−1) and w1 < 0 stands for y(N+
1 \ S

+
1).

Let

γ12(a) = min
{
−
∑
j∈S12

(c− λ2)(1− xj) +
∑

j∈N12\S12

min{(c− λ2)xj , yj}

−
∑
j∈N21

max{0, yj − λ2xj}
}

s.t. y(N12)− y(N21) = a

be the contribution of the arcs in N12 ∪N21 to the objective of the lifting function, given that

the flow on these arcs is a. Note that for λ1 − λ ≤ a ≤ λ1 + λ2 − λ there exists an optimal

solution where y(S12) = a, x(N21 ∪ N12 \ S12) = 0, and γ12(a) = 0. If a > λ1 + λ2 − λ then

we need to sequentially open arcs in N12 \ S12, and for a < λ1 − λ it is optimal to sequentially

open arcs in N21 or close arcs in S12. We find that

γ12(a) =

i(c− λ2) if λ1 − λ+ ic ≤ a ≤ λ1 − λ+ ic+ λ2, i ∈ Z

a− λ1 + λ− ic− λ2 + i(c− λ2) if λ1 − λ+ ic+ λ2 ≤ a ≤ λ1 − λ+ (i+ 1)c, i ∈ Z.

31

Moreover let

γ2(a) = min
{
− y(S+

2)−
∑
j∈S+

2

(c− λ)(1− xj)−
∑

j∈N+
2 \S

+
2

(yj − (c− λ)xj)
+

+
∑
j∈N−2

min{yj , λxj}
}

s.t. y(N+
2)− y(N−2) = a

be the contribution of the arcs in N+
2 ∪N

−
2 to the objective of the lifting function, given that

the flow on these arcs is a. Note that for d2 − λ1 ≤ a ≤ d2 − λ1 + λ there exists an optimal

solution where y(S+
2) = a, x(N−2 ∪ N

+
2 \ S

+
2) = 0, and γ2(a) = −a. If a > d2 − λ1 + λ then

we need to sequentially open arcs in N+
2 \ S

+
2 , and for a < d2 − λ1 it is optimal to sequentially

open arcs in N−2 or close arcs in S+
2 . Therefore

γ2(a) = −(d2−λ1)+

−(a− d2 + λ1 − ic)− iλ if d2 − λ1 + ic ≤ a ≤ d2 − λ1 + ic+ λ, i ∈ Z

−(i+ 1)λ if d2 − λ1 + ic+ λ ≤ a ≤ d2 − λ1 + (i+ 1)c, i ∈ Z.

Now in the lifting problem, for a fixed value of y(S+
1) = y, an optimal solution exists where

y(N12)− y(N21) is as low as possible (y(N12)− y(N21) = y − d1 − w1) and y(N+
2)− y(N−2) is

as high as possible (y(N+
2)− y(N−2) = d12 + w1 − y). In this case,

f̄1(z1, w1) = d12 + min
0≤y≤d1+λ1−z1

{−y + γ12(y − d1 − w1) + γ2(d12 + w1 − y)}

= d12 + min
0≤y≤d1+λ1−z1

i(λ− λ2)− d12 − w1 if λ2 − λ+ (i− 1)c ≤ y − d1 − w1 − λ1 ≤ ic

−y + ic+ i(λ− λ2)− d2 + λ1 if ic ≤ y − d1 − w1 − λ1 ≤ ic+ λ2 − λ,

where i ∈ Z. The inner function is nonincreasing in y and, therefore, the minimum is attained

at y = d1 + λ1 − z1. We get

f̄1(z1, w1) = −w1 +

i(λ2 − λ) if ic ≤ z1 + w1 ≤ λ− λ2 + (i+ 1)c

z1 + w1 − ic+ i(λ2 − λ) if ic+ λ− λ2 ≤ z1 + w1 ≤ ic,

which is of the form −w1 + gλ2−λ,c(z1 + w1) and is superadditive in R2. Using f̄1, we get the

three-partition flow cover inequalities

y(S+
1 ∪ S

+
2) +

∑
j∈S+

1

(λ2 − λ)(1− xj) +
∑

j∈N+
1 \S

+
1

(yj − (λ2 − λ)xj)
+ −

∑
j∈N−1

min{yj , (c− (λ2 − λ))xj}

+
∑
j∈S+

2

(c− λ)(1− xj) +
∑

j∈N+
2 \S

+
2

(yj − (c− λ)xj)
+ −

∑
j∈N−2

min{yj , λxj}

+
∑
j∈S12

(c− λ2)(1− xj) +
∑
j∈N21

max{0, yj − λ2xj} −
∑

j∈N12\S12

min{yj , (c− λ2)xj} ≤ d12.

(27)

32

