
Project 2: Multi-Agent Pacman

Pacman, now with ghosts.
Minimax, Expectimax,

Evaluation.

Introduction

In this project, you will design agents for the classic version of Pacman, including ghosts. Along
the way, you will implement both minimax and expectimax search and try your hand at evaluation
function design.

The code base has not changed much from the previous project, but please start with a fresh
installation, rather than intermingling files from project 1.

As in project 1, this project includes an autograder for you to grade your answers on your
machine. This can be run on all questions with the command:

python autograder.py

It can be run for one particular question, such as q2, by:

python autograder.py -q q2

It can be run for one particular test by commands of the form:

python autograder.py -t test_cases/q2/0-small-tree

By default, the autograder displays graphics with the -t option, but doesn't with the -q option.
You can force graphics by using the --graphics flag, or force no graphics by using the --no-
graphics flag.

See the autograder tutorial in Project 0 for more information about using the autograder. The
code for this project contains the following files, available as a zip archive.

The entire project description can also be downloaded as a pdf from here.

Key files to read

multiAgents.py Where all of your multi-agent search agents will reside.

pacman.py The main file that runs Pacman games. This file also describes a Pacman
GameState type, which you will use extensively in this project

game.py The logic behind how the Pacman world works. This file describes several

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/multiagent.zip
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/Project-2.pdf
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/multiAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/pacman.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/game.html


game.py
supporting types like AgentState, Agent, Direction, and Grid.

util.py Useful data structures for implementing search algorithms.

Files you can ignore

graphicsDisplay.py Graphics for Pacman

graphicsUtils.py Support for Pacman graphics

textDisplay.py ASCII graphics for Pacman

ghostAgents.py Agents to control ghosts

keyboardAgents.py Keyboard interfaces to control Pacman

layout.py Code for reading layout files and storing their contents

autograder.py Project autograder

testParser.py Parses autograder test and solution files

testClasses.py General autograding test classes

test_cases/ Directory containing the test cases for each question

multiagentTestClasses.py Project 2 specific autograding test classes

Files to Edit and Submit: You will fill in portions of multiAgents.py during the assignment. You
should submit this file with your code and comments. Please do not change the other files in this
distribution or submit any of our original files other than this file.

Evaluation: Your code will be autograded for technical correctness. Please do not change the
names of any provided functions or classes within the code, or you will wreak havoc on the
autograder. However, the correctness of your implementation -- not the autograder's judgements -
- will be the final judge of your score. If necessary, we will review and grade assignments
individually to ensure that you receive due credit for your work.

Academic Dishonesty: We will be checking your code against other submissions in the class
for logical redundancy. If you copy someone else's code and submit it with minor changes, we
will know. These cheat detectors are quite hard to fool, so please don't try. We trust you all to
submit your own work only; please don't let us down. If you do, we will pursue the strongest
consequences available to us.

Getting Help: You are not alone! If you find yourself stuck on something, contact the course staff
for help. Office hours, section, and the discussion forum are there for your support; please use
them. If you can't make our office hours, let us know and we will schedule more. We want these
projects to be rewarding and instructional, not frustrating and demoralizing. But, we don't know
when or how to help unless you ask.

Discussion: Please be careful not to post spoilers.

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/util.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/graphicsDisplay.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/graphicsUtils.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/textDisplay.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/ghostAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/keyboardAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/layout.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/autograder.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/testParser.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/testClasses.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/multiagentTestClasses.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/multiAgents.html


Multi-Agent Pacman

First, play a game of classic Pacman:

python pacman.py

Now, run the provided ReflexAgent in multiAgents.py:

python pacman.py -p ReflexAgent

Note that it plays quite poorly even on simple layouts:

python pacman.py -p ReflexAgent -l testClassic

Inspect its code (in multiAgents.py) and make sure you understand what it's doing.

 

Question 1 (4 points)

Improve the ReflexAgent in multiAgents.py to play respectably. The provided reflex agent code
provides some helpful examples of methods that query the GameState for information. A capable
reflex agent will have to consider both food locations and ghost locations to perform well. Your
agent should easily and reliably clear the testClassic layout:

python pacman.py -p ReflexAgent -l testClassic

Try out your reflex agent on the default mediumClassic layout with one ghost or two (and
animation off to speed up the display):

python pacman.py --frameTime 0 -p ReflexAgent -k 1

python pacman.py --frameTime 0 -p ReflexAgent -k 2

How does your agent fare? It will likely often die with 2 ghosts on the default board, unless your
evaluation function is quite good.

Note: you can never have more ghosts than the layout permits.

Note: As features, try the reciprocal of important values (such as distance to food) rather than just
the values themselves.

Note: The evaluation function you're writing is evaluating state-action pairs; in later parts of the
project, you'll be evaluating states.

Options: Default ghosts are random; you can also play for fun with slightly smarter directional
ghosts using -g DirectionalGhost. If the randomness is preventing you from telling whether your
agent is improving, you can use -f to run with a fixed random seed (same random choices every
game). You can also play multiple games in a row with -n. Turn off graphics with -q to run lots of
games quickly.

Grading: we will run your agent on the openClassic layout 10 times. You will receive 0 points if
your agent times out, or never wins. You will receive 1 point if your agent wins at least 5 times, or
2 points if your agent wins all 10 games. You will receive an addition 1 point if your agent's
average score is greater than 500, or 2 points if it is greater than 1000. You can try your agent out
under these conditions with

python autograder.py -q q1

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/multiAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/multiAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/multiAgents.html
https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/layouts/mediumClassic.lay


To run it without graphics, use:

python autograder.py -q q1 --no-graphics

Don't spend too much time on this question, though, as the meat of the project lies ahead.



Question 2 (5 points)

Now you will write an adversarial search agent in the provided MinimaxAgent class stub in
multiAgents.py. Your minimax agent should work with any number of ghosts, so you'll have to
write an algorithm that is slightly more general than what you've previously seen in lecture. In
particular, your minimax tree will have multiple min layers (one for each ghost) for every max
layer.

Your code should also expand the game tree to an arbitrary depth. Score the leaves of your
minimax tree with the supplied self.evaluationFunction, which defaults to
scoreEvaluationFunction. MinimaxAgent extends MultiAgentSearchAgent, which gives access to
self.depth and self.evaluationFunction. Make sure your minimax code makes reference to
these two variables where appropriate as these variables are populated in response to command
line options.

Important: A single search ply is considered to be one Pacman move and all the ghosts'
responses, so depth 2 search will involve Pacman and each ghost moving two times.

Grading: We will be checking your code to determine whether it explores the correct number of
game states. This is the only way reliable way to detect some very subtle bugs in
implementations of minimax. As a result, the autograder will be very picky about how many times
you call GameState.generateSuccessor. If you call it any more or less than necessary, the
autograder will complain. To test and debug your code, run

python autograder.py -q q2

This will show what your algorithm does on a number of small trees, as well as a pacman game.
To run it without graphics, use:

python autograder.py -q q2 --no-graphics

Hints and Observations

The correct implementation of minimax will lead to Pacman losing the game in some tests.
This is not a problem: as it is correct behaviour, it will pass the tests.
The evaluation function for the pacman test in this part is already written
(self.evaluationFunction). You shouldn't change this function, but recognize that now
we're evaluating *states* rather than actions, as we were for the reflex agent. Look-ahead
agents evaluate future states whereas reflex agents evaluate actions from the current state.
The minimax values of the initial state in the minimaxClassic layout are 9, 8, 7, -492 for
depths 1, 2, 3 and 4 respectively. Note that your minimax agent will often win (665/1000
games for us) despite the dire prediction of depth 4 minimax.
python pacman.py -p MinimaxAgent -l minimaxClassic -a depth=4

Pacman is always agent 0, and the agents move in order of increasing agent index.
All states in minimax should be GameStates, either passed in to getAction or generated via
GameState.generateSuccessor. In this project, you will not be abstracting to simplified
states.
On larger boards such as openClassic and mediumClassic (the default), you'll find Pacman
to be good at not dying, but quite bad at winning. He'll often thrash around without making
progress. He might even thrash around right next to a dot without eating it because he
doesn't know where he'd go after eating that dot. Don't worry if you see this behavior,
question 5 will clean up all of these issues.
When Pacman believes that his death is unavoidable, he will try to end the game as soon
as possible because of the constant penalty for living. Sometimes, this is the wrong thing to
do with random ghosts, but minimax agents always assume the worst:

https://s3-us-west-2.amazonaws.com/cs188websitecontent/projects/sp14/multiagent/docs/multiAgents.html
Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight

Alvin
Highlight



python pacman.py -p MinimaxAgent -l trappedClassic -a depth=3

Make sure you understand why Pacman rushes the closest ghost in this case.



Question 3 (5 points)

Make a new agent that uses alpha-beta pruning to more efficiently explore the minimax tree, in
AlphaBetaAgent. Again, your algorithm will be slightly more general than the pseudocode from
lecture, so part of the challenge is to extend the alpha-beta pruning logic appropriately to multiple
minimizer agents.

You should see a speed-up (perhaps depth 3 alpha-beta will run as fast as depth 2 minimax).
Ideally, depth 3 on smallClassic should run in just a few seconds per move or faster.

python pacman.py -p AlphaBetaAgent -a depth=3 -l smallClassic

The AlphaBetaAgent minimax values should be identical to the MinimaxAgent minimax values,
although the actions it selects can vary because of different tie-breaking behavior. Again, the
minimax values of the initial state in the minimaxClassic layout are 9, 8, 7 and -492 for depths 1,
2, 3 and 4 respectively.

Grading: Because we check your code to determine whether it explores the correct number of
states, it is important that you perform alpha-beta pruning without reordering children. In other
words, successor states should always be processed in the order returned by
GameState.getLegalActions. Again, do not call GameState.generateSuccessor more
than necessary.

You must not prune on equality in order to match the set of states explored by our
autograder. (Indeed, alternatively, but incompatible with our autograder, would be to also allow
for pruning on equality and invoke alpha-beta once on each child of the root node, but this will
not match the autograder.)

The pseudo-code below represents the algorithm you should implement for this question.

To test and debug your code, run

python autograder.py -q q3

This will show what your algorithm does on a number of small trees, as well as a pacman game.
To run it without graphics, use:

python autograder.py -q q3 --no-graphics

The correct implementation of alphabeta pruning will lead to Pacman losing some of the tests.
This is not a problem: as it is correct behaviour, it will pass the tests.



Question 4 (5 points)

Minimax and alpha-beta are great, but they both assume that you are playing against an
adversary who makes optimal decisions. As anyone who has ever won tic-tac-toe can tell you,
this is not always the case. In this question you will implement the ExpectimaxAgent, which is
useful for modeling probabilistic behavior of agents who may make suboptimal choices.

As with the search and constraint satisfaction problems covered so far in this class, the beauty of
these algorithms is their general applicability. To expedite your own development, we've
supplied some test cases based on generic trees. You can debug your implementation on small
the game trees using the command:

python autograder.py -q q4

Debugging on these small and manageable test cases is recommended and will help you to find
bugs quickly. Make sure when you compute your averages that you use floats. Integer
division in Python truncates, so that 1/2 = 0, unlike the case with floats where 1.0/2.0 = 0.5.

Once your algorithm is working on small trees, you can observe its success in Pacman. Random
ghosts are of course not optimal minimax agents, and so modeling them with minimax search
may not be appropriate. ExpectimaxAgent, will no longer take the min over all ghost actions, but
the expectation according to your agent's model of how the ghosts act. To simplify your code,
assume you will only be running against an adversary which chooses amongst their
getLegalActions uniformly at random.

To see how the ExpectimaxAgent behaves in Pacman, run:

python pacman.py -p ExpectimaxAgent -l minimaxClassic -a depth=3

You should now observe a more cavalier approach in close quarters with ghosts. In particular, if
Pacman perceives that he could be trapped but might escape to grab a few more pieces of food,
he'll at least try. Investigate the results of these two scenarios:

python pacman.py -p AlphaBetaAgent -l trappedClassic -a depth=3 -q -n 10

python pacman.py -p ExpectimaxAgent -l trappedClassic -a depth=3 -q -n 10

You should find that your ExpectimaxAgent wins about half the time, while your AlphaBetaAgent
always loses. Make sure you understand why the behavior here differs from the minimax case.

The correct implementation of expectimax will lead to Pacman losing some of the tests. This is
not a problem: as it is correct behaviour, it will pass the tests.



Question 5 (6 points)

Write a better evaluation function for pacman in the provided function betterEvaluationFunction.
The evaluation function should evaluate states, rather than actions like your reflex agent
evaluation function did. You may use any tools at your disposal for evaluation, including your
search code from the last project. With depth 2 search, your evaluation function should clear the
smallClassic layout with one random ghost more than half the time and still run at a reasonable
rate (to get full credit, Pacman should be averaging around 1000 points when he's winning).

python autograder.py -q q5

Grading: the autograder will run your agent on the smallClassic layout 10 times. We will assign
points to your evaluation function in the following way:

If you win at least once without timing out the autograder, you receive 1 points. Any agent
not satisfying these criteria will receive 0 points.
+1 for winning at least 5 times, +2 for winning all 10 times
+1 for an average score of at least 500, +2 for an average score of at least 1000 (including
scores on lost games)
+1 if your games take on average less than 30 seconds on the autograder machine. The
autograder is run on EC2, so this machine will have a fair amount of resources, but your
personal computer could be far less performant (netbooks) or far more performant (gaming
rigs).
The additional points for average score and computation time will only be awarded if you
win at least 5 times.

Hints and Observations

As for your reflex agent evaluation function, you may want to use the reciprocal of important
values (such as distance to food) rather than the values themselves.
One way you might want to write your evaluation function is to use a linear combination of
features. That is, compute values for features about the state that you think are important,
and then combine those features by multiplying them by different values and adding the
results together. You might decide what to multiply each feature by based on how important
you think it is.


	Project 2: Multi-Agent Pacman
	Introduction
	Key files to read
	Files you can ignore


	Multi-Agent Pacman
	Question 1 (4 points)

	Question 2 (5 points)
	Question 3 (5 points)
	Question 4 (5 points)
	Question 5 (6 points)
	Hints and Observations

