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1 Motivation

In past talks at this conference we’ve seen the definition of a triangulated category and some examples of

familiar triangulated categories, including the homotopy category H(R) and the derived category D(R) of

modules over some ring R. These categories are defined by applying certain constructions to the category

C(R) of complexes of R-modules; the derived category is usually defined by some localization construction.

Both these categories get their triangulated structures from the abelian structure of Mod(R) and the shift

operation on complexes.

However, there is a number of ways in which the derived category is insufficient or problematic; one could

say that in passing to this localization one forgets too much data. For example, the derived category D(R) is

not abelian: it does not have limits or colimits, and the existence of the kernel or cokernel of a morphism is

not guaranteed. In fact one can show the existence of the weaker notion of homotopy limits or colimits, but

the derived category with only the triangulated structure does not give a prescription for how to construct

them.

Example. Here’s an example from [To] of how the derived category fails to have kernels. Consider the derived

category D(Z) of Z-modules. For two ordinary Z-modules M,N , seen as objects of the derived category in

degree zero, the maps between M and a shift of N in the derived category are calculated by the Ext functors:

D(Z)(M,N [i]) = Exti(M,N)

Let’s take M = N = Z/2. There’s one nontrivial element in Ext1(Z/2,Z/2), represented by the Z/4
extension

Z/2 ×2−−→ Z/4→ Z/2

which represents the nontrivial morphism f ∈ Hom(Z/2,Z/2[1]). Now suppose this map had a kernel K i.e.

there was an exact sequence

0→ K → Z/2→ Z/2[1]

in D(Z). For any i, applying the left exact functor Hom0(Z[−i],−) = Homi(Z,−) we would get an exact

sequence of (ordinary) Z-modules

0→ Homi(Z,K)→ Homi(Z,Z/2)→ Homi+1(Z,Z/2)
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Taking i 6= 0 we see that Homi(Z,K) = 0 and taking i = 0 we get an isomorphism Hom0(Z,K) ∼=
Hom0(Z,Z/2) = Z/2. So the morphism K → Z/2 is an isomorphism in D(Z) since it induces isomorphisms

on all cohomology groups, implying the extension Z/2→ Z/2[1] is trivial, which gives a contradiction.

Another issue is that the triangulated structure of D(R) alone almost determines some of the invariants

of R, but not quite. Later in the talk we will define the Hochschild homology and cohomology of a ring,

which are almost determined by D(R), in the precise sense that if there exists a triangulated equivalence

D(R) → D(R′) coming from a complex of (R,R′)-bimodules, that complex of bimodules also induces an

isomorphism of the Hochschild complex. However, not every triangulated functor D(R) → D(R′) comes

from such a complex of bimodules and worse, there are examples where there one can write down an

equivalence of the derived categories of modules but the invariants are different.

Differential graded (dg) categories provide enhancements of triangulated categories that allow us to

overcome such problems. We’ll first define dg categories and describe some constructions that can be

performed with them, and then we’ll see how to compute some invariants using a dg enhancement of a

derived category. Finally we’ll present some theorems about such invariants, and how to derive them using

properties of the dg enhancement.

This talk is purely expository and does not contain original material; mostly it is based on B. Keller’s

excellent survey on dg categories [Kel], and whenever possible I have used notation compatible with that

source. I also included material and examples from the other sources listed as references as well.

2 Definitions

2.1 dg categories

Let k be a commutative ring. A differential graded (dg) module over k is a Z-graded complex of k-modules

V = ⊕nV n endowed with a differential dV : V n → V n+1. A morphism f : V → W of dg k-modules is a

(degree zero) morphism of the chain complexes, i.e. a family of morphisms fn : V n → Wn intertwining the

differentials. The category C(k) of dg k-modules admits a monoidal structure given by the graded tensor

product

(V ⊗W )n =
⊕
i+j=n

V i ⊗W j

whose differential acts on homogeneous objects by a graded version of the Leibniz rule

dV⊗W (a⊗ b) = dV (a)⊗ b+ (−1)deg aa⊗ dW (b)

The unit of this monoidal structure is the dg-module given by k in degree zero.

Definition 1. A dg category A is a category enriched over C(k), i.e. a category where the morphism

spaces A(X,Y ) are dg k-modules and the compositions A(X,Y )⊗A(Y, Z)→ A(X,Z) are morphisms of dg

k-modules.

A dg category with only one object is the same as a differential graded algebra, i.e. a k-algebra with a

k-linear differential satisfying d2 = 0 and the graded Leibniz rule.

Given any dg category A we can define the closed category Z0(A) with the same objects but morphisms

spaces given by closed morphisms of degree 0, i.e.

Z0(A)(X,Y ) = Z0(A(X,Y )) = ker(d0 : A(X,Y )0 → A(X,Y )1)
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This forms a category since the composition of two closed morphisms is closed by the Leibniz rule. More

importantly, we can form the cohomology category H0(A) with morphism spaces

H0(A)(X,Y ) = H0(A(X,Y )) = ker(d0)/im(d−1)

This also gives a category; one can show that any choices of representatives for two classes in H0(A(X,Y ))

leads to the same class under composition.

Remark. The category C(k) of dg k-modules is not itself a dg category, as the morphism spaces are just

usual k-modules without any extra structure. One can enrich this into a dg category as in the next example.

2.2 The dg category of R-modules

Definition 2. For any k-algebra R, the dg category of right (left) R-modules Cdg(R) has as objects chain

complexes M of right (left) R-modules. The morphisms are first defined as graded k-modules: an element

of Cdg(R)(M,N)n is a family of morphisms of left (right) R-modules fn : Mp → Np+n. These graded

morphism spaces are then given the structure of dg k-modules by the differential

df = dN ◦ f − (−1)nf ◦ dM

which endows them with the structure of dg k-modules.

Remark. From now one we will use the right module structure by default, noting explicitly when we want

left modules.

It’s easy to check from the definitions that Z0(Cdg(R)) is just the category C(R) of chain complexes of

R-modules, with morphisms given by degree zero maps intertwining the differentials. Taking the zeroth

cohomology category H0(Cdg(R)) one gets the homotopy category H(R), whose morphism spaces given by

degree zero maps modulo maps homotopic to zero. We say that Cdg(R) is a dg enhancement of H(R); it is

in a similar way that we will construct dg enhancements of derived categories.

3 Triangulated structures and dg categories

The dg category of modules Cdg(R) is somewhat special in the sense that its zeroth cohomology category

C(R) is triangulated. Note that in general this is not the case; in a dg category the Hom spaces are graded

but not the objects, so it’s unclear what taking cones and shifts of objects means. We can enforce this

condition for a general dg category by looking at representability of the cone and shift functors acting on

the Hom spaces.

Definition 3. A dg category A is (strongly) pretriangulated if for every object X and integer n, the functor

Aop → C(k) given by

Z 7→ A(Z,X)[n]

is representable, and for every morphism f : X → Y , the functor Aop → C(k) given by

Z → Cone(f : A(Z,X)→ A(Z, Y ))

is representable. We will call the objects representing these functors X[n] and Cf , respectively.

3



It’s easy to see that if a dg category A is pretriangulated, then its zeroth cohomology category H0(A) is

a triangulated (ordinary) category, with shifts and distinguished triangles inherited from the corresponding

representing objects in A.

Example. For any k-algebra R, the dg category Cdg(R) of modules over R is a pretriangulated dg category,

with the shift and cone objects naturally just given by the shift and cone of chain complexes. Naturally its

zeroth cohomology category is the homotopy category H(R) with the usual triangulated structure.

In general, every dg category has a pretriangulated envelope pretr(A) with a fully faithful embedding

A ↪→ pretr(A)

satisfying the universal property that any functor A → B to a pretriangulated category B factors through

it. The pretriangulated envelope can be constructed explicitly with the use of twisted complexes [BonKap],

which we will not describe in detail here.

4 Functor categories and modules over dg categories

We have seen that given an (ordinary) k-algebra R one can construct two different dg categories from it:

a category with only one object and self-homs given by R in degree zero, or the dg category of R-modules

Cdg(R). We would like to do the same and define a dg category of modules over an arbitrary dg k-algebra

A.

However, if we try to naively generalize the definition of Cdg above to a case where A has nonzero elements

in multiple degrees, it would be necessary to keep track of a lot of different degrees by hand, which is very

inconvenient. The correct way to do this is to formalize module categories as functor categories, and once

we do so it is not any more work to define modules over arbitrary dg categories.

4.1 The category of dg categories

A dg functor F between two dg categories A,B is a functor respecting the dg structure of the morphism

spaces, i.e. such that A(X,Y ) → B(FX,FY ) is a morphism in C(k) for every pair of objects. This allows

us to consider the category of dg categories. For set-theoretic reasons it is wise to restrict to (essentially)

small categories, i.e. such that the isomorphism classes of objects form a set.

Definition 4. The category dg-Catk of small dg categories over k has as objects small dg categories over k

and as morphisms dg functors between them.

Theorem 5. dg-Catk is a symmetric monoidal category with a tensor product ⊗ and an internal Hom

functor Hom, with an internal adjunctions

Hom(A⊗ B, C) ∼= Hom(A,Hom(B, C))

The monoidal structure is given by the following tensor product of categories: A ⊗ B has objects given

by pairs of objects (XA, XB) in A,B and morphism spaces given by tensor of morphism spaces in C(k):

HomA⊗B((XA, XB), (YA, YB)) = HomA(XA, YA)⊗HomB(XB , YB)

The internal hom category Hom(A,B) has as objects dg functors A → B, with the degree n piece

Hom(A,B)(F,G)n of a morphism space given by a family of degree n morphisms

φX ∈ (B(FX,GX))n, (Gf)(φX) = (φY )(Ff)
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for all f ∈ A(X,Y ). This graded k-module inherits a differential induced from the differential in B(FX,GX),

giving Hom(A,B) the structure of a dg category.

4.2 Modules over dg categories

The internal hom in dg-Catk lets us construct new dg categories as categories of functors; consider an

arbitrary small dg category A over k, possibly with multiple objects and hom spaces in many degrees. We

can define categories of modules over it as functor categories using Hom:

Definition 6. The dg category of right modules over A is defined by the internal Hom from the opposite

category:

Cdg(A) = Hom(Aop, Cdg(k))

and the category of left modules over A is analogously defined as Hom(A, Cdg(k)).

We can get ordinary categories from these by taking the closed and cohomology categories: we define the

category of A-modules C(A) = Z0(Cdg(A)) and the homotopy category of A-modules H(A) = H0(Cdg(A)).

It’s easy to check that when A is the dg category with one object and self-homs given by an ordinary

k-algebra R, these notions agree with our previous definitions of Cdg(R), C(R) and H(R).

Fact. For any dg category A the dg category of A-modules Cdg(A) is pretriangulated, with shifts and cones

inherited from the target category Cdg(k).

4.3 The Yoneda embedding

For any ring R, there is a distinguished object in Cdg(R), the unit of the monoidal structure, given by R

placed in degree zero, with self-homs given by R itself. Looking at R as a dg category concentrated in degree

zero, we see this is just the image of the obvious embedding of dg categories R→ Cdg(R).

This can be generalized to an arbitrary dg category A over k in the setting described above: for any

object X of A we define the object X̂ in Cdg(A) given by the functor HomA(X,−). This is the Yoneda

embedding

A → Cdg(A)

which one can easily check is a fully faithful dg functor.

As we remark above, the dg category Cdg(A) is automatically triangulated, even if A itself isn’t: for any

functor M : A → Cdg(k) one can compose it with the shift [n] in Cdg(k) to get M [n].

Let’s take now the triangulated hull of the collection {X̂[n]} of all the shifts of the images of all the

objects X under the Yoneda embedding. Remember that the triangulated hull of a collection of objects is

the smallest triangulated subcategory containing those objects. In our case we will denote this triangulated

hull by perdg(A), the dg category of perfect complexes over A. From this we can also get the ordinary

category of perfect complexes by per(A) = Z0(perdg(A)). Note that definition, the Yoneda embedding

factors through perdg(A), and we will also call this map the Yoneda embedding.

4.4 The dg derived category

As we stated in the beginning of the talk, one main objective of defining dg categories is to come up with

enhancements of triangulated categories that contain more structure, that is, to find pretriangulated dg

categories whose H0 category recovers some triangulated category we want to study.
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It’s not clear that we should be able to find a meaningful dg enhancement of an arbitrary triangulated

category, but in specific cases, when the triangulated category is given in some algebraic or geometric context,

we can often find natural dg enhancements. We have seen an example of this already: for any ring R we

defined the dg category Cdg(R) so that it gives an enhancement of the homotopy category H0(Cdg(R)) =

H(R). It’s then a natural question to ask whether the derived category D(R) (and also D(A) for some

general dg category A) also has a similar dg enhancement. More generally, we can ask whether other derived

categories of interest, such as derived categories of quasicoherent or coherent sheaves on a scheme X, possess

similar dg enhancements

The answer turns out to be that all these examples do have dg enhancements, and some even have

several different dg enhancements: for example the derived category of quasicoherent sheaves D(qcohX) on

a separated noetherian scheme X has at least three different constructions of a dg enhancement [Or]. One

of these constructions involves a familiar construction of quotients of categories.

Proposition 7. [Or, Dr] For any dg category A with a full dg subcategory B there is a dg category denoted

A/B with an universal morphism (up to quasiequivalence) in dg-Catk

A → A/B

such that any dg functor A → C with the property that the corresponding map on homotopy categories

H0(A)→ H0(C) sends all elements of B to zero factors through A → A/B.

This quotient dg category can be constructed easily when e.g. the ground ring k is a field; in general

the construction is more involved. We can apply this to construct dg enhancements of our familiar derived

categories.

Example. Consider the dg category Cdg(qcohX) of unbounded complexes of quasicoherent sheaves on a sepa-

rated noetherian scheme X, and the full dg subcategory Acdg(qcohX) spanned by all the acyclic complexes.

The quotient

Ddg(qcohX) = Cdg(qcohX)/Acdg(qcohX)

is an enhancement of the category D(qcohX).

We can apply this same construction to any abelian category C in place of qcoh(X): applied to C =

Mod(R) we get a dg category Ddg(R) which is an enhancement of the derived category D(R). These dg

enhancements are referred to in the literature as the dg derived category of an abelian category.

When actually computing morphisms in the derived category, it is often more useful to use the formalism

of fibrant and cofibrant replacements, which are generalizations of projective and injective resolutions. A

more rigorous and thorough treatment of these techniques goes through the discussion of Quillen model

structures but we will avoid that and refer to more competent sources [DwSp]. In our specific case we can

define the cofibrant and fibrant objects of the category of dg modules over some arbitrary dg category A as

follows:

Definition 8. An object P of C(A) is cofibrant if for every surjective quasi-equivalence L → M , every

P →M factors through L. An object I of C(A) if for every injective quasi-equivalence L→M , every L→ I

extends to M .

Fact. The category C(A) admits cofibrant and fibrant replacements; i.e. for any object M there are quasi-

isomorphisms P → M and M → I where P is cofibrant and I is fibrant. Moreover all objects M̂ in the

image of the Yoneda embedding A → C(A) are cofibrant.
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So we can also define the derived category and compute its morphisms by using e.g. the fibrant replace-

ment and computing in the homotopy category:

D(A)(X,Y ) = H(A)(P, Y ) = H0(Cdg(P, Y ))

5 Additive invariants

5.1 Hochschild homology of associative algebras

Hochschild homology and cohomology were initially defined as invariants of associative algebras, but the

definition can be extended to dg algebras and dg categories, and we can use the dg enhancements we

constructed above to define invariants of e.g. derived categories of coherent sheaves.

Definition 9. Given an associative k-algebra A and an A-bimodule M , the Hochschild chain complex of A

with coefficients in the bimodule M is concentrated in non-positive degrees and is defined by [Ar, Hap]

C−n(A,M) = M ⊗A⊗n

for n ≥ 0 with a differential d : C−n(A,M)→ C−n+1(A,M) given by

d(m⊗ a1 ⊗ · · · ⊗ an) = ma1 ⊗ · · · ⊗ an +

n−1∑
i=1

m⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an + (−1)nanm⊗ a1 ⊗ · · · ⊗ an−1

The Hochschild homology of A with coefficients in M is defined as the cohomology of this complex:

HHn(A,M) = H−n(C∗(A,M)). Hochschild cohomology is defined using a dual complex concentrated

in non-negative degrees

Cn(A,M) = Hom(A⊗n,M)

with a differential d : Cn(A,M)→ Cn+1(A,M) given by

df(a1, . . . , an+1) = a1f(a2, . . . , an+1) +

n∑
i=1

(−1)if(a1, . . . , aiai+1, . . . , an+1) + (−1)n+1f(a1, . . . , an)an+1

Remark. Here we reverse the degrees and direction of the differential in the Hochschild homology complex

from the usual conventions just so that it is also cohomologically graded, since it will simplify our notation

in the future.

To get an invariant of associative algebras, we can take M to be the diagonal bimodule A∆, i.e. just A

as a bimodule over itself with the left and right algebra actions, and get the Hochschild (co)homology of A:

HHn(A) = HHn(A,A∆) and HHn(A) = HHn(A,A∆). We can also stop before taking the (co)homology

of the complex and define the Hochschild complex as an object of C(k).

Besides the dg structure Hochschild homology and cohomology of A carry extra structures; for instance

HH∗(A) automatically carries an S1 action which allows us to also define further invariants such as cyclic

homology and negative cyclic homology, which we refer to other sources [Lod]

Example. Let A be an associative algebra over k. Then its first two Hochschild homologies are

HH0(A) = A/[A,A], HH1(A) = Ω1(A)
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where Ω1(A) is the vector space of Kähler differentials on A, i.e. spanned over A by symbols da for a ∈ A,

modulo the following relations

dx = 0, d(a+ b) = da+ db, d(ab) = da b+ adb

for every x ∈ k, a, b ∈ A. Note that if A is the algebra of functions on some manifold then the Kähler

differentials is an algebraic versio of the space of one-forms. The fact that the first Hochschild homology

captures the space of one-forms is our first example of a more general fact we’ll get to later, the Hochschild-

Kostant-Rosenberg theorem.

The first two Hochschild cohomologies are

HH0(A) = Z(A), HH1(A) = Der(A)/Inn(A)

where Der(A) is the space of derivations of A and Inn(A) ⊆ Der(A) are the derivations given by commu-

tators with some element in A. More generally for some A-bimodule M

HH0(A,M) = M/[M,A], HH0(A,M) = ZA(M)

i.e. respectively the coinvariants and the invariants under the adjoint A action.

Hochschild homology can be given an interpretation in terms of derived functors in the category of

(A,A)-bimodules, i.e. A ⊗ Aop-modules. Given any bimodule N in Mod(A ⊗ Aop), there are two functors

Mod(A⊗Aop)→ Mod(k) given by N⊗A⊗Aop− and HomA⊗Aop(N,−). It’s easy to check from the definitions

that by taking N = A∆, this calculates the zeroth degree Hochschild homology and cohomology

HH0(A,M) = A∆ ⊗A⊗Aop M, HH0(A,M) = HomA⊗Aop(A∆,M)

As you might expect the higher Hochschild homologies and cohomologies are the derived functors of

the tensor and hom of bimodules: there is a left derived tensor A∆ ⊗LA⊗Aop − and a right derived hom

RHomA⊗Aop(A∆,−), both functors from the derived category D(A ⊗ Aop) → D(k), which calculate the

Hochschild homology and cohomology

HH•(A,M) = A⊗LA⊗Aop M, HH•(A,M) = RHomA⊗Aop(A,M)

The connection between this more abstract definition and the explicit definition above is due to the fact

that there is a standard free resolution of the diagonal bimodule A∆ given by the bar complex C̄n(A) given

in non-positive degrees by

C̄−n(A) = A⊗A⊗n ⊗A

with the differential d : C̄−n(A)→ C̄−n+1(A) given by

d(a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1) =

i=n∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

and one can check that for any (A,A)-bimodule M there is a quasi-isomorphism of complexes

C̄∗(A)⊗A⊗Aop M ∼= C∗(A,M)

with the complex we initially used to define Hochschild homology.
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Example. Consider a finite quiver Q with n vertices and no oriented cycles, and take A = kQ to be its path

algebra. Remember that A as a vector space over k is spanned by all the paths in Q, so as an algebra it

is generated by the idempotents ei (one for each vertex) and the elements fij (one for each edge i → j),

subject to the composition rules given by concatenation of paths. Note that since Q is finite, there is an

identity element 1 =
∑
i ei, and up to scaling it is the only central element, so Z(A) = k1. Note also that

every path x with length ≥ 1 is in the commutator ideal; i.e. if x starts at the vertex i, then x = [ei, x].

Thus we have that

HH0(A) ' k HH0(A) ' kQ/〈fij〉 ' k⊗n

where k⊗n is spanned by the basis {ei}.
It can also be shown [Cib] that in this case where Q has no oriented cycles, there’s no higher Hochschild

homology: HHi(kQ) = 0 for i ≥ 1. The Hochschild cohomology groups are more complicated [Hap]:

HHi(kQ) = 0 for i ≥ 2 but

dimHH1(kQ) = 1− n+
∑

edge ij

(number of paths i→ j)

we can check that this is zero if and only if the underlying graph is a tree (even if the quiver has no

oriented cycles the underlying graph might have cycles). This examples shows how Hochschild homology

and cohomology can have quite different behaviors.

5.2 Hochschild homology of dg algebras and dg categories

The definition above can be easily extended to dg algebras and dg categories. For a dg category A over k,

remember that we defined the dg category Cdg(A) of modules over A. We can also define the dg category

Cdg(A⊗Aop) of (A,A)-bimodules using the tensor and internal hom structure of dg-Catk.

There is also a diagonal bimodule A∆ defined by the Hom functor A⊗Aop → Cdg(k) of A:

A∆ : (Y,X) 7→ A(X,Y )

Similarly to what we saw above, for any bimoduleM there is a bimodule tensor functorM⊗A⊗Aop − and a

bimodule Hom functor HomA⊗Aop(M,−) both mapping Cdg(A⊗Aop)→ Cdg(k). They give rise to derived

functors Ddg(A⊗Aop)→ Ddg(k) so just as above we can define the Hochschild homology and cohomology

of a dg category by

HH∗(A) = A∆ ⊗LA⊗Aop A∆, HH∗(A) = RHomA⊗Aop(A∆,A∆)

This definition agrees with the earlier definitions when A is the dg category with one object and with

self-homs given by some (dg) algebra.

5.3 Hochschild homology of dg enhancements of triangulated categories

Suppose now that we have a triangulated category T with a dg enhancement D(C), i.e. we have some dg

algebra C and a triangulated equivalence T ∼= D(C). This allows us to define additive invariants for the

triangulated category T : in particular we can define the Hochschild (co)homology of T as the Hochschild

(co)homology of the dg algebra C. In general these invariants will depend on the particular dg enhancement

we pick, but in some useful contexts the choice of dg enhancement doesn’t matter for any of the additive

invariants: e.g. when T = Db(CohX) for a smooth proper scheme X [Yus].
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Let X be a smooth projective variety, and consider the derived category Db(X) = Db(Coh X). Here

we follow [Kuz]. It’s known that Db(X) has a strong generator E, i.e. Db(X) can be generated from E by

taking sequences of cones and finite shifts. Consider the dg algebra of endomorphisms A = RHom(E,E).

Then we have a triangulated equivalence Db(X) ∼= Db(A), and we can define the Hochschild (co)homology

of the derived category of coherent sheaves on X as the Hochschild (co)homology of the dg algebra A:

HH∗(X) = HH∗(A) HH∗(X) = HH∗(A)

Another way of defining Hochschild (co)homology for a scheme X is to just adapt to a geometric setting

the notion of Hochschild homology as the self-tensor of the diagonal and Hochschild cohomology as the

self-homs of the diagonal, by defining

HH∗(X) = H∗(X ×X,∆∗OX ⊗L ∆∗OX), HH∗(X) = Hom∗X×X(∆∗OX ,∆∗OX)

Here ∆ : X → X ×X is the diagonal embedding, H calculates the hypercohomology of a complex of sheaves

and all the functors are implicitly understood as the corresponding derived functors on the categories of

coherent sheaves.

One can prove that these two definitions of Hochschild (co)homology agree regardless of the particular

choice of strongly generating object E. Besides being a calculational tool, the definition using the dg

enhancement also shows that Hochschild homology satisfies a very nice property under semiorthogonal

decomposition. Suppose we have a triangulated category T with a strong generator E, and a semiorthogonal

decomposition

T = 〈T1, . . . Tn〉

into pieces Ti. Then we can look at the projection Ei of E onto each piece Ti. One can show that this gives

strongly generating objects, so using the dg algebras Ai = RHom(Ei, Ei), we get a direct sum decomposition

of Hochschild homology

HH∗(T ) =
⊕

HH∗(Ti)

Note that we do not get a similar decomposition for Hochschild cohomology.

Example. Consider the derived category D(kQ) of representations of an acyclic quiver Q with n vertices.

Here we already have a dg enhancement given by Ddg(kQ). This corresponds as picking as generating object

the algebra kQ itself. Remember that we have a decomposition of (right) kQ-modules

kQ =
⊕
α∈Q

Pα

into the projective modules Pα given by all the paths starting at the vertex α.

Let’s choose a total ordering of the vertices of Q compatible with the partial ordering given by the quiver

structure, i.e. we require α < β if there is a non-zero path going from α to β. Then we see that we have

a semiorthogonal orthogonal decomposition of the category D(kQ) with n pieces Tα, each one with a single

object given by the projective Pα. Each piece is equivalent to the category D(k) and has Hochschild homology

given by HH0(Ti) = Hom(Pα, Pα) = k and zero in higher degrees. So from the direct sum decompositionwe

recover the result

HH0(D(kQ)) ' kn, HHi(D(kQ)) = 0, i ≥ 1
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5.4 The Hochschild-Kostant-Rosenberg theorem

The classical statement of the Hochschild-Kostant-Rosenberg theorem [HKR] is a generalization of the fact

that for a commutative k-algebra R, the first Hochschild homology gives the space of Kähler differentials.

Theorem 10. Let R be a finitely presented k-algebra, where k has characteristic zero. Suppose also that R

is smooth i.e. the space of Kähler differentials Ω1
R is a projective R-module. Then we have an isomorphism

HHn(R) ∼= ΩnR = ∧nΩ1
R

There’s also a version of the HKR theorem for the category of coherent sheaves on a smooth projective

variety X. Let’s again denote the diagonal inclusion by ∆ : X → X×X and define two complexes of sheaves

in Db(Coh X):

HH• = ∆∗∆∗OX , HH• = ∆!∆∗OX

These are sheafy versions of the Hochschild homology and cohomology: taking global sections one can show

that

HH∗(X) = H∗(X,HH•), HH∗(X) = H∗(X,HH•)

The HKR theorem then also holds at the sheaf level:

Theorem 11. Let X be a smooth projective variety of dimension n. Then there are quasi-isomorphisms

HH• '
n⊕
p=0

ΩpX [p], HH• '
n⊕
p=0

T pX [p]

where ΩpX = ∧pΩ1
X is the sheaf of p-forms on X and T pX = ∧pT 1

X where T 1
X is the tangent sheaf of X.

So in the case of a smooth projective variety X over C, taking global sections of this sheaf calculates the

Hochschild homology of X in terms of the Hodge groups of X

HHk(X) ∼=
⊕
p−q=k

Hp(X,ΩqX) =
⊕
p−q=k

Hp,q(X)

In particular, since derived equivalences preserves the Hochschild homology we conclude that any derived

equivalence D(X) ∼= D(X ′) preserves the sum
∑
p−q=k h

p,q, i.e. the column sums of the Hodge diamond.
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[DwSp] W. Dwyer and L. Spaliński, Homotopy theories and model categories, Handbook of Algebraic Topol-

ogy, North-Holland, Amsterdam 1995, 73?126

11

www.math.uni-bonn.de/ag/stroppel/MA_DhyanAranha.pdf
www.math.uni-bonn.de/ag/stroppel/MA_DhyanAranha.pdf


[Hap] D. Happel, Hochschild cohomology of finite-dimensional algebras, Lecture Notes in Math., 1404,

Springer, Berlin, 1989

[HKR] G. Hochschild, B. Kostant, A. Rosenberg, Differential forms on regular affine algebras, Transactions

AMS 102 (1962), No.3, 383?408

[Kel] B. Keller, On differential graded categories, arXiv:math/0601185

[Kuz] A. Kuznetsov, Hochschild homology and semiorthogonal decompositions, arXiv:0904.4330

[Lod] J.-L. Loday, Cyclic homology, Grundlehren der mathematischen Wissenschaften, Volume 301, 1998

[Or] D. Orlov, Smooth and proper noncommutative schemes and gluing of dg categories, arXiv:1402.7364

[Sh] E. Shinder, Derived categories, lecture notes available at http://e-shinder.staff.shef.ac.uk/

Mainz-Lecture-5.pdf
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