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conic constraint over binary variables and unbounded continuous variables.

We then generalize and strengthen the inequalities using other constraints of

the optimization problem. Computational experiments for second order conic
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(non-diagonal) case and lead to significant performance improvements.
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1. Introduction

Second order conic mixed-integer optimization is a problem of the form

min f ′x+ g′z

(SOCMIO) s.t.
√
x′Qix ≤ zi, i = 1, . . . , ` (1)

(x, z) ∈ X ⊆ Zn+ × Rm+ × R`+

where Qi � 0 for i = 1, . . . , `. We refer to inequalities (1) as the second order conic

constraints. Many design and estimation optimization problems are modeled as

SOCMIO (Lobo et al. 1998, Alizadeh and Goldfarb 2003, Atamtürk et al. 2012). In

particular, second order conic constraints are frequently used to model probabilistic

optimization with Gaussian distributions (Birge and Louveaux 2011) and robust

optimization problems with ellipsoidal uncertainty sets (Ben-Tal and Nemirovski

1998, 1999, Ben-Tal et al. 2009).

Linear mixed-integer optimization (LMIO) is a special case of SOCMIO. Strong

formulations have proven to be one of the critical components in solving LMIO,

and state-of-the-art solvers for LMIO employ a variety of valid inequalities as cut-

ting planes. However, relatively few classes of strong valid inequalities are known

to strengthen the convex relaxations of SOCMIO and, more generally, nonlinear

mixed-integer optimization.

General valid inequalities for convex nonlinear and/or conic mixed-integer opti-

mization include intersection cuts, disjunctive cuts, and lift-and-project cuts (Ceria

and Soares 1999, Stubbs and Mehrotra 1999). Çezik and Iyengar (2005) discuss

Gomory cuts for general conic optimization problems. Atamtürk and Narayanan

(2010) give conic MIR cuts for conic mixed-integer optimization and Atamtürk and

Narayanan (2011) study lifting for conic mixed-integer optimization. Dadush et al.

(2011) investigate the split closure of a convex set. Belotti et al. (2015) study the

intersection of a convex set and a linear disjunction. Kılınç et al. (2010) and Bonami

(2011) discuss the separation of split cuts using outer approximations and nonlinear

programming, respectively. Kılınç-Karzan and Yıldız (2015) study disjunctions on

the second order cone.

Another stream of research involves generating strong cuts by exploiting struc-

tured sets as it is common for the linear integer case. Although the applicability of

such cuts is restricted to certain classes of sets, they tend to be far more effective

than the general cuts that ignore any special structure. Aktürk et al. (2009, 2010)

give second-order representable perspective cuts for a nonlinear scheduling problem

with variable upper bounds, which are generalized further by Günlük and Linderoth

(2010). Ahmed and Atamtürk (2011) give strong lifted inequalities for maximizing

a submodular concave utility function. Atamtürk and Narayanan (2009), Atamtürk
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and Bhardwaj (2015) study binary knapsack sets defined by a single second-order

conic constraint. Modaresi et al. (2016) derive closed form intersection cuts for a

number of structured sets.

To goal of the current paper is to contribute to the understanding of convex hull

of simple conic mixed-integer sets that form the building blocks of more general

constraint sets as relaxations. In a related paper, Atamtürk and Narayanan (2008)

give extended polymatroid inequalities for second order conic constraints (1) with

diagonal Qi matrices on binary variables, and show that these inequalities describe

the convex hull in that case. In this paper, we first extend their results to the mixed-

binary case and show that a nonlinear generalization of the polymatroid inequalities

is sufficient to describe the convex hull for the mixed-binary case with unbounded

continuous variables. We then show how additional constraints, in particular, the

upper bounds on the continuous variables, can be used to further generalize and

strengthen the first class of inequalities. Interestingly, although the inequalities are

derived for the diagonal case, they can be applied to the non-diagonal case as well

through a suitable relaxation. Computational experiments indicate that the derived

inequalities are quite effective for the diagonal and as well as the non-diagonal cases.

We should note that utilizing the diagonal entries of matrices is standard for con-

structing convex relaxations in quadratic optimization (e.g. Poljak and Wolkowicz

1995, Anstreicher 2012). In particular, for x ∈ {0, 1}n, we have

x′Qx ≤ z ⇐⇒ x′(Q− diag(a))x+ a′x ≤ z

with a ∈ Rn such that Q− diag(a) � 0. This transformation is based on the ideal

(convex hull) representation of the separable quadratic term x′diag(a)x as a′x for

x ∈ {0, 1}n.

A similar approach is also available for convex quadratic optimization with in-

dicator constraints. For x ∈ {0, 1}n and y ∈ Rn s.t. ` ◦ x ≤ y ≤ u ◦ x, we have

y′Qy ≤ z ⇐⇒ y′(Q− diag(a))y + a′t ≤ z, y2
i ≤ xiti

with t ∈ Rn+ (e.g. Aktürk et al. 2009, Günlük and Linderoth 2010). This trans-

formation is based on the ideal representation of each quadratic term aiy
2
i subject

to indicator constraints as a linear term aiti along with a rotated cone constraint

y2
i ≤ xiti.

Since in the conic quadratic constraint (1), the terms are not separable even

for the diagonal case, simple transformations as in the quadratic cases above are

not sufficient to arrive at an ideal formulation. We show that it is necessary to

exploit the submodularity of the underlying set function to arrive at the ideal

representations.
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The rest of the paper is organized as follows. In Section 2 we introduce the nota-

tion used throughout the paper and review the results of Atamtürk and Narayanan

(2008). In Section 3 we give the complete convex hull description of a single mixed-

binary conic constraint. In Section 4 we study mixed-binary conic constraints with

upper bounds on the continuous variables. In Section 5 we show how to include

additional constraints to generalize and strengthen the inequalities. In Section 6

we report on a computational study done to test the effectiveness of the proposed

inequalities for solving SOCMIO, including instances with non-diagonal matrices.

2. Preliminaries

2.1. Notation. Let x denote an n-dimensional vector of binary variables, y denote

an m-dimension vector of continuous variables, and c and d be nonnegative vectors

of dimension n and m, respectively, σ ≥ 0 be a constant. Define N = {1, . . . , n}
and M = {1, . . . ,m}. Let conv(X) denote the convex hull of X.

For p > 1 and y ≥ 0, we study a p-order conic constraint of the form

p
√∑
i∈N

cix
p
i +

∑
i∈M

diy
p
i ≤ z, (2)

where the second order conic constraint corresponds to the case p = 2. Throughout,

instead of the convex inequality (2) we will use

p
√∑
i∈N

cixi +
∑
i∈M

diy
p
i ≤ z. (3)

Constraint (3) is equivalent to (2) over binary x, but it is stronger over the con-

tinuous relaxation of x since xpi = xi for xi ∈ {0, 1}, but xpi < xi for xi ∈ (0, 1).

Inequality (3) is concave in x, but convex in y. We will exploit both the concavity

on x and the convexity on y.

2.2. Previous work. In this section we state, without proof, the main results of

Atamtürk and Narayanan (2008) for the set

Kσ =

(x, z) ∈ {0, 1}n × R+ :
p
√
σ +

∑
i∈N

cixi ≤ z

 .

For a given a permutation ((1), (2), . . . , (n)) of N , let

σ(k) = σ +

k−1∑
i=1

c(i), and

π(k) = p
√
c(k) + σ(k) − p√σ(k). (4)
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and define the extended polymatroid inequality as

p√
σ +

n∑
i=1

π(i)x(i) ≤ z. (5)

Let Πσ be the set of such coefficient vectors π for all permutations of N .

Proposition 1 (Convex hull of Kσ).

conv(Kσ) =
{

(x, z) ∈ [0, 1]n × R+ :
p√
σ + π′x ≤ z, ∀π ∈ Πσ

}
.

The set function defining Kσ is submodular; therefore, Πσ form the extreme

points of an extended polymatroid. Since the maximization of a linear function

over an extended polymatroid can be solved by the greedy algorithm (Edmonds

1970), a point x̄ ∈ Rn+ can be separated from conv(Kσ) via the greedy algorithm

by sorting x̄i in non-increasing order in O(n log n).

Proposition 2 (Separation). A point x̄ 6∈ conv(Kσ) such that x̄(1) ≥ x̄(2) ≥ . . . ≥
x̄(n) is separated from conv(Kσ) by inequality (5).

Atamtürk and Narayanan (2008) also consider a mixed-integer extension and

give valid inequalities for the mixed-integer set

Lσ =

(x, y, z) ∈ {0, 1}n × [0, 1]m × R+ :
p
√
σ +

∑
i∈N

cixi +
∑
i∈M

diy
p
i ≤ z

 .

Without loss of generality, the upper bounds of the continuous variables in Lσ are

set to one by scaling. For T ⊆M , define d(T ) :=
∑
i∈T di.

Proposition 3 (Valid inequalities for Lσ). For T ⊆M inequalities

p
√
σ +

∑
i∈T

diy
p
i + π′x ≤ z, π ∈ Πσ+d(T ) (6)

are valid for Lσ.

Inequalities (6) are obtained by setting the subset T of the continuous variables

to their upper bounds and relaxing the rest and they dominate any inequality of

the form
p
√
σ +

∑
i∈T

diy
p
i + ξ′x ≤ z

with ξ ∈ Rn.

Finally, note that the optimization of a linear function over Lσ:

min{a′x+ b′y + z : (x, y, z) ∈ Lσ} (7)

is solvable in polynomial time: For a fixed value of x, problem (7) reduces to

a (convex) conic quadratic optimization problem in y that can be solved easily.
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On the other hand, for fixed a value of y problem (7) reduces to a submodular

minimization problem that can be solved by the greedy algorithm (Shen et al.

2003). Without loss of generality, assume that ci > 0 for all i, as otherwise xi can

be set to either 0 or 1, depending on the sign of ai. Index the binary variables so that
a1
c1
≤ . . . ≤ an

cn
(breaking ties arbitrarily) and let Si = {1, . . . , i} for i = 1, 2, . . . , n.

There exists an optimal solution (x∗, y∗) to (7) such that x∗k = 1 if k ∈ Si for some

i = 1, . . . , n, and x∗k = 0 otherwise. Thus, problem (7) can be solved by fixing the

binary variables according to sets Si one at a time and then solving the remaining

conic quadratic optimization problem in polynomial time.

3. Conic constraint with unbounded continuous variables

In this section we consider the mixed-integer set

Hσ =

(x, y, z) ∈ {0, 1}n × Rm+1
+ :

p
√
σ +

∑
i∈N

cixi +
∑
i∈M

diy
p
i ≤ z

 .

Note that Hσ is the relaxation of Lσ by dropping the upper bounds on the con-

tinuous variables y. Thus, the only class of valid inequalities of type (6) are the

extended polymatroid inequalities

p√
σ + π′x ≤ z, ∀π ∈ Πσ

from the “binary-only” relaxation by letting T = ∅. Here, we define a new class of

nonlinear valid inequalities for Hσ and prove that they are sufficient to define its

convex hull.

Consider the inequalities

p
√( p√

σ + π′x
)p

+
∑
i∈M

diy
p
i ≤ z, π ∈ Πσ. (8)

Proposition 4. Inequalities (8) are valid for Hσ.

Proof. Consider the extended formulation of Hσ given by

Ĥσ =

(x, y, z, s) ∈ {0, 1}n × Rm+2
+ :

p
√
sp +

∑
i∈M

diy
p
i ≤ z,

p
√
σ +

∑
i∈N

cixi ≤ s

 .

The validity of inequalities (8) for Hσ follows directly from the validity of the

extended polymatroid inequality
p√
σ+π′x ≤ s, π ∈ Πσ (Proposition 1) for Ĥσ. �

Remark 1. For M = ∅ inequalities (8) reduce to the extended polymatroid inequal-

ities (5).

Remark 2. Although inequalities (8) are nonlinear in the original space of variables,

they can be represented as linear inequalities in the extended formulation Ĥσ. Such
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a representation is desirable when they are used as cutting planes in branch-and-cut

algorithms.

Remark 3. Since inequalities (8) correspond to extended polymatroid inequalities

in an extended formulation, the separation for them is the same as in the binary

case and can be done by sorting in O(n log n) (Proposition 2).

Proposition 5. Inequalities (8) and the bound constraints describe conv(Hσ).

Proof. Consider the optimization of an arbitrary linear function over the convex

relaxation of Ĥσ:

min − a′x− b′y + rz (9)

(P1) s.t.
p
√
sp +

∑
i∈M

diy
p
i ≤ z (10)

p√
σ + π′x ≤ s, ∀π ∈ Πσ (11)

x ∈ [0, 1]n, y ∈ Rm+ , z ≥ 0, s ≥ 0. (12)

Note that the constraint p
√
σ +

∑
i∈N cixi ≤ s in Ĥσ is implied by inequalities (11).

We prove that for any linear objective (P1) is either unbounded or has an optimal

solution that is integer in x.

Without loss of generality, we can assume that r > 0 (if r < 0 then the problem

is unbounded, and if r = 0 then (P1) reduces to a linear program over an integral

polyhedron), r = 1 (by scaling), ai, bi > 0 (otherwise xi = 0 or yi = 0 in any

optimal solution), and di = 1 for all i ∈M (by scaling yi). Eliminating the variable

z from (P1) we rewrite the problem as

min − a′x− b′y +
p
√
sp +

∑
i∈M

ypi

(P2) s.t.
p√
σ + π′x ≤ s, ∀π ∈ Πσ

x ∈ [0, 1]n, y ∈ Rm+ , s ≥ 0.

Let µ ∈ Rm+ be the dual variables for constraints y ≥ 0. From the KKT conditions

of (P2) with respect to y, we see that

−µk = bk −

(
sp +

∑
i∈M

ypi

) 1−p
p

yp−1
k , ∀k ∈M.

However, the complementary slackness conditions ykµk = 0 imply that µk = 0

for all k, as otherwise −µk = bk contradicts with the assumption that bk > 0.

Therefore, it holds that

yk =
p−1
√
bk ·

p
√
sp +

∑
i∈M

ypi , ∀k ∈M.
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Defining β =
∑m
i=1 b

p
p−1

i , we have∑
i∈M

biyi = β p

√
sp +

∑
i∈M

ypi

and ∑
i∈M

ypi = β

(
sp +

∑
i∈M

ypi

)
. (13)

Observe that if β > 1, equality (13) cannot be satisfied, and the feasible (P2) is

dual infeasible, therefore, unbounded. Moreover, if β = 1 then either the problem

is unbounded or s = 0 in any optimal solution, which implies that x = 0 and all

optimal solutions are integral in x. Finally, if β < 1, we deduce from (13) that∑
i∈M

ypi =
β

1− β
sp.

Replacing the summands in the objective, we rewrite (P2) as

min − a′x+ (1− β)
p−1
p s

(P3) s.t.
p√
σ + π′x ≤ s, ∀π ∈ Πσ

x ∈ [0, 1]n, s ≥ 0.

As β < 1, (P3) has an optimal solution and, by Proposition 1, it is integral in x. �

4. Conic constraint with bounded continuous variables

In this section we study the set Lσ, the generalization of Kσ with upper bounded

continuous variables. As Example 1 illustrates, conv(Lσ) is significantly more dif-

ficult to describe than conv(Hσ).

Example 1. Consider the three-dimensional set given by

L2
σ =

{
(x, y, z) ∈ {0, 1} × [0, 1]× R+ :

√
σ + cx+ dy2 ≤ z

}
.

We show in Appendix A that

conv(L2
σ) = {(x, y, z) ∈ [0, 1]× [0, 1]× R+ : g(x, y) ≤ z} ,

where

g(x, y) =

g1(x, y) =

√(√
σ + x(

√
c+ σ −

√
σ)
)2

+ dy2 if y ≤ x+ (1− x)
√

σ
σ+c

g2(x, y) =
√
σ(1− x)2 + d(y − x)2 + x

√
σ + c+ d otherwise.

Observe that the inequality g1(x, y) ≤ z is a particular case of (8). The difficul-

ties arise with the function g2:

(a) The discrete and continuous variables are tied together in the term√
σ(1− x)2 + d(y − x)2.
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(b) The inequality g2(x, y) ≤ z is not valid. In particular, it cuts off the feasible

point (x, y, z) = (1, 0,
√
σ + c). Moreover, the inequality g2(x, y) ≤ z cuts

off portions of conv(L2
σ) whenever y ≤ x+ (1− x)

√
σ√
σ+c

.

(c) The condition y ≤ x+ (1− x)
√
σ√
σ+c

depends both on x and y.

Figure 1 shows functions g1 and g2 for a fixed value of x, and illustrates point

(b) above. We see that the function g2 is always “above” the function g1, and cuts

the convex hull of L2
σ (the shaded region) whenever y ≤ x+ (1− x)

√
σ√
σ+c

.

Figure 1. Funcs. g1, g2 with σ = d = 1, c = 2, restricted to x = 0.5.

We now give valid inequalities for conv(Lσ). For T ⊆M , consider the inequalities

p

√√√√√
 p
√
σ +

∑
i∈T

diy
p
i + π′x

p

+
∑

i∈M\T

diy
p
i ≤ z, π ∈ Πσ+d(T ). (14)

Proposition 6. Inequalities (14) are valid for Lσ.

Proof. For T ⊆M , let

Lσ(T ) =

(x, y) ∈ {0, 1}n × [0, 1]m, s ≥ 0 :
p
√
σ +

∑
i∈N

cixi +
∑
i∈T

diy2
i ≤ s

 ,

and consider the extended formulation of Lσ given by

L̂σ =

(x, y, s) ∈ Lσ(T ), z ≥ 0 :
p
√
sp +

∑
i∈M\T

diy
p
i ≤ z

 .

The validity of inequalities (14) for Lσ follows from the validity of

p
√
σ +

∑
i∈T

diy
p
i + π′x ≤ s, π ∈ Πσ+d(T ) (15)
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for Lσ(T ) (Proposition 6). �

Remark 4. If T = ∅, then inequalities (14) coincide with inequalities (8). If T = M ,

then inequalities (14) coincide with inequalities (6). If T ⊂ M , then inequalities

(14) dominate inequalities (6).

Remark 5. Inequalities (14) are convex, since they correspond to the projection of

convex inequalities (15) in an extended formulation.

Example 2. Consider the set

L6
0 =

(x, y, z) ∈ {0, 1}4 × [0, 1]2 × R+ :

√√√√ 4∑
i=1

xi + y2
1 + y2

2 ≤ z

 .

For the permutation (1,2,3,4) inequalities (14) are

T = ∅:
√

(x1 + 0.41x2 + 0.32x3 + 0.27x4)2 + y2
1 + y2

2 ≤ z,
T = {1}:

√
(0.41x1 + 0.32x2 + 0.27x3 + 0.24x4 + y1)2 + y2

2 ≤ z,
T = {1, 2}: 0.32x1 + 0.27x2 + 0.24x3 + 0.21x4 +

√
y2

1 + y2
2 ≤ z.

Observe that for T = ∅ and T = {1}, the resulting inequalities dominate the corre-

sponding inequalities obtained from (6), given by x1 +0.41x2 +0.32x3 +0.27x4 ≤ z
and 0.41x1 + 0.32x2 + 0.27x3 + 0.24x4 + y1 ≤ z, respectively.

Example 1 (Continued). We obtain from (14) the valid inequality

g3(x, y) =
√
σ + dy2 + x

(√
σ + c+ d−

√
σ + d

)
≤ z

for L2
σ. Observe that if σ = 0, then g1(x, y) ≤ z, g3(x, y) ≤ z and the bound

constraints give a complete description of conv(L2
σ) since

g3(x, y) =
√
dy + x

(√
c+ d−

√
d
)

=
√
d (|y − x|) + x

√
σ + c+ d = g2(x, y)

whenever y ≥ x + (1 − x)
√

σ
σ+c = x. If σ > 0, then g3(x, y) ≤ z is valid and

provides an approximation of conv(L2
σ) (Figure 2).

5. Strengthened polymatroid inequalities

The polymatroid inequalities of Sections 3 and 4 use the conic constraint and the

bounds of the variables. In this section we show how to strengthen the polymatroid

inequalities using additional constraints. In particular, given any mixed-integer set

X ⊆ {0, 1}n × Rm+ , we consider the generalization

Gσ =

(x, y) ∈ X, z ≥ 0 :
p
√
σ +

∑
i∈N

cixi +
∑
i∈M

diy
p
i ≤ z

 .
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Figure 2. Functions g1, g2, g3 with σ = d = 1, c = 2, restricted

to x = 0.5.

First, in Section 5.1 we describe a lifting procedure for obtaining valid inequalities

for Gσ, where computing each coefficient requires solving an integer optimization

problem. Then, in Section 5.2 we discuss how the strengthened polymatroid in-

equalities can be efficiently implemented in practice.

5.1. Valid inequalities for Gσ. For a given a permutation ((1), (2), . . . , (n)) of

N and T ⊆M , let

hk(x, y) = σ +

k−1∑
i=1

c(i)x(i) +
∑
i∈T

diy
p
i

σ̄(k) = max {hk(x, y) : (x, y) ∈ X,xk = 1} , and (16)

ρ(k) =

 p
√
c(k) + σ̄(k) − p

√
σ̄(k) if σ̄(k) <∞

0 otherwise.
(17)

Consider the inequality

p
√√√√√
 p
√
σ +

∑
i∈T

diy
p
i +

n∑
i=1

ρ(i)x(i)

p

+
∑

i∈M\T

diy
p
i ≤ z. (18)

Proposition 7. Inequalities (18) are valid for Gσ.

Proof. Let

Gσ(T ) =

(x, y) ∈ X, s ≥ 0 :
p
√
σ +

∑
i∈N

cixi +
∑
i∈T

diy
p
i ≤ s

 ,
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and consider the extended formulation of Gσ given by

Ĝσ =

(x, y, s) ∈ Gσ(T ), z ≥ 0 :
p
√
sp +

∑
i∈M\T

diy
p
i ≤ z

 .

To prove the validity of (18) for Gσ, it is sufficient to show that

p
√
σ +

∑
i∈T

diy
p
i +

n∑
i=1

ρ(i)x(i) ≤ s (19)

is valid for Gσ(T ). In particular, we prove by induction that

p
√
σ +

∑
i∈T

diy
p
i +

k∑
i=1

ρ(i)x(i) ≤
p
√√√√σ +

k∑
i=1

c(i)x(i) +
∑
i∈T

diy
p
i (20)

for all (x, y) ∈ X and k = 0, . . . , n.

Base case: k = 0. Inequality (20) holds trivially.

Inductive step. Let (x̄, ȳ) ∈ X, and suppose inequality (20) holds for k−1. Observe

that if x̄(k) = 0 or ρ(k) = 0, then inequality (20) clearly holds for k. Therefore,

assume that x̄(k) = 1 and σ̄(k) <∞. We have

p
√√√√σ +

k∑
i=1

c(i)x̄(i) +
∑
i∈T

diȳ
p
i =

p√
hk(x̄, ȳ) + c(k)

=
p√
hk(x̄, ȳ) +

( p√
hk(x̄, ȳ) + c(k) −

p√
hk(x̄, ȳ)

)
≥

p√
hk(x̄, ȳ) +

(
p√
σ̄(k) + c(k) −

p√
σ̄(k)

)
(21)

≥
p
√
σ +

∑
i∈T

diȳ
p
i +

k∑
i=1

ρ(i)x̄(i), (22)

where (21) follows from σ̄(k) ≥ hk(x̄, ȳ) (by definition of σ̄(k)) and from the con-

cavity of the root function, and (22) follows from
p
√
hk(x̄, ȳ) ≥

p√
σ +

∑
i∈T diȳ

p
i +∑k−1

i=1 ρ(i)x̄(i) (induction hypothesis) and from the definition of ρ(k). �

Example 2 (Continued). LetX6 =

{
(x, y) ∈ {0, 1}4 × [0, 1]2 :

4∑
i=1

xi + y1 + y2 ≤ 3

}
and consider the set G6

0 = L6
0 ∩X6. For the permutation (1,2,3,4) inequalities (18)

are

T = ∅:
√

(x1 + 0.41x2 + 0.32x3 + 0.32x4)2 + y2
1 + y2

2 ≤ z,
T = {1}:

√
(0.41x1 + 0.32x2 + 0.32x3 + 0.32x4 + y1)2 + y2

2 ≤ z,
T = {1, 2}: 0.32x1 + 0.32x2 + 0.32x3 + 0.32x4 +

√
y2

1 + y2
2 ≤ z.

Observe that, in all cases, the resulting inequalities dominate the corresponding

inequalities obtained from (14).
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Remark 6. If T = ∅ and X = {0, 1}n × Rm+ , then inequalities (18) reduce to

inequalities (8). If T = ∅ and X ⊂ {0, 1}n × Rm+ , then inequalities (18) dominate

inequalities (8).

Remark 7. If X = {0, 1}n × [0, 1]m, then inequalities (18) reduce to inequalities

(14). If X ⊂ {0, 1}n × [0, 1]m, then inequalities (18) dominate inequalities (14).

5.2. Computational efficiency. Note that computing each coefficient of inequal-

ity (18) requires solving the integer optimization problem (16), which may not be

practical in most cases. However, observe from Remarks 6 and 7 that solving the

optimization problem over any relaxation of X results in valid inequalities at least

as strong as the ones resulting from using only the bounds constraints.

In particular, assume in problem (16) that for i ∈ T there exists ui ≥ 0 such

that yi ≤ ui (otherwise the problem is unbounded and ρi = 0) and ui = 1 (by

scaling). Moreover let XP be a polytope such that X ⊆ XP . Convex constraints

can also be included in XP by using a suitable linear outer approximation (Ben-Tal

and Nemirovski 2001, Tawarmalani and Sahinidis 2005, Hijazi et al. 2013, Vielma

et al. 2015, Lubin et al. 2016).

Given XP , the approximate coefficients

ρ̂(k) =
p
√
c(k) + σ̂(k) −

p
√
σ̂(k), with (23)

σ̂(k) = σ + max

{
k−1∑
i=1

c(i)x(i) +
∑
i∈T

diyi : (x, y) ∈ XP , xk = 1

}

can be computed efficiently by solving a linear program. Moreover, the linear

program required to compute σ̂(k) differs from the one required for σ̂(k−1) in two

bound constraints, corresponding to x(k−1) and x(k), and one objective coefficient,

corresponding to x(k−1). Therefore, using the simplex method with warm starts,

each σ̂(k) can be computed efficiently, using only a small number of simplex pivots.

6. Computational experiments

In this section we report computational experiments performed to test the ef-

fectiveness of the polymatroid inequalities in solving SOCMIO problems with a

branch-and-cut algorithm. In Section 6.1 we test the inequalities introduced in

Sections 3 and 4 on problems with bounded continuous variables, in Section 6.2

we test the strengthened polymatroid inequalities introduced in Section 5 for prob-

lems with cardinality constraints, and finally in Section 6.3 we combine the ideas

presented in the paper to solve instances with nondiagonal quadratic terms. All

experiments are done using CPLEX 12.6.2 solver on a workstation with a 2.93GHz

Intel R©CoreTM i7 CPU and 8 GB main memory and with a single thread. The
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time limit is set to two hours and CPLEX’ default settings are used unless spec-

ified otherwise. The inequalities are added only at the root node using callback

functions.

6.1. Instances with bounded continuous variables. In this section we test the

effectiveness of the polymatroid inequalities (8) and (14) in solving optimization

problems of the form

min{−a′x− b′y + Ωz : (x, y, z) ∈ Lσ} (24)

with σ = 0 and compare them with default CPLEX with no user cuts. For two

numbers ` < u, let U [`, u] denote the continuous uniform distribution between

` and u. The data for the model is generated as follows: ai ∼ U [0, 1],
√
ci ∼

U [0.85ai, 1.15ai] for i ∈ N , bj ∼ U [0, 1],
√
dj ∼ U [0.85bj , 1.15bj ] for j ∈M , and Ω

is the solution1 of

−a(N)− b(M) + Ω
√
c(N) + d(M) = 0.

Inequalities (8) are added as linear cuts in an extended formulation, as described

in Remark 2. For p = 2, inequalities (14) are of the form f(x, y) ≤ z, where

f(x, y) =

√√√√√
√σ +

∑
i∈T

diy2
i + π′x

2

+
∑

i∈M\T

diy2
i .

As only linear inequalities can be added through callbacks in CPLEX (as of version

12.6.2), we utilize the gradient inequalities for (14). Thus, given a fractional solution

(x̄, ȳ), we add the linear underestimator g(x, y) ≤ z, where

g(x, y) = f(x̄, ȳ) +∇xf(x̄)′(x− x̄) +∇yf(ȳ)′(y − ȳ).

In particular, we have that

g(x, y) = ψ +
1

ψ

ηπ′(x− x̄) + ζ
∑
i∈T

diȳi(yi − ȳi) +
∑

i∈M\T

diȳi(yi − ȳi)

 ,

where

η =

√
σ +

∑
i∈T

diȳ2
i + π′x̄,

ζ =
η√

σ +
∑
i∈T diȳ

2
i

,

ψ =

√
η2 +

∑
i∈M\T

diȳ2
i .

1This choice of Ω ensures that the linear and nonlinear components are well-balanced, resulting

in challenging instances with large integrality gap.
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A greedy heuristic is used to choose T ⊆ M for inequalities (14): if ȳ satisfies

ȳ(1) ≥ ȳ(2) ≥ . . . ≥ ȳ(m), then we check for violation inequalities for each Ti of the

form Ti = {(1), (2), . . . , (i)} for i = 0, . . . ,m. When adding the gradient inequalities

corresponding to (14), CPLEX’ barrier algorithm is found to be more effective than

using the default setting to solve the subproblems of the branch-and-bound tree.

Therefore, we report the results for inequalities (14) with the barrier algorithm.

Table 1 presents the results for n = 100. Each row represents the average

over five instances generated with the same parameters and shows the number of

continuous variables (m), the initial gap (igap), the root gap improvement (rimp),

the number of nodes explored (nodes), the time elapsed in seconds (time), and

the end gap (egap)[in brackets, the number of instances solved to optimality (#)].

The initial gap is computed as igap =
topt−trelax
|topt| × 100, where topt is the objective

value of the best feasible solution at termination and trelax is the objective value

of the continuous relaxation. The end gap is computed as egap =
topt−tbb
|topt| × 100,

where tbb is the objective value of the best lower bound at termination. The root

improvement is computed as rimp = troot−trelax
topt−trelax × 100, where troot is the value of

the continuous relaxation after adding the valid inequalities to the formulation.

Table 1. Experiments with bounded continuous variables.

m igap
cpx inequality (8) inequality (14) (barrier)

rimp nodes time egap[#] rimp nodes time egap[#] rimp nodes time egap[#]

20 1,554.7 0.0 283,747 420 0.0[5] 90.4 19,976 628 0.0[5] 99.5 316 25 0.0[5]
50 724.6 0.0 1,887,926 2,223 0.0[5] 79.4 1,206,283 5,770 65.4[1] 98.8 1,635 857 0.0[5]
100 267.8 0.0 982,945 5,343 16.1[2] 70.1 615,494 7,200 54.6[0] 98.7 1,506 2,959 2.0[3]

Average 0.0 1,051,539 2,662 5.4[12] 80.0 613,918 4,533 40.0[6] 99.0 1,152 1,280 0.7[13]

We observe in Table 1 that the use inequalities (8), which do not exploit the upper

bounds of the continuous variables, close 80.0% of the initial gap on average, but

the gap improvement does not translate to better solution times or end gaps. On

the other hand, inequalities (14), which exploit the upper bounds of the continuous

variables, close 99% of the initial gap on average. This improves the performance

of the algorithm substantially, reducing the average solution time by half and the

end gap from from 5.4% to 0.7%.

6.2. Instances with a cardinality constraint. In this section we test the value

of strengthening the polymatroid inequalities utilizing additional problem con-

straints. To do so, we solve optimization problems with a cardinality constraint:

min
x∈{0,1}n

{
−a′x+ Ω

√
c′x :

n∑
i=1

xi ≤ k

}
, (25)

where a and c are generated as in Section 6.1 and Ω = Φ−1(α), where Φ is the cumu-

lative distribution function of the normal distribution and α ∈ {0.95, 0.975, 0.99}.
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We set n = 200, and set k to be 15%, 20% and 25% of the total number of variables.

Inequalities (5) and (18) are compared with default CPLEX. The coefficients of in-

equalities (18) are computed using linear programming with warm starts as outlined

in Section 5.2—observe that, in this case, the coefficients (23) coincide with (17)

since the feasible region is an integral polytope.

Table 2. Experiments with cardinality constraints.

k α igap
cpx inequality (5) inequality (18)

rimp nodes time egap[#] rimp nodes time egap[#] rimp nodes time egap[#]

30
0.95 4.4 23.7 7,150,715 2,528 0.3[4] 36.6 3,754,826 2,073 0.4[4] 48.9 2,614,446 1,510 0.2[4]
0.975 7.2 7.2 13,632,197 6,120 1.8[1] 23.7 9,573,199 5,945 1.8[1] 39.8 9,235,158 5,797 1.0[1]
0.99 11.9 4.0 16,867,459 7,200 5.0[0] 14.7 10,899,169 7,200 5.7[0] 31.6 13,328,370 7,200 4.1[0]

Average 11.6 12,550,124 5,283 2.4[5] 25.0 8,075,731 5,073 2.6[5] 40.1 8,392,658 4,836 1.8[5]

40
0.95 1.9 20.7 6,235,270 1,674 0.1[4] 70.5 620,389 261 0.0[5] 75.0 90,179 62 0.0[5]
0.975 3.3 9.6 13,961,488 4,360 0.4[3] 49.2 3,268,824 2,122 0.2[4] 57.3 2,729,459 1,557 0.2[4]
0.99 5.6 6.0 15,334,782 6,738 1.8[1] 30.0 6,110,571 6,149 1.7[1] 42.6 5,222,829 5,799 1.2[1]

Average 12.1 11,843,847 4,257 0.8[8] 49.9 3,333,261 2,844 0.6[10] 58.3 2,680,821 2,472 0.5[10]

50
0.95 1.0 8.9 270,852 72 0.0[5] 93.3 249 2 0.0[5] 93.3 98 2 0.0[5]
0.975 1.6 8.0 3,882,494 1,045 0.0[5] 81.3 316,625 221 0.0[5] 84.4 198,916 92 0.0[5]
0.99 2.8 7.9 14,835,539 4,600 0.3[3] 57.3 4,695,268 3,480 0.2[3] 64.3 983,894 1,537 0.2[4]

Average 8.3 6,329,628 1,906 0.1[13] 77.3 1,670,714 1,234 0.1[13] 80.7 394,293 544 0.1[14]

Table 2 presents the results for each value of k and α. We see that for instances

with k = 50, using inequalities (5) or (18) results in gap improvement of more

than 75% and faster solutions times than default CPLEX. In particular, using

inequalities (18) results in solutions times that are four times faster than default

CPLEX on average. As expected, for instances with tighter cardinality constraints,

inequalities (18), which exploit the cardinality constraints, are more effective than

inequalities (5) in reducing the solution times as well as end gaps. On the other

hand, when the cardinality constraint is loose, the effectiveness of both classes of

inequalities improve.

6.3. Instances with non-diagonal quadratic term and cardinality con-

straint. Although the inequalities in this paper are developed for the diagonal

case of the conic inequalities (1), they can, nevertheless, be used for the general

non-diagonal case as well through a relaxation. Consider an optimization problem

of the form

min
x∈{0,1}n

{
−a′x+ Ω

√
x′Qx :

n∑
i=1

xi ≤ k

}
, (26)

with Q = D+Q0, where Q0 � 0, D � 0 and D is diagonal. Given a general matrix

Q � 0, matricesQ0 andD can be computed using the smallest eigenvalue (Frangioni

and Gentile 2006) or solving an SDP (Frangioni and Gentile 2007). Alternatively,

in many large-scale instances Q is a covariance matrix built through a factor model,
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in which case D is the diagonal matrix with the specific variances, Q0 = XFX ′,

where X ∈ Rn×r is the exposure matrix and F ∈ Rr×r is the factor covariance

matrix. Either way, given Q0 and D, problem (26) can be reformulated as

min
(x,y)∈{0,1}n×R+

−a′x+ Ω

√√√√ n∑
i=1

Diixi + y2 :

n∑
i=1

xi ≤ k,
√
x′Q0x ≤ y

 ,

and the polymatroid inequalities can be applied to the diagonal objective.

In the computational experiments we generate the data using a factor model.

Let F = GG′, with G ∈ Rr×r and Gij ∼ U [−1, 1], Xij ∼ U [0, 1] with probability

0.2 and Xij = 0 otherwise, Dii ∼ U [0, δq̄], where δ ≥ 0 is a diagonal dominance

parameter and q̄ = 1
N

∑
i∈N Q0ii, and ai ∼ U [0.85

√
Qii, 1.15

√
Qii]. The parameter

Ω is set as in Section 6.2. We let n = 200, r = 40 and k equal to 10%, 15%, and

20% of the number of the variables. The effectiveness of inequalities (8) and (18)

are compared with default CPLEX. The inequalities are added using an extended

formulation as described in Remark 2.

Table 3. Experiments with the non-diagonal case (δ = 0.5).

k α igap
cpx inequality (8) inequality (18)

rimp nodes time egap[#] rimp nodes time egap[#] rimp nodes time egap[#]

20
0.95 1.7 22.6 9,557 74 0.0[5] 53.3 3,957 23 0.0[5] 55.6 2,367 17 0.0[5]
0.975 3.0 21.3 33,468 242 0.0[5] 53.5 13,316 86 0.0[5] 55.9 5,839 40 0.0[5]
0.99 5.2 15.2 164,568 1,845 0.0[5] 52.8 80,735 730 0.0[5] 55.3 23,577 269 0.0[5]

Average 19.7 69,198 720 0.0[15] 53.2 32,669 280 0.0[15] 55.6 10,594 109 0.0[15]

30
0.95 0.8 15.5 7,115 57 0.0[5] 53.3 1,656 11 0.0[5] 52.4 1,159 9 0.0[5]
0.975 1.3 14.9 18,901 135 0.0[5] 53.1 2,800 20 0.0[5] 54.0 2,095 15 0.0[5]
0.99 2.3 5.7 76,675 1,005 0.0[5] 61.1 8,265 48 0.0[5] 62.1 5,131 30 0.0[5]

Average 12.0 34,230 399 0.0[15] 55.8 4,240 26 0.0[15] 56.2 2,795 18 0.0[15]

40
0.95 0.4 23.3 2,910 18 0.0[5] 48.5 611 6 0.0[5] 50.5 577 6 0.0[5]
0.975 0.7 20.0 4,216 30 0.0[5] 54.3 884 7 0.0[5] 55.5 839 7 0.0[5]
0.99 1.1 13.5 46,030 514 0.0[5] 55.9 2,493 18 0.0[5] 56.7 2,144 14 0.0[5]

Average 18.9 17,719 187 0.0[15] 52.9 1,329 10 0.0[15] 54.2 1,187 9 0.0[15]

Tables 3 and 4 present the results for different choices of the diagonal domi-

nance parameter δ2. Observe that adding inequalities (8) or (18) closes the initial

gaps by 45% to 75%, resulting in significant performance improvement over default

CPLEX. In particular, using inequalities (18) for instances with k = 20 leads to

seven times speed-up with δ = 0.5 and two times speed-up with δ = 1) and lower

end gaps. Moreover, for instances with k ≥ 30 using inequalities (18) results in at

least an order-of-magnitude speed-up over default CPLEX. As in the previous sec-

tion, inequalities (18), exploiting the cardinality constraint, are more effective than

(8). The impact of both inequalities increases with higher diagonal dominance.

2Intuitively, if δ = 0.5 then the factors explain 80% of the variance in the problem; if δ = 1.0,

then the factors explain 66% of the variance in the problem.
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Table 4. Experiments with the non-diagonal case (δ = 1.0).

k α igap
cpx inequality (8) inequality (18)

rimp nodes time egap[#] rimp nodes time egap[#] rimp nodes time egap[#]

20
0.95 2.9 21.6 64,283 927 0.0[5] 55.1 14,984 165 0.0[5] 59.1 6,233 68 0.0[5]
0.975 5.0 15.5 240,224 3,975 0.4[3] 44.4 189,826 3,390 0.4[3] 50.9 102,053 1,915 0.1[4]
0.99 9.0 6.4 378,116 7,200 2.2[0] 35.7 477,553 7,200 1.9[0] 43.1 430,707 5,966 0.6[2]

Average 14.5 227,541 4,034 0.9[8] 45.1 227,454 3,585 0.8[8] 51.0 179,664 2,650 0.2[11]

30
0.95 1.1 17.1 32,629 316 0.0[5] 77.2 1,082 12 0.0[5] 78.2 682 10 0.0[5]
0.975 2.0 12.5 150,756 2,046 0.1[4] 72.9 12,202 107 0.0[5] 75.5 4,896 39 0.0[5]
0.99 3.5 10.5 258,866 3,679 0.5[3] 67.8 115,507 1,510 0.1[4] 70.6 59,106 511 0.0[5]

Average 13.4 147,417 2,014 0.2[12] 72.6 42,930 543 0.0[14] 74.8 21,561 187 0.0[15]

40
0.95 0.6 23.9 6,522 64 0.0[5] 72.3 270 9 0.0[5] 74.8 192 8 0.0[5]
0.975 1.0 24.0 31,022 414 0.0[5] 71.0 823 12 0.0[5] 72.1 695 11 0.0[5]
0.99 1.6 17.6 122,568 2,907 0.2[3] 73.9 4,416 37 0.0[5] 75.1 2,543 26 0.0[5]

Average 21.8 53,371 1,128 0.1[13] 72.4 1,836 19 0.0[15] 74.0 1,143 15 0.0[15]
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Appendix A. Convex hull of L2
σ

A point (x, y, z) belongs to conv(L2
σ) if and only if there exist x1, x2, y1, y2, z1, z2, λ

such that the system

x = (1− λ)x1 + λx2 (27)

y = (1− λ)y1 + λy2 (28)

z = (1− λ)z1 + λz2 (29)

z1 ≥
√
σ + dy2

1 (30)

z2 ≥
√
σ + c+ dy2

2 (31)

0 ≤ y1, y2 ≤ 1, x1 = 0, x2 = 1 (32)

is feasible. Observe that from (27) and (32) we can conclude that λ = x. Also

observe that from (27), (30) and (31) we have that

z = (1− x)z1 + xz2

⇔ z ≥ (1− x)
√
σ + dy2

1 + x
√
σ + c+ dy2

2 .
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Therefore, the system is feasible if and only if

z ≥ min
y1,y2

(1− x)
√
σ + dy2

1 + x
√
σ + c+ dy2

2 (33)

s.t. y = (1− x)y1 + xy2 (γ)

y1 ≤ 1 (α1)

y2 ≤ 1 (α2)

y1 ≥ 0 (β1)

y2 ≥ 0, (β2)

and let γ, α and β be the dual variables of the optimization problem above. From

KKT conditions for variables y1 and y2 we find that

−(1− x)
dy1√
σ + dy2

1

= γ(1− x) + α1 − β1

−x dy2√
σ + c+ dy2

2

= γx+ α2 − β2

=⇒ y1√
σ + dy2

1

+ ᾱ1 − β̄2 =
y2√

σ + c+ dy2
2

+ ᾱ2 − β̄2, (34)

where ᾱ, β̄ correspond to α and β after scaling. We can deduce from (34) and

complementary slackness that y1, y2 > 0 (unless y = 0) and that y1 ≤ y2. Therefore,

in an optimal solution either 0 < y1, y2 < 1 (and ᾱ = β̄ = 0) or y2 = 1 (and ᾱ2 ≥ 0).

If ᾱ = β̄ = 0, then

y∗1 = y

√
σ

x
√
c+ σ + (1− x)

√
σ

and

y∗2 = y

√
c+ σ

x
√
c+ σ + (1− x)

√
σ

satisfy conditions (34) and (28). Moreover, if

y∗2 ≤ 1

⇔ y ≤ x
√
c+ σ + (1− x)

√
σ√

c+ σ
= x+ (1− x)

√
σ

c+ σ
,

then y∗1 , y
∗
2 also satisfy bound constraints, and thus correspond to an optimal solu-

tion to the optimization problem. Replacing in (33), we find that

z ≥
√(√

σ + x(
√
c+ σ −

√
σ)
)2

+ dy2

when y ≤ x + (1 − x)
√

σ
σ+c . On the other hand, if y∗1 > 1, an optimal solution to

the optimization problem is given by ȳ2 = 1 and ȳ1 = y−x
1−x . Replacing in (33)

z ≥
√
σ(1− x)2 + d(y − x)2 + x

√
σ + c+ d

when y ≥ x+ (1− x)
√

σ
σ+c .


