
gluing stability conditions on topological fukaya categories 
Some results of arXiv:1811.10592 and subsequent developments

outline

Inspired by the concept of 𝞟-stability in string theory,  Bridgeland defined a notion of stability for a general triangulated •
category T

The space of (Bridgeland) stability conditions on T denoted Stab(T) naturally carries the structure of a complex manifold•

In principle, Stab(T) could have many components, and interesting topology, but explicit calculations in several examples show •
that this is not the case 

In general, hard to prove general facts about the whole space Stab(T), easier to construct components•

However in some cases the whole space is known, turns out to be connected and contractible•

Always rely on detailed, specific knowledge of the category T•

Here we will add a class of examples to this list, namely certain Fukaya categories of marked surfaces, related to gentle •
algebras

Point of interest: rely on a local-to-global principle, don’t need detailed information of T•

T = colimi Ti

{ Compatible (relative) stability conditions on Ti } ↔ { Stability conditions on T } 



bridgeland stability conditions 
Let T = triangulated k-linear category,  fixed field k,  assume rank K0(T) < ∞
 
DEf (Bridgeland) A stability condition on T is a pair (Z,P)
 

Z = central charge

P = slicing full subcategory of T of semistable objects of phase ϕ
 
satisfying the conditions

                  (Harder-Narasimhan filtration)  
 
 

Z Ko T Q

P Potholer each P

P PyoEl

x Hom P Py o

to X E T O Xz Xz Xu Xn X
L r t t I

7 4 1oz n A A An
A i e Poli f
of X E Pf

z X m X e t't m A EIR o



 
 
Equivalent to choice of bounded t-structure on T, together with compatible central charge 

DEF The set of stability conditions on T is denoted Stab(T)

thm (Bridgeland) The map Stab(T) → Hom(K₀(T), ℂ) defines the structure of a complex manifold on Stab(T) and is a local
isomorphism of complex varieties 

Stab(T) has a wall-and-chamber structure, with two types of walls

Walls of the first type :•

Walls of the second type : •

Walls divide Stab(T) into chambers, inside of each chamber the heart H is constant

Warning walls are dense in general

hegart 71 Pio D Vo pet Pot
Z P 171 271 Zz 2 lay

0 24 1 4121 2 someLX Exd
2 X e IR some X



bridgeland stability conditions : example 
 
ex.1 T = Dᵇ(Rep A₂) e ZIP
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ex.2 T = Dᵇ(Rep K) ≅ Dᵇ(Coh ℙ¹) 15 4 52 K o o
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marked surfaces 
 
def A graded marked surface is a triple (Σ, M, η) where

(Σ, ∂Σ) is a compact surface with boundary•
M ⊆ ∂Σ is the marked part of the boundary   NOTE unmarked = stops•
η ∈ Γ(Σ, ℙTΣ)•

In this talk: every boundary component has at least one marked and at least one unmarked interval
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The fukaya category of a marked surface 
 
To a (graded marked) surface Σ we associate its (derived) topological Fukaya category ℱ(Σ) (aka partially wrapped Fukaya 
category)

Indecomposable objects = admissible curves + irreducible local system

Morphisms = Floer complex of intersections + shared marked boundaries with differential given by counting bigons

Adm curves Nonadm
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Examples 
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Relation to gentle algebras 
 
def (Assem-Skowroński) A gentle algebra A = kQ/I given by a connected quiver Q with relations I such that

each vertex has at most two outgoing and at most two incoming vertices•

I is generated by paths of length 2•

for each arrow x there is at most one arrow y such that xy ∈ I and at most one arrow z such that zx ∈ I•

for each arrow x there is at most one arrow y such that xy ∉ I and at most one arrow z such that zx ∉ I   •

 
ex 

thm (Opper-Plamondon-Schroll, Lekili-Polishchuk) For any homologically smooth ℤ-graded gentle algebra A there is a marked 
surface Σ such that D(A) ≅ ℱ(Σ) where D(A) is the perfect derived category of dg A-modules.

Every boundary component has at least one stop/marked part    ⇔    A is homologically smooth and proper 
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stability conditions 
 
Haiden, Katzarkov and Kontsevich constructed stability conditions on ℱ(Σ) using quadratic differentials with exponential-type 
singularities.

thm (Haiden, Katzarkov, Kontsevich) There is a map of complex manifolds ℳ(Σ) → Stab(ℱ(Σ)) which is moreover an 
isomorphism of complex manifolds to a union of connected components.
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Concretely, given a quadratic differential φ we get a flat metric g with conical singularities at each marked point, and the 
stability condition is given by

Central charge•

Semistable objects = objects represented by geodesics (stable objects: simple geodesics with indecomposable local system) •

Semistable objects can be supported on either immersed intervals or embedded circles

Flat metric and exponential-type singularities
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combinatorial description of the strip decomposition 
 
ex Σ = Δ₃,    ℱ(Σ) = Dᵇ(Rep A₂), φ = exp(z³ + az + b)dz² 
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local-to-global behavior 
 
Observation Bridgeland stability conditions in general do not have functoriality properties, but quadratic differentials do.

Question Can we understand this functoriality just in terms of the stability conditions themselves?

Observation Fix an HKK stability condition, and pick and object X supported on embedded interval γ. The HN
decomposition of X takes the following form: 
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relative stability conditions 
 
Let us try to replicate this just in terms of stability conditions

def A relative stability condition on (Σ, γ) is the data of:
A natural number n ≥ 3•
A stability condition σ ∈ Stab(ℱ(Σ)̃) where Σ ̃= Σ ∪ᵧ Δn•

(note that we do not make any assumption on σ being HKK) 
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properties 
 
A relative stability condition σ ∈ Stab(ℱ(Σ)̃) restricts to a stability condition on ℱ(Δᵣ ) = Dᵇ(Rep Aᵣ₊₁), for some r ≥ n 

We say such a condition is minimal if the corresponding decomposition of X (object supported on γ) hits all the marked parts 
of Δᵣ

 

Two minimal relative stability conditions σ₁, σ₂ on (Σ₁, γ), (Σ₂, γ) are compatible if they restrict to the same stability condition 
on ℱ(Δᵣ )
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the space of relative stability conditions 
 
Let us denote RelStab(Σ, γ) the set of minimal relative stability conditions. There is an identification 

RelStab(Σ, γ) = ∪n Stab(ℱ(Σ ∪ᵧ Δn)∕~

lem  The space RelStab(Σ, γ) with the quotient topology is an (infinite-dimensional) Hausdorff space.

For a decomposition Σ = Σ₁ ∪ᵧ Σ₂ are also cutting and gluing maps

cut:   Stab(ℱ(Σ))  → Γ
glue:  Γ               → Stab(ℱ(Σ))       where Γ ⊆ RelStab(Σ₁, γ) × RelStab(Σ₂, γ)

which are continuous for that topology.



the local-to-global principle 
 
The following lemma holds for the entire space Stab:

lem  The maps cut and glue are homeomorphisms.

So if we can cut Σ into smaller pieces and understand the relative stability conditions on those, we understand all of  
Stab(ℱ(Σ)).

Now given any surface Σ we consider the following decomposition

There are three base cases to consider: the disk, the annulus and the punctured torus
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finite-heart stability conditions 
 
def A stability condition is finite-heart if the corresponding heart is a finite abelian category, ie. every object has finite length

and there are finitely many isomorphism classes of simples.

For a given stability condition, set Θ = {phases of semistable objects} ⊆ S¹

LEM For a category T such that rank(K0(T)) < ∞, and a given stability condition, if Θ has a gap containing phase zero, then the
stability condition is finite-heart.

thm (HKK) Any finite-heart stability condition on ℱ(Σ) is HKK.       ⇒ also any deformation of a finite-heart stab. condition

the disk

The category for the disk is ℱ(Δᵢ ) = Dᵇ(Rep Aᵢ₊₁)

                  Θ

All stability conditions are finite-heart, and Φ is discrete.              ⇒ is HKK 



the annulus 
 
The category for the annulus is ℱ(Δ*ᵢ ) = Dᵇ(Rep Âᵢ₊₁).

thm (HKK) Any stability condition, possibly after infinitesimal phase rotation, is finite-heart. Θ either is discrete or has two
accumulation points.                 ⇒ is HKK 
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the punctured torus 
 
lem  Any stability condition σ on ℱ(T*ᵣ ), possibly (after infinitesimal deformation) and finite phase rotation, is finite-heart.

Θ may be dense, but only on a proper subset of the circle (ie. has a gap)               ⇒ σ is HKK 
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thm For any (fully stopped) surface Σ, every stability condition is HKK.
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( still ) unwritten work

thm*      For any fully stopped surface Σ the stability space Stab(ℱ(Σ)) is contractible
⇒ Stab(D(A)) is contractible for any homologically smooth and proper ℤ-graded gentle algebra A.

Idea of proof:

every (relative) stability space has a maximally degenerate locus MaxDeg (maximal alignment of phases of stable objects), •
which sits inside the closure of every chamber

MaxDeg itself is generally disconnected, but it has a neighborhood which is connected•

Cutting/gluing/compatibility preserves the maximally degenerate loci  •

 
 
 



 

 

 
 

 
 
 




