
Project 3: Reinforcement Learning

Pacman seeks reward.
Should he eat or should he run?

When in doubt, Q-learn.

Introduction

In this project, you will implement value iteration and Q-learning. You will test your agents first on
Gridworld (from class), then apply them to a simulated robot controller (Crawler) and Pacman.

As in previous projects, this project includes an autograder for you to grade your solutions on
your machine. This can be run on all questions with the command:

python autograder.py

It can be run for one particular question, such as q2, by:
python autograder.py -q q2

It can be run for one particular test by commands of the form:
python autograder.py -t test_cases/q2/1-bridge-grid

See the autograder tutorial in Project 0 for more information about using the autograder.

The code for this project contains the following files, which are available in a zip archive:

Files you will edit

valueIterationAgents.py A value iteration agent for solving known MDPs.

qlearningAgents.py Q-learning agents for Gridworld, Crawler and Pacman.

analysis.py A file to put your answers to questions given in the project.

Files you should read but NOT edit

mdp.py Defines methods on general MDPs.

learningAgents.py Defines the base classes ValueEstimationAgent and
QLearningAgent, which your agents will extend.

util.py Utilities, including util.Counter, which is particularly useful for Q-
learners.

gridworld.py The Gridworld implementation.

featureExtractors.py Classes for extracting features on (state,action) pairs. Used for the
approximate Q-learning agent (in qlearningAgents.py).

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/reinforcement.zip
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/valueIterationAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/qlearningAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/analysis.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/mdp.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/learningAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/util.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/gridworld.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/featureExtractors.html

Files you can ignore

environment.py Abstract class for general reinforcement learning
environments. Used by gridworld.py.

graphicsGridworldDisplay.py Gridworld graphical display.

graphicsUtils.py Graphics utilities.

textGridworldDisplay.py Plug-in for the Gridworld text interface.

crawler.py The crawler code and test harness. You will run this but not
edit it.

graphicsCrawlerDisplay.py GUI for the crawler robot.

autograder.py Project autograder

testParser.py Parses autograder test and solution files

testClasses.py General autograding test classes

test_cases/ Directory containing the test cases for each question

reinforcementTestClasses.py Project 3 specific autograding test classes

Files to Edit and Submit: You will fill in portions of valueIterationAgents.py,
qlearningAgents.py, and analysis.py during the assignment. You should submit these files with
your code and comments. Please do not change the other files in this distribution or submit any of
our original files other than these files.

Evaluation: Your code will be autograded for technical correctness. Please do not change the
names of any provided functions or classes within the code, or you will wreak havoc on the
autograder. However, the correctness of your implementation -- not the autograder's judgements -
- will be the final judge of your score. If necessary, we will review and grade assignments
individually to ensure that you receive due credit for your work.

Academic Dishonesty: We will be checking your code against other submissions in the class
for logical redundancy. If you copy someone else's code and submit it with minor changes, we
will know. These cheat detectors are quite hard to fool, so please don't try. We trust you all to
submit your own work only; please don't let us down. If you do, we will pursue the strongest
consequences available to us.

Getting Help: You are not alone! If you find yourself stuck on something, contact the course staff
for help. Office hours, section, and the discussion forum are there for your support; please use
them. If you can't make our office hours, let us know and we will schedule more. We want these
projects to be rewarding and instructional, not frustrating and demoralizing. But, we don't know
when or how to help unless you ask.

Discussion: Please be careful not to post spoilers.

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/environment.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/gridworld.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/graphicsGridworldDisplay.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/graphicsUtils.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/textGridworldDisplay.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/crawler.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/graphicsCrawlerDisplay.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/autograder.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/testParser.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/testClasses.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/reinforcementTestClasses.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/valueIterationAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/qlearningAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/analysis.html

MDPs

To get started, run Gridworld in manual control mode, which uses the arrow keys:

python gridworld.py -m

You will see the two-exit layout from class. The blue dot is the agent. Note that when you press
up, the agent only actually moves north 80% of the time. Such is the life of a Gridworld agent!

You can control many aspects of the simulation. A full list of options is available by running:

python gridworld.py -h

The default agent moves randomly

python gridworld.py -g MazeGrid

You should see the random agent bounce around the grid until it happens upon an exit. Not the
finest hour for an AI agent.

Note: The Gridworld MDP is such that you first must enter a pre-terminal state (the double boxes
shown in the GUI) and then take the special 'exit' action before the episode actually ends (in the
true terminal state called TERMINAL_STATE, which is not shown in the GUI). If you run an episode
manually, your total return may be less than you expected, due to the discount rate (-d to change;
0.9 by default).

Look at the console output that accompanies the graphical output (or use -t for all text). You will
be told about each transition the agent experiences (to turn this off, use -q).

As in Pacman, positions are represented by (x,y) Cartesian coordinates and any arrays are
indexed by [x][y], with 'north' being the direction of increasing y, etc. By default, most
transitions will receive a reward of zero, though you can change this with the living reward option
(-r).

Alvin
Highlight

Question 1 (6 points) Write a value iteration agent in ValueIterationAgent, which has been
partially specified for you in valueIterationAgents.py. Your value iteration agent is an offline
planner, not a reinforcement learning agent, and so the relevant training option is the number of
iterations of value iteration it should run (option -i) in its initial planning phase.
ValueIterationAgent takes an MDP on construction and runs value iteration for the specified
number of iterations before the constructor returns.

Value iteration computes k-step estimates of the optimal values, Vk. In addition to running value
iteration, implement the following methods for ValueIterationAgent using Vk.

computeActionFromValues(state) computes the best action according to the value function
given by self.values.
computeQValueFromValues(state, action) returns the Q-value of the (state, action) pair
given by the value function given by self.values.

These quantities are all displayed in the GUI: values are numbers in squares, Q-values are
numbers in square quarters, and policies are arrows out from each square.

Important: Use the "batch" version of value iteration where each vector Vk is computed from a
fixed vector Vk-1 (like in lecture), not the "online" version where one single weight vector is
updated in place. This means that when a state's value is updated in iteration k based on the
values of its successor states, the successor state values used in the value update computation
should be those from iteration k-1 (even if some of the successor states had already been
updated in iteration k). The difference is discussed in Sutton & Barto in the 6th paragraph of
chapter 4.1.

Note: A policy synthesized from values of depth k (which reflect the next k rewards) will actually
reflect the next k+1 rewards (i.e. you return k+1). Similarly, the Q-values will also reflect one
more reward than the values (i.e. you return Qk+1).

You should return the synthesized policy k+1.

Hint: Use the util.Counter class in util.py, which is a dictionary with a default value of zero.
Methods such as totalCount should simplify your code. However, be careful with argMax: the
actual argmax you want may be a key not in the counter!

Note: Make sure to handle the case when a state has no available actions in an MDP (think
about what this means for future rewards).

To test your implementation, run the autograder:

python autograder.py -q q1

The following command loads your ValueIterationAgent, which will compute a policy and
execute it 10 times. Press a key to cycle through values, Q-values, and the simulation. You
should find that the value of the start state (V(start), which you can read off of the GUI) and the
empirical resulting average reward (printed after the 10 rounds of execution finish) are quite
close.

python gridworld.py -a value -i 100 -k 10

Hint: On the default BookGrid, running value iteration for 5 iterations should give you this output:

python gridworld.py -a value -i 5

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/valueIterationAgents.html
http://www.cs.ualberta.ca/~sutton/book/ebook/node41.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/util.html
Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Grading: Your value iteration agent will be graded on a new grid. We will check your values, Q-
values, and policies after fixed numbers of iterations and at convergence (e.g. after 100
iterations).

Question 2 (1 point) BridgeGrid is a grid world map with the a low-reward terminal state and a
high-reward terminal state separated by a narrow "bridge", on either side of which is a chasm of
high negative reward. The agent starts near the low-reward state. With the default discount of 0.9
and the default noise of 0.2, the optimal policy does not cross the bridge. Change only ONE of
the discount and noise parameters so that the optimal policy causes the agent to attempt to cross
the bridge. Put your answer in question2() of analysis.py. (Noise refers to how often an agent
ends up in an unintended successor state when they perform an action.) The default corresponds
to:

python gridworld.py -a value -i 100 -g BridgeGrid --discount 0.9 --noise 0.2

Grading: We will check that you only changed one of the given parameters, and that with this
change, a correct value iteration agent should cross the bridge. To check your answer, run the
autograder:

python autograder.py -q q2

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/analysis.html
Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Question 3 (5 points) Consider the DiscountGrid layout, shown below. This grid has two
terminal states with positive payoff (in the middle row), a close exit with payoff +1 and a distant
exit with payoff +10. The bottom row of the grid consists of terminal states with negative payoff
(shown in red); each state in this "cliff" region has payoff -10. The starting state is the yellow
square. We distinguish between two types of paths: (1) paths that "risk the cliff" and travel near
the bottom row of the grid; these paths are shorter but risk earning a large negative payoff, and
are represented by the red arrow in the figure below. (2) paths that "avoid the cliff" and travel
along the top edge of the grid. These paths are longer but are less likely to incur huge negative
payoffs. These paths are represented by the green arrow in the figure below.

In this question, you will choose settings of the discount, noise, and living reward parameters for
this MDP to produce optimal policies of several different types. Your setting of the parameter
values for each part should have the property that, if your agent followed its optimal policy without
being subject to any noise, it would exhibit the given behavior. If a particular behavior is not
achieved for any setting of the parameters, assert that the policy is impossible by returning the
string 'NOT POSSIBLE'.

Here are the optimal policy types you should attempt to produce:

a. Prefer the close exit (+1), risking the cliff (-10)
b. Prefer the close exit (+1), but avoiding the cliff (-10)
c. Prefer the distant exit (+10), risking the cliff (-10)
d. Prefer the distant exit (+10), avoiding the cliff (-10)
e. Avoid both exits and the cliff (so an episode should never terminate)

To check your answers, run the autograder:

python autograder.py -q q3

question3a() through question3e() should each return a 3-item tuple of (discount, noise, living
reward) in analysis.py.

Note: You can check your policies in the GUI. For example, using a correct answer to 3(a), the
arrow in (0,1) should point east, the arrow in (1,1) should also point east, and the arrow in (2,1)
should point north.

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/analysis.html
Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Note: On some machines you may not see an arrow. In this case, press a button on the keyboard
to switch to qValue display, and mentally calculate the policy by taking the arg max of the
available qValues for each state.

Grading: We will check that the desired policy is returned in each case.

Q-learning

Note that your value iteration agent does not actually learn from experience. Rather, it ponders its
MDP model to arrive at a complete policy before ever interacting with a real environment. When it
does interact with the environment, it simply follows the precomputed policy (e.g. it becomes a
reflex agent). This distinction may be subtle in a simulated environment like a Gridword, but it's
very important in the real world, where the real MDP is not available.

Question 4 (5 points)

You will now write a Q-learning agent, which does very little on construction, but instead learns
by trial and error from interactions with the environment through its update(state, action,
nextState, reward) method. A stub of a Q-learner is specified in QLearningAgent in
qlearningAgents.py, and you can select it with the option '-a q'. For this question, you must
implement the update, computeValueFromQValues, getQValue, and computeActionFromQValues
methods.

Note: For computeActionFromQValues, you should break ties randomly for better behavior. The
random.choice() function will help. In a particular state, actions that your agent hasn't seen
before still have a Q-value, specifically a Q-value of zero, and if all of the actions that your agent
has seen before have a negative Q-value, an unseen action may be optimal.

Important: Make sure that in your computeValueFromQValues and computeActionFromQValues
functions, you only access Q values by calling getQValue . This abstraction will be useful for
question 8 when you override getQValue to use features of state-action pairs rather than state-
action pairs directly.

With the Q-learning update in place, you can watch your Q-learner learn under manual control,
using the keyboard:

python gridworld.py -a q -k 5 -m

Recall that -k will control the number of episodes your agent gets to learn. Watch how the agent
learns about the state it was just in, not the one it moves to, and "leaves learning in its wake."
Hint: to help with debugging, you can turn off noise by using the --noise 0.0 parameter (though
this obviously makes Q-learning less interesting). If you manually steer Pacman north and then
east along the optimal path for four episodes, you should see the following Q-values:

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/qlearningAgents.html
Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Grading: We will run your Q-learning agent and check that it learns the same Q-values and policy
as our reference implementation when each is presented with the same set of examples. To
grade your implementation, run the autograder:

python autograder.py -q q4

Question 5 (3 points)

Complete your Q-learning agent by implementing epsilon-greedy action selection in getAction,
meaning it chooses random actions an epsilon fraction of the time, and follows its current best Q-
values otherwise. Note that choosing a random action may result in choosing the best action -
that is, you should not choose a random sub-optimal action, but rather any random legal action.

python gridworld.py -a q -k 100

Your final Q-values should resemble those of your value iteration agent, especially along well-
traveled paths. However, your average returns will be lower than the Q-values predict because of
the random actions and the initial learning phase.

You can choose an element from a list uniformly at random by calling the random.choice function.
You can simulate a binary variable with probability p of success by using util.flipCoin(p),
which returns True with probability p and False with probability 1-p.

To test your implementation, run the autograder:

python autograder.py -q q5

With no additional code, you should now be able to run a Q-learning crawler robot:

python crawler.py

If this doesn't work, you've probably written some code too specific to the GridWorld problem and
you should make it more general to all MDPs.

This will invoke the crawling robot from class using your Q-learner. Play around with the various
learning parameters to see how they affect the agent's policies and actions. Note that the step
delay is a parameter of the simulation, whereas the learning rate and epsilon are parameters of
your learning algorithm, and the discount factor is a property of the environment.

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Question 6 (1 points)

First, train a completely random Q-learner with the default learning rate on the noiseless
BridgeGrid for 50 episodes and observe whether it finds the optimal policy.

python gridworld.py -a q -k 50 -n 0 -g BridgeGrid -e 1

Now try the same experiment with an epsilon of 0. Is there an epsilon and a learning rate for
which it is highly likely (greater than 99%) that the optimal policy will be learned after 50
iterations? question6() in analysis.py should return EITHER a 2-item tuple of (epsilon,
learning rate) OR the string 'NOT POSSIBLE' if there is none. Epsilon is controlled by -e,
learning rate by -l.

Note: Your response should be not depend on the exact tie-breaking mechanism used to choose
actions. This means your answer should be correct even if for instance we rotated the entire
bridge grid world 90 degrees.

To grade your answer, run the autograder:

python autograder.py -q q6

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/analysis.html

Approximate Q-learning and State Abstraction

Question 7 (1 points)

Time to play some Pacman! Pacman will play games in two phases. In the first phase, training,
Pacman will begin to learn about the values of positions and actions. Because it takes a very
long time to learn accurate Q-values even for tiny grids, Pacman's training games run in quiet
mode by default, with no GUI (or console) display. Once Pacman's training is complete, he will
enter testing mode. When testing, Pacman's self.epsilon and self.alpha will be set to 0.0,
effectively stopping Q-learning and disabling exploration, in order to allow Pacman to exploit his
learned policy. Test games are shown in the GUI by default. Without any code changes you
should be able to run Q-learning Pacman for very tiny grids as follows:

python pacman.py -p PacmanQAgent -x 2000 -n 2010 -l smallGrid

Note that PacmanQAgent is already defined for you in terms of the QLearningAgent you've already
written. PacmanQAgent is only different in that it has default learning parameters that are more
effective for the Pacman problem (epsilon=0.05, alpha=0.2, gamma=0.8). You will receive full
credit for this question if the command above works without exceptions and your agent wins at
least 80% of the time. The autograder will run 100 test games after the 2000 training games.

Hint: If your QLearningAgent works for gridworld.py and crawler.py but does not seem to be
learning a good policy for Pacman on smallGrid, it may be because your getAction and/or
computeActionFromQValues methods do not in some cases properly consider unseen actions. In
particular, because unseen actions have by definition a Q-value of zero, if all of the actions that
have been seen have negative Q-values, an unseen action may be optimal. Beware of the
argmax function from util.Counter!

Note: To grade your answer, run:

python autograder.py -q q7

Note: If you want to experiment with learning parameters, you can use the option -a, for example
-a epsilon=0.1,alpha=0.3,gamma=0.7. These values will then be accessible as self.epsilon,
self.gamma and self.alpha inside the agent.

Note: While a total of 2010 games will be played, the first 2000 games will not be displayed
because of the option -x 2000, which designates the first 2000 games for training (no output).
Thus, you will only see Pacman play the last 10 of these games. The number of training games is
also passed to your agent as the option numTraining.

Note: If you want to watch 10 training games to see what's going on, use the command:

python pacman.py -p PacmanQAgent -n 10 -l smallGrid -a numTraining=10

During training, you will see output every 100 games with statistics about how Pacman is faring.
Epsilon is positive during training, so Pacman will play poorly even after having learned a good
policy: this is because he occasionally makes a random exploratory move into a ghost. As a
benchmark, it should take between 1,000 and 1400 games before Pacman's rewards for a 100
episode segment becomes positive, reflecting that he's started winning more than losing. By the
end of training, it should remain positive and be fairly high (between 100 and 350).

Make sure you understand what is happening here: the MDP state is the exact board
configuration facing Pacman, with the now complex transitions describing an entire ply of change
to that state. The intermediate game configurations in which Pacman has moved but the ghosts
have not replied are not MDP states, but are bundled in to the transitions.

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/gridworld.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/crawler.html
Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Once Pacman is done training, he should win very reliably in test games (at least 90% of the
time), since now he is exploiting his learned policy.

However, you will find that training the same agent on the seemingly simple mediumGrid does
not work well. In our implementation, Pacman's average training rewards remain negative
throughout training. At test time, he plays badly, probably losing all of his test games. Training
will also take a long time, despite its ineffectiveness.

Pacman fails to win on larger layouts because each board configuration is a separate state with
separate Q-values. He has no way to generalize that running into a ghost is bad for all positions.
Obviously, this approach will not scale.

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/layouts/mediumGrid.lay

Question 8 (3 points)

Implement an approximate Q-learning agent that learns weights for features of states, where
many states might share the same features. Write your implementation in ApproximateQAgent
class in qlearningAgents.py, which is a subclass of PacmanQAgent.

Note: Approximate Q-learning assumes the existence of a feature function f(s,a) over state and
action pairs, which yields a vector f1(s,a) .. fi(s,a) .. fn(s,a) of feature values. We provide feature
functions for you in featureExtractors.py. Feature vectors are util.Counter (like a dictionary)
objects containing the non-zero pairs of features and values; all omitted features have value zero.

The approximate Q-function takes the following form

where each weight wi is associated with a particular feature fi(s,a). In your code, you should
implement the weight vector as a dictionary mapping features (which the feature extractors will
return) to weight values. You will update your weight vectors similarly to how you updated Q-
values:

Note that the term is the same as in normal Q-learning, and is the experienced
reward.

By default, ApproximateQAgent uses the IdentityExtractor, which assigns a single feature to
every (state,action) pair. With this feature extractor, your approximate Q-learning agent should
work identically to PacmanQAgent. You can test this with the following command:

python pacman.py -p ApproximateQAgent -x 2000 -n 2010 -l smallGrid

Important:ApproximateQAgent is a subclass of QLearningAgent, and it therefore shares several
methods like getAction. Make sure that your methods in QLearningAgent call getQValue instead
of accessing Q-values directly, so that when you override getQValue in your approximate agent,
the new approximate q-values are used to compute actions.

Once you're confident that your approximate learner works correctly with the identity features, run
your approximate Q-learning agent with our custom feature extractor, which can learn to win with
ease:

python pacman.py -p ApproximateQAgent -a extractor=SimpleExtractor -x 50 -n 60 -l mediumGrid

Even much larger layouts should be no problem for your ApproximateQAgent. (warning: this may
take a few minutes to train)
python pacman.py -p ApproximateQAgent -a extractor=SimpleExtractor -x 50 -n 60 -l mediumClassic

If you have no errors, your approximate Q-learning agent should win almost every time with these
simple features, even with only 50 training games.

Grading: We will run your approximate Q-learning agent and check that it learns the same Q-
values and feature weights as our reference implementation when each is presented with the
same set of examples. To grade your implementation, run the autograder:

python autograder.py -q q8

Congratulations! You have a learning Pacman agent!

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/qlearningAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/reinforcement/docs/featureExtractors.html
Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

	Project 3: Reinforcement Learning
	Introduction
	Files you will edit
	Files you should read but NOT edit
	Files you can ignore

	MDPs
	Q-learning
	Question 4 (5 points)

	Question 5 (3 points)
	Question 6 (1 points)
	Approximate Q-learning and State Abstraction
	Question 7 (1 points)

	Question 8 (3 points)

