
Project 4: Ghostbusters

I can hear you, ghost.
Running won't save you from my

Particle filter!

Introduction

Pacman spends his life running from ghosts, but things were not always so. Legend has it that
many years ago, Pacman's great grandfather Grandpac learned to hunt ghosts for sport.
However, he was blinded by his power and could only track ghosts by their banging and
clanging.

In this project, you will design Pacman agents that use sensors to locate and eat invisible ghosts.
You'll advance from locating single, stationary ghosts to hunting packs of multiple moving ghosts
with ruthless efficiency.

The code for this project contains the following files, available as a zip archive.

Files you will edit

bustersAgents.py Agents for playing the Ghostbusters variant of Pacman.

inference.py Code for tracking ghosts over time using their sounds.

Files you will not edit

busters.py The main entry to Ghostbusters (replacing Pacman.py)

bustersGhostAgents.py New ghost agents for Ghostbusters

distanceCalculator.py Computes maze distances

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/tracking.zip
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/bustersAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/inference.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/busters.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/bustersGhostAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/distanceCalculator.html

game.py Inner workings and helper classes for Pacman

ghostAgents.py Agents to control ghosts

graphicsDisplay.py Graphics for Pacman

graphicsUtils.py Support for Pacman graphics

keyboardAgents.py Keyboard interfaces to control Pacman

layout.py Code for reading layout files and storing their contents

util.py Utility functions

Files to Edit and Submit: You will fill in portions of bustersAgents.py and inference.py during
the assignment. You should submit these files with your code and comments. Please do not
change the other files in this distribution or submit any of our original files other than these files.

Evaluation: Your code will be autograded for technical correctness. Please do not change the
names of any provided functions or classes within the code, or you will wreak havoc on the
autograder. However, the correctness of your implementation -- not the autograder's judgements -
- will be the final judge of your score. If necessary, we will review and grade assignments
individually to ensure that you receive due credit for your work.

Academic Dishonesty: We will be checking your code against other submissions in the class
for logical redundancy. If you copy someone else's code and submit it with minor changes, we
will know. These cheat detectors are quite hard to fool, so please don't try. We trust you all to
submit your own work only; please don't let us down. If you do, we will pursue the strongest
consequences available to us.

Getting Help: You are not alone! If you find yourself stuck on something, contact the course staff
for help. Office hours, section, and the discussion forum are there for your support; please use
them. If you can't make our office hours, let us know and we will schedule more. We want these
projects to be rewarding and instructional, not frustrating and demoralizing. But, we don't know
when or how to help unless you ask.

Discussion: Please be careful not to post spoilers.

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/game.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/ghostAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/graphicsDisplay.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/graphicsUtils.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/keyboardAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/layout.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/util.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/bustersAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/inference.html

Ghostbusters and BNs

In the cs188 version of Ghostbusters, the goal is to hunt down scared but invisible ghosts.
Pacman, ever resourceful, is equipped with sonar (ears) that provides noisy readings of the
Manhattan distance to each ghost. The game ends when Pacman has eaten all the ghosts. To
start, try playing a game yourself using the keyboard.

 python busters.py

The blocks of color indicate where the each ghost could possibly be, given the noisy distance
readings provided to Pacman. The noisy distances at the bottom of the display are always non-
negative, and always within 7 of the true distance. The probability of a distance reading
decreases exponentially with its difference from the true distance.

Your primary task in this project is to implement inference to track the ghosts. For the keyboard
based game above, a crude form of inference was implemented for you by default: all squares in
which a ghost could possibly be are shaded by the color of the ghost. Naturally, we want a better
estimate of the ghost's position. Fortunately, Bayes' Nets provide us with powerful tools for
making the most of the information we have. Throughout the rest of this project, you will
implement algorithms for performing both exact and approximate inference using Bayes' Nets.
The lab is challenging, so we do encouarge you to start early and seek help when necessary.

While watching and debugging your code with the autograder, it will be helpful to have some
understanding of what the autograder is doing. There are 2 types of tests in this project, as
differentiated by their *.test files found in the subdirectories of the test_cases folder. For tests of
class DoubleInferenceAgentTest, your will see visualizations of the inference distributions
generated by your code, but all Pacman actions will be preselected according to the actions of
the staff implementation. This is necessary in order to allow comparision of your distributions with
the staff's distributions. The second type of test is GameScoreTest, in which your BustersAgent will
actually select actions for Pacman and you will watch your Pacman play and win games.

As you implement and debug your code, you may find it useful to run a single test at a time. In
order to do this you will need to use the -t flag with the autograder. For example if you only want
to run the first test of question 1, use:

python autograder.py -t test_cases/q1/1-ExactObserve

In general, all test cases can be found inside test_cases/q*.

Question 1 (3 points): Exact Inference Observation

In this question, you will update the observe method in ExactInference class of inference.py to
correctly update the agent's belief distribution over ghost positions given an observation from
Pacman's sensors. A correct implementation should also handle one special case: when a ghost
is eaten, you should place that ghost in its prison cell, as described in the comments of observe.

To run the autograder for this question and visualize the output:

 python autograder.py -q q1

As you watch the test cases, be sure that you understand how the squares converge to their final
coloring. In test cases where is Pacman boxed in (which is to say, he is unable to change his
observation point), why does Pacman sometimes have trouble finding the exact location of the
ghost?

Note: your busters agents have a separate inference module for each ghost they are tracking.
That's why if you print an observation inside the observe function, you'll only see a single number
even though there may be multiple ghosts on the board.

Hints:

You are implementing the online belief update for observing new evidence. Before any
readings, Pacman believes the ghost could be anywhere: a uniform prior (see
initializeUniformly). After receiving a reading, the observe function is called, which must
update the belief at every position.
Before typing any code, write down the equation of the inference problem you are trying to
solve.
Try printing noisyDistance, emissionModel, and PacmanPosition (in the observe function) to
get started.
In the Pacman display, high posterior beliefs are represented by bright colors, while low
beliefs are represented by dim colors. You should start with a large cloud of belief that
shrinks over time as more evidence accumulates.
Beliefs are stored as util.Counter objects (like dictionaries) in a field called self.beliefs,
which you should update.
You should not need to store any evidence. The only thing you need to store in
ExactInference is self.beliefs.

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/inference.html

Question 2 (4 points): Exact Inference with Time Elapse

In the previous question you implemented belief updates for Pacman based on his observations.
Fortunately, Pacman's observations are not his only source of knowledge about where a ghost
may be. Pacman also has knowledge about the ways that a ghost may move; namely that the
ghost can not move through a wall or more than one space in one timestep.

To understand why this is useful to Pacman, consider the following scenario in which there is
Pacman and one Ghost. Pacman receives many observations which indicate the ghost is very
near, but then one which indicates the ghost is very far. The reading indicating the ghost is very
far is likely to be the result of a buggy sensor. Pacman's prior knowledge of how the ghost may
move will decrease the impact of this reading since Pacman knows the ghost could not move so
far in only one move.

In this question, you will implement the elapseTime method in ExactInference. Your agent has
access to the action distribution for any GhostAgent. In order to test your elapseTime
implementation separately from your observe implementation in the previous question, this
question will not make use of your observe implementation.

Since Pacman is not utilizing any observations about the ghost, this means that Pacman will start
with a uniform distribution over all spaces, and then update his beliefs according to how he
knows the Ghost is able to move. Since Pacman is not observing the ghost, this means the
ghost's actions will not impact Pacman's beliefs. Over time, Pacman's beliefs will come to reflect
places on the board where he believes ghosts are most likely to be given the geometry of the
board and what Pacman already knows about their valid movements.

For the tests in this question we will sometimes use a ghost with random movements and other
times we will use the GoSouthGhost. This ghost tends to move south so over time, and without
any observations, Pacman's belief distribution should begin to focus around the bottom of the
board. To see which ghost is used for each test case you can look in the .test files.

To run the autograder for this question and visualize the output:

 python autograder.py -q q2

As an example of the GoSouthGhostAgent, you can run

python autograder.py -t test_cases/q2/2-ExactElapse

and observe that the distribution becomes concentrated at the bottom of the board.

As you watch the autograder output, remember that lighter squares indicate that pacman believes
a ghost is more likely to occupy that location, and darker squares indicate a ghost is less likely to
occupy that location. For which of the test cases do you notice differences emerging in the
shading of the squares? Can you explain why some squares get lighter and some squares get
darker?

Hints:

Instructions for obtaining a distribution over where a ghost will go next, given its current
position and the gameState, appears in the comments of ExactInference.elapseTime in
inference.py.
We assume that ghosts still move independently of one another, so while you can develop
all of your code for one ghost at a time, adding multiple ghosts should still work correctly.

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/inference.html
GT-P7510
Highlight

GT-P7510
Highlight

GT-P7510
Highlight

GT-P7510
Highlight

GT-P7510
Highlight

GT-P7510
Highlight

Question 3 (3 points): Exact Inference Full Test

Now that Pacman knows how to use both his prior knowledge and his observations when
figuring out where a ghost is, he is ready to hunt down ghosts on his own. This question will use
your observe and elapseTime implementations together, along with a simple greedy hunting
strategy which you will implement for this question. In the simple greedy strategy, Pacman
assumes that each ghost is in its most likely position according to its beliefs, then moves toward
the closest ghost. Up to this point, Pacman has moved by randomly selecting a valid action.

Implement the chooseAction method in GreedyBustersAgent in bustersAgents.py. Your agent
should first find the most likely position of each remaining (uncaptured) ghost, then choose an
action that minimizes the distance to the closest ghost. If correctly implemented, your agent
should win the game in q3/3-gameScoreTest with a score greater than 700 at least 8 out of 10
times. Note: the autograder will also check the correctness of your inference directly, but the
outcome of games is a reasonable sanity check.

To run the autograder for this question and visualize the output:

 python autograder.py -q q3

Note: If you want to run this test (or any of the other tests) without graphics you can add the
following flag:

python autograder.py -q q3 --no-graphics

Hints:

When correctly implemented, your agent will thrash around a bit in order to capture a ghost.
The comments of chooseAction provide you with useful method calls for computing maze
distance and successor positions.
Make sure to only consider the living ghosts, as described in the comments.

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/bustersAgents.html
GT-P7510
Highlight

GT-P7510
Highlight

Question 4 (3 points): Approximate Inference Observation

Approximate inference is very trendy among ghost hunters this season. Next, you will implement
a particle filtering algorithm for tracking a single ghost.

Implement the functions initializeUniformly, getBeliefDistribution, and observe for the
ParticleFilter class in inference.py. A correct implementation should also handle two special
cases. (1) When all your particles receive zero weight based on the evidence, you should
resample all particles from the prior to recover. (2) When a ghost is eaten, you should update all
particles to place that ghost in its prison cell, as described in the comments of observe. When
complete, you should be able to track ghosts nearly as effectively as with exact inference.

To run the autograder for this question and visualize the output:

 python autograder.py -q q4

Hints:

A particle (sample) is a ghost position in this inference problem.
The belief cloud generated by a particle filter will look noisy compared to the one for exact
inference.

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/inference.html
GT-P7510
Highlight

GT-P7510
Highlight

GT-P7510
Highlight

Question 5 (4 points): Approximate Inference with Time Elapse

Implement the elapseTime function for the ParticleFilter class in inference.py. When
complete, you should be able to track ghosts nearly as effectively as with exact inference.

Note that in this question, we will test both the elapseTime function in isolation, as well as the full
implementation of the particle filter combining elapseTime and observe.

To run the autograder for this question and visualize the output:

 python autograder.py -q q5

For the tests in this question we will sometimes use a ghost with random movements and other
times we will use the GoSouthGhost. This ghost tends to move south so over time, and without
any observations, Pacman's belief distribution should begin to focus around the bottom of the
board. To see which ghost is used for each test case you can look in the .test files. As an
example, you can run

python autograder.py -t test_cases/q5/2-ParticleElapse

and observe that the distribution becomes concentrated at the bottom of the board.

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/inference.html
Alvin
Highlight

Alvin
Highlight

Question 6 (4 points): Joint Particle Filter Observation

So far, we have tracked each ghost independently, which works fine for the default RandomGhost
or more advanced DirectionalGhost. However, the prized DispersingGhost chooses actions that
avoid other ghosts. Since the ghosts' transition models are no longer independent, all ghosts
must be tracked jointly in a dynamic Bayes net!

The Bayes net has the following structure, where the hidden variables G represent ghost
positions and the emission variables E are the noisy distances to each ghost. This structure can
be extended to more ghosts, but only two (a and b) are shown below.

You will now implement a particle filter that tracks multiple ghosts simultaneously. Each particle
will represent a tuple of ghost positions that is a sample of where all the ghosts are at the present
time. The code is already set up to extract marginal distributions about each ghost from the joint
inference algorithm you will create, so that belief clouds about individual ghosts can be
displayed.

Complete the initializeParticles, getBeliefDistribution, and observeState method in
JointParticleFilter to weight and resample the whole list of particles based on new evidence.
As before, a correct implementation should also handle two special cases. (1) When all your
particles receive zero weight based on the evidence, you should resample all particles from the
prior to recover. (2) When a ghost is eaten, you should update all particles to place that ghost in
its prison cell, as described in the comments of observeState.

You should now effectively track dispersing ghosts. To run the autograder for this question and
visualize the output:

 python autograder.py -q q6

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Question 7 (4 points): Joint Particle Filter with Elapse Time

Complete the elapseTime method in JointParticleFilter in inference.py to resample each
particle correctly for the Bayes net. In particular, each ghost should draw a new position
conditioned on the positions of all the ghosts at the previous time step. The comments in the
method provide instructions for support functions to help with sampling and creating the correct
distribution.

Note that completing this question involves removing the call to util.raiseNotDefined(). This
means that the autograder will now grade both question 6 and question 7. Since these questions
involve joint distributions, they require more computational power (and time) to grade, so please
be patient!

As you run the autograder note that q7/1-JointParticleElapse and q7/2-JointParticleElapse
test your elapseTime implementations only, and q7/3-JointParticleElapse tests both your
elapseTime and observe implementations. Notice the difference between test 1 and test 3. In both
tests, pacman knows that the ghosts will move to the sides of the gameboard. What is different
between the tests, and why?

To run the autograder for this question use:

 python autograder.py -q q7

Congratulations! Only one more project left.

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/tracking/docs/inference.html

	Project 4: Ghostbusters
	Introduction
	Files you will edit
	Files you will not edit

	Ghostbusters and BNs
	Question 1 (3 points): Exact Inference Observation
	Question 2 (4 points): Exact Inference with Time Elapse
	Question 3 (3 points): Exact Inference Full Test
	Question 4 (3 points): Approximate Inference Observation
	Question 5 (4 points): Approximate Inference with Time Elapse
	Question 6 (4 points): Joint Particle Filter Observation
	Question 7 (4 points): Joint Particle Filter with Elapse Time

