GLUING STABILITY CONDITIONS ON TOPOLOGICAL FUKAYA CATEGORIES

Some results of arXiv:1811.10592 and subsequent developments

OUTLINE

* Inspired by the concept of [1-stability in string theory, Bridgeland defined a notion of stability for a general triangulated
category T

* The space of (Bridgeland) stability conditions on T denoted Stab(T) naturally carries the structure of a complex manifold

* In principle, Stab(T) could have many components, and interesting topology, but explicit calculations in several examples show
that this is not the case

* In general, hard to prove general facts about the whole space Stab(T), easier to construct components
* However in some cases the whole space is known, turns out to be connected and contractible
* Always rely on detailed, specific knowledge of the category T

* Here we will add a class of examples to this list, namely certain Fukaya categories of marked surfaces, related to gentle
algebras

* Point of interest: rely on a local-to-global principle, don’t need detailed information of T

T = colimi Ti

{ Compatible (relative) stability conditions on Ti} <> { Stability conditions on T }



BRIDGELAND STABILITY CONDITIONS

Let T = triangulated k-linear category, fixed field k, assume rank Ko(T) < &
DEF (Bridgeland) A stability condition on T is a pair (Z,P)

Z = central charge

P =slicing 2 = {’Pﬁb}yﬁém , énC/ 7)7[, full subcategory of T of semistable objects of phase ¢

satisfying the conditions
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Equivalent to choice of bounded t-structure on T, together with compatible central charge
heov
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DEF The set of stability conditions on T is denoted Stab(T)

THM (Bridgeland) The map Stab(T) = Hom(K(T), C) defines the structure of a complex manifold on Stab(T) and is a local

isomorphism of complex varieties

Stab(T) has a wall-and-chamber structure, with two types of walls

* Walls of the first type : ¢/Z/X})) = 7£ (Z/XZ) , Fowe [X’) + [XLL
* Walls of the second type : Z()() E ]R , Jfor—< x

Walls divide Stab(T) into chambers, inside of each chamber the heart H is constant

Warning walls are dense in general



BRIDGELAND STABILITY CONDITIONS : EXAMPLE
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MARKED SURFACES

DEF A graded marked surface is a triple (2, M, n) where

* (2,02) is a compact surface with boundary
* M C 9% is the marked part of the boundary NOTE unmarked = stops
* nel(ZPT)

In this talk: every boundary component has at least one marked and at least one unmarked interval




THE FUKAYA CATEGORY OF A MARKED SURFACE

To a (graded marked) surface 2 we associate its (derived) topological Fukaya category () (aka partially wrapped Fukaya
category)

Indecomposable objects = admissible curves + irreducible local system

Morphisms = Floer complex of intersections + shared marked boundaries with differential given by counting bigons
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EXAMPLES
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RELATION TO GENTLE ALGEBRAS

DEF (Assem-Skowronski) A gentle algebra A = kQ/I given by a connected quiver Q with relations | such that
* each vertex has at most two outgoing and at most two incoming vertices
* | is generated by paths of length 2

* for each arrow x there is at most one arrow y such that xy € | and at most one arrow z such that zx € |

* for each arrow x there is at most one arrow y such that xy ¢ | and at most one arrow z such that zx & |
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THM (Opper-Plamondon-Schroll, Lekili-Polishchuk) For any homologically smooth Z-graded gentle algebra A there is a marked
surface 2 such that D(A) = % (2) where D(A) is the perfect derived category of dg A-modules.

Every boundary component has at least one stop/marked part <« A is homologically smooth and proper



STABILITY CONDITIONS

Haiden, Katzarkov and Kontsevich constructed stability conditions on () using quadratic differentials with exponential-type
singularities.

(3 1) vl 5, & niy)

- LMAO/ -

.
Jjemann sUr X = Z
R 7 . X\{z,-}

(X, ¢) e difopmdd o X |
Pl g gued ﬂé/ €)7>( o%.y%nt

a/ownol Zr

M)-=

THM (Haiden, Katzarkov, Kontsevich) There is a map of complex manifolds .#(2) — Stab(# (%)) which is moreover an
isomorphism of complex manifolds to a union of connected components.



Concretely, given a quadratic differential (p we get a flat metric g with conical singularities at each marked point, and the

stability condition is given by
* Central charge Z (X) S j Y% ‘70
spp (X)
* Semistable objects = objects represented by geodesics (stable objects: simple geodesics with indecomposable local system)

Semistable objects can be supported on either immersed intervals or embedded circles

Flat metric and exponential-type singularities
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COMBINATORIAL DESCRIPTION OF THE STRIP DECOMPOSITION
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LOCAL-TO-GLOBAL BEHAVIOR

Observation Bridgeland stability conditions in general do not have functoriality properties, but quadratic differentials do.
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Question Can we understand this functoriality just in terms of the stability conditions themselves?
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Observation Fix an HKK stability condition, and pick and object X supported on embedded interval Y. The HN
decomposition of X takes the following form:
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RELATIVE STABILITY CONDITIONS

Let us try to replicate this just in terms of stability conditions

DEF A relative stability condition on (2, Y) is the data of:
* A natural number n = 3
* A stability condition 0 € Stab(#(2)) where 2 = 2 u, An
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(note that we do not make any assumption on O being HKK)




PROPERTIES

A relative stability condition 0 € Stab(S‘T(i)) restricts to a stability condition on F (A, ) = Db(Rep Aiiq), for somer = n

We say such a condition is minimal if the corresponding decomposition of X (object supported on Y) hits all the marked parts
of A\,
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Two minimal relative stability conditions 0, 02 on (21, Y), (22, Y) are compatible if they restrict to the same stability condition
on F(A;)
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THE SPACE OF RELATIVE STABILITY CONDITIONS

Let us denote RelStab(Z, Y) the set of minimal relative stability conditions.There is an identification
RelStab(Z, y) = Un Stab(%(Z u, An)/~
LEM The space RelStab(Z, Y) with the quotient topology is an (infinite-dimensional) Hausdorff space.

For a decomposition 2 = 2; uy 2, are also cutting and gluing maps

cut: Stab(#(2)) — T
glue: T — Stab(F(2)) where [ C RelStab(2,, Y) % RelStab(Z,,Y)

which are continuous for that topology.



THE LOCAL-TO-GLOBAL PRINCIPLE

The following lemma holds for the entire space Stab:

LEM The maps cut and glue are homeomorphisms.

So if we can cut X into smaller pieces and understand the relative stability conditions on those, we understand all of
Stab(F(2)).

Now given any surface 2 we consider the following decomposition
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There are three base cases to consider: the disk, the annulus and the punctured torus



FINITE-HEART STABILITY CONDITIONS

DEF A stability condition is finite-heart if the corresponding heart is a finite abelian category, ie. every object has finite length
and there are finitely many isomorphism classes of simples.

For a given stability condition, set © = {phases of semistable objects} C S

LEM For a category T such that rank(Ko(T)) < 00, and a given stability condition, if O has a gap containing phase zero, then the
stability condition is finite-heart.

THM (HKK) Any finite-heart stability condition on F(2) is HKK. = also any deformation of a finite-heart stab. condition

THE DISK
~<e—

The category for the disk is Z(A; ) = D°(Rep Ai+1)

All stability conditions are finite-heart,and ® is discrete. = is HKK



THE ANNULUS

The category for the annulus is % (A% ) = D°(Rep Ajs1).

THM (HKK) Any stability condition, possibly after infinitesimal phase rotation, is finite-heart. © either is discrete or has two
accumulation points. = is HKK




THE PUNCTURED TORUS

LEM Any stability condition 0 on % (T*, ), possibly (after infinitesimal deformation) and finite phase rotation, is finite-heart.

© may be dense, but only on a proper subset of the circle (ie. has a gap) = 0 is HKK
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THM For any (fully stopped) surface 2, every stability condition is HKK.



(STILL ) UNWRITTEN WORK

THM* For any fully stopped surface 2 the stability space Stab(F(2)) is contractible
= Stab(D(A)) is contractible for any homologically smooth and proper Z-graded gentle algebra A.

Idea of proof:

* every (relative) stability space has a maximally degenerate locus MaxDeg (maximal alighment of phases of stable objects),
which sits inside the closure of every chamber

* MaxDeg itself is generally disconnected, but it has a neighborhood which is connected

* Cutting/gluing/compatibility preserves the maximally degenerate loci









