GLUING STABILITY CONDITIONS ON TOPOLOGICAL FUKAYA CATEGORIES

Some results of arXiv:1811.10592 and subsequent developments

OUTLINE

- Inspired by the concept of Π -stability in string theory, Bridgeland defined a notion of stability for a general triangulated category T
- The space of (Bridgeland) stability conditions on T denoted Stab(T) naturally carries the structure of a complex manifold
- In principle, Stab(T) could have many components, and interesting topology, but explicit calculations in several examples show that this is not the case
- In general, hard to prove general facts about the whole space Stab(T), easier to construct components
- However in some cases the whole space is known, turns out to be connected and contractible
- Always rely on detailed, specific knowledge of the category T
- Here we will add a class of examples to this list, namely certain Fukaya categories of marked surfaces, related to gentle algebras
- Point of interest: rely on a local-to-global principle, don't need detailed information of T

T = colimi Ti

{ Compatible (relative) stability conditions on T_i } \leftrightarrow { Stability conditions on T }

BRIDGELAND STABILITY CONDITIONS

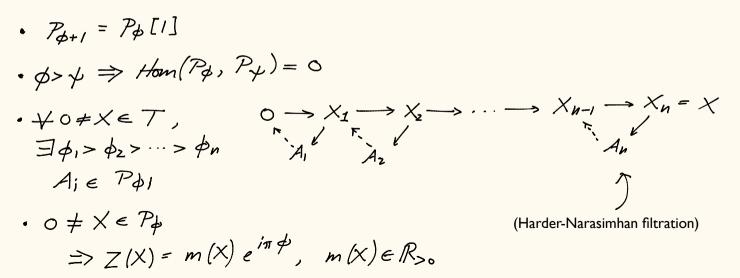
Let T = triangulated k-linear category, fixed field k, assume rank $K_0(T) < \infty$

DEF (Bridgeland) A stability condition on T is a pair (Z,P)

 $Z = \text{central charge} \quad Z: \mathcal{K}_{\mathfrak{s}}(\mathcal{T}) \longrightarrow \mathbb{C}$

P = slicing $\mathcal{P} = \{\mathcal{P}_{\varphi}\}_{\varphi \in \mathbb{R}}$, each \mathcal{P}_{φ} full subcategory of T of semistable objects of phase ϕ

satisfying the conditions



Equivalent to choice of bounded t-structure on T, together with compatible central charge

$$\begin{array}{c} \begin{array}{c} \text{heart} \\ \swarrow \end{array} \\ \left(Z, P \right) \longmapsto \left(\mathcal{H}, \mathcal{Z}_{\mathcal{H}} \right) \end{array} \begin{pmatrix} \mathcal{H} = \mathcal{P}_{\left(0, \cdot \right)} = U_{0 < \phi \in I} \mathcal{P}_{\phi} \\ \mathcal{Z}_{\mathcal{H}} = \mathcal{Z} \Big|_{\mathcal{H}} \\ \mathcal{Z}_{\mathcal{H}} = \mathcal{Z} \Big|_{\mathcal{H}} \end{array}$$

DEF The set of stability conditions on T is denoted Stab(T)

THM (Bridgeland) The map $\text{Stab}(T) \rightarrow Hom(K_0(T), \mathbb{C})$ defines the structure of a complex manifold on Stab(T) and is a local isomorphism of complex varieties

Stab(T) has a wall-and-chamber structure, with two types of walls

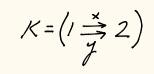
- Walls of the first type: $\phi(Z(X_1)) = \phi(Z(X_2), \text{ Some } [X_1] \neq [X_2]$
- Walls of the second type : $Z(X) \in \mathbb{R}$, some X

Walls divide Stab(T) into chambers, inside of each chamber the heart H is constant

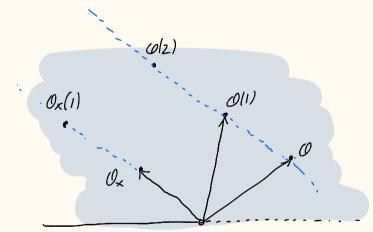
Warning walls are dense in general

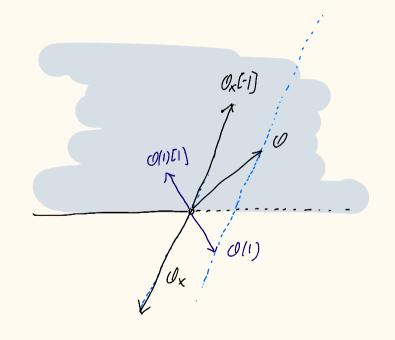
BRIDGELAND STABILITY CONDITIONS : EXAMPLE

 $Z(P_1)$ **EX.1** $T = D^{b}(\operatorname{Rep} A_{2})$ $Z(s_1)$ $Z(S_i)$ $A_{z} = (1 \rightarrow z)$ $Z(P_i)$ $Z(S_2[I])$ $Z(s_2)$ S1= (k-> 0) $S_2 = (0 \rightarrow k)$ <u>, 2(52</u>) P,= (k->k) $Z(P_1)$ P1 8. 4--- 5, 1 Z(S,) Z(5z)



 $(k \Rightarrow 0) \iff 0$ $(0 \Rightarrow k) \iff 0(1)[-1]$ $(k \Rightarrow k) \iff 0_{x}, x=[a:b]$ $0 \xrightarrow{X} 0(1) \longrightarrow 0_{x}$



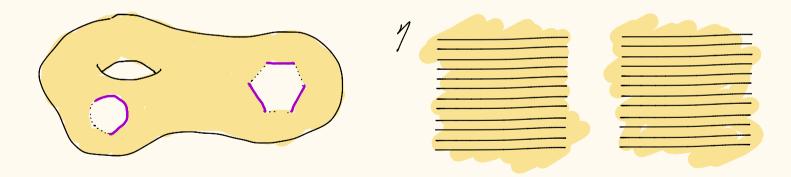


MARKED SURFACES

DEF A graded marked surface is a triple (Σ, M, η) where

- $(\Sigma,\partial\Sigma)$ is a compact surface with boundary
- $M \subseteq \partial \Sigma$ is the marked part of the boundary NOTE unmarked = stops
- $\eta \in \Gamma(\Sigma, \mathbb{P}T\Sigma)$

In this talk: every boundary component has at least one marked and at least one unmarked interval



THE FUKAYA CATEGORY OF A MARKED SURFACE

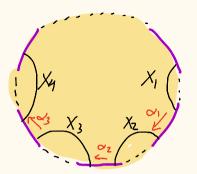
To a (graded marked) surface Σ we associate its (derived) topological Fukaya category $\mathscr{F}(\Sigma)$ (aka partially wrapped Fukaya category)

Indecomposable objects = admissible curves + irreducible local system

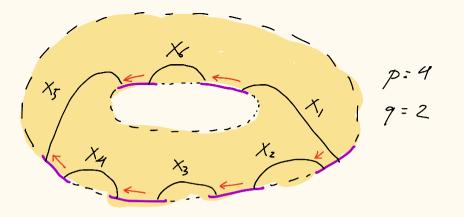
Morphisms = Floer complex of intersections + shared marked boundaries with differential given by counting bigons

Adm. arris Non-adm.

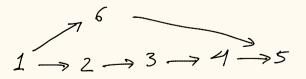
EXAMPLES



Choose grading on Xi st. $dig \propto = 1$ $\mathcal{F}(\Sigma) \longleftrightarrow D^{5}(\operatorname{Rep} A_{n-1})$ $\chi_i \longleftrightarrow (0 \rightarrow \dots \rightarrow k \rightarrow \dots \rightarrow 0) = S_i$



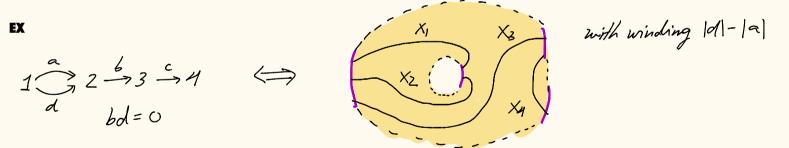
Annulus grading = 0 \Rightarrow can choose deg \propto ; = 1 FIE ~ Db(Rep Aprq-1)



RELATION TO GENTLE ALGEBRAS

DEF (Assem-Skowroński) A gentle algebra A = kQ/l given by a connected quiver Q with relations l such that

- each vertex has at most two outgoing and at most two incoming vertices
- I is generated by paths of length 2
- for each arrow x there is at most one arrow y such that $xy \in I$ and at most one arrow z such that $zx \in I$
- for each arrow x there is at most one arrow y such that $xy \notin I$ and at most one arrow z such that $zx \notin I$



THM (Opper-Plamondon-Schroll, Lekili-Polishchuk) For any homologically smooth \mathbb{Z} -graded gentle algebra A there is a marked surface Σ such that $D(A) \cong \mathscr{F}(\Sigma)$ where D(A) is the perfect derived category of dg A-modules.

Every boundary component has at least one stop/marked part \Leftrightarrow A is homologically smooth and proper

STABILITY CONDITIONS

Haiden, Katzarkov and Kontsevich constructed stability conditions on $\mathscr{F}(\Sigma)$ using quadratic differentials with exponential-type singularities.

$$(\Sigma, M, \eta) \qquad \text{Condicat} \qquad (\Sigma', \{\Xi; , ni\})$$

$$(\Sigma', \{\Xi; , ni\})$$

THM (Haiden, Katzarkov, Kontsevich) There is a map of complex manifolds $\mathcal{M}(\Sigma) \to Stab(\mathcal{F}(\Sigma))$ which is moreover an isomorphism of complex manifolds to a union of connected components.

Concretely, given a quadratic differential φ we get a flat metric g with conical singularities at each marked point, and the stability condition is given by

- $Z(X) = \int_{supp(X)} \sqrt{\varphi}$ • Central charge
- Semistable objects = objects represented by geodesics (stable objects: simple geodesics with indecomposable local system)

Semistable objects can be supported on either immersed intervals or embedded circles

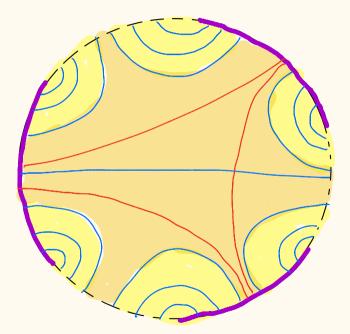
Flat metric and exponential-type singularities

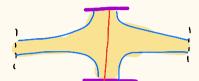
q holom -> q flat singularities of q -> conical singularities of g q ~ {metric g = | q | horizontal foliation Exp. - type singularities Decompose E into "3 ZL" many half-planes half - planes $e_{\mathcal{P}}\left(\frac{1}{7^{3}}\right)$ fin-height strip

COMBINATOPIAL DESCRIPTION OF THE STRIP DECOMPOSITION

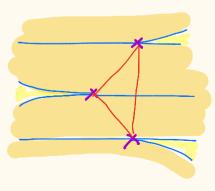
EX $\Sigma = \Delta_3$, $\mathscr{F}(\Sigma) = D^b(\operatorname{Rep} A_2)$, $\varphi = \exp(z^3 + az + b)dz^2$

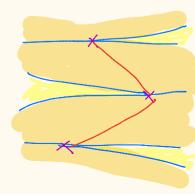
2 types of pieces 1/2-plane hor. ship





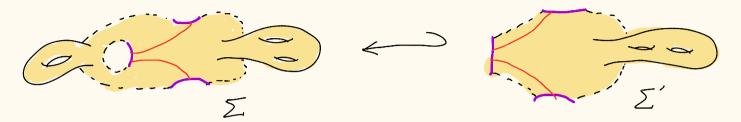
 $\begin{cases} quad.diff \\ \varphi \end{cases} \longleftrightarrow \begin{cases} strip d.comp. \\ + (Z(X), phare(X)) \end{cases}$



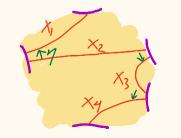


LOCAL-TO-GLOBAL BEHAVIOR

Observation Bridgeland stability conditions in general do not have functoriality properties, but quadratic differentials do.



- Question Can we understand this functoriality just in terms of the stability conditions themselves?
- Observation Fix an HKK stability condition, and pick and object X supported on embedded interval Y. The HN decomposition of X takes the following form:

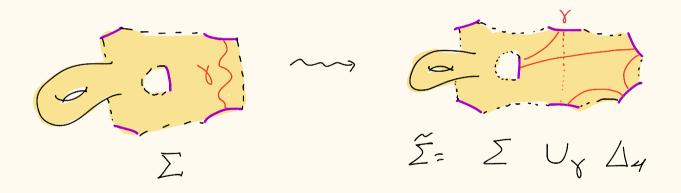


X; (sensi) stuble N deg 1

RELATIVE STABILITY CONDITIONS

Let us try to replicate this just in terms of stability conditions

- **DEF** A relative stability condition on (Σ, γ) is the data of:
- A natural number $n \ge 3$
- A stability condition $\sigma \in Stab(\mathscr{F}(\tilde{\Sigma}))$ where $\tilde{\Sigma} = \Sigma \cup_{\gamma} \Delta n$



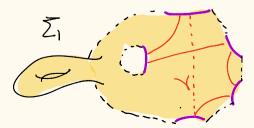
(note that we do not make any assumption on σ being HKK)

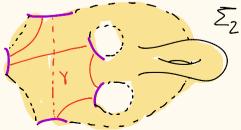
PROPERTIES

A relative stability condition $\sigma \in Stab(\mathcal{F}(\tilde{\Sigma}))$ restricts to a stability condition on $\mathcal{F}(\Delta_r) = D^b(\operatorname{Rep} A_{r+1})$, for some $r \geq n$

We say such a condition is minimal if the corresponding decomposition of X (object supported on γ) hits all the marked parts of Δ_r

Two minimal relative stability conditions σ_1 , σ_2 on (Σ_1 , γ), (Σ_2 , γ) are compatible if they restrict to the same stability condition on $\mathcal{F}(\Delta_r)$





THE SPACE OF RELATIVE STABILITY CONDITIONS

Let us denote $RelStab(\Sigma, \gamma)$ the set of minimal relative stability conditions. There is an identification

 $\operatorname{RelStab}(\Sigma, \gamma) = \bigcup_n \operatorname{Stab}(\mathscr{F}(\Sigma \cup_{\gamma} \Delta_n)/\sim$

LEM The space $RelStab(\Sigma, \gamma)$ with the quotient topology is an (infinite-dimensional) Hausdorff space.

For a decomposition $\Sigma = \Sigma_1 \cup_{\gamma} \Sigma_2$ are also cutting and gluing maps

cut:
$$Stab(\mathscr{F}(\Sigma)) \rightarrow \Gamma$$

glue: $\Gamma \qquad \rightarrow Stab(\mathscr{F}(\Sigma)) \qquad \text{where } \Gamma \subseteq RelStab(\Sigma_1, \gamma) \times RelStab(\Sigma_2, \gamma)$

which are continuous for that topology.

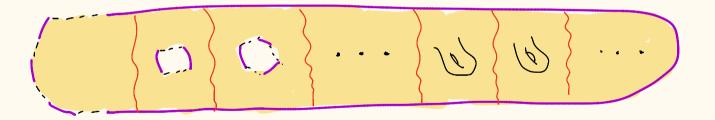
THE LOCAL-TO-GLOBAL PRINCIPLE

The following lemma holds for the entire space Stab:

LEM The maps cut and glue are homeomorphisms.

So if we can cut Σ into smaller pieces and understand the relative stability conditions on those, we understand all of $Stab(\mathscr{F}(\Sigma))$.

Now given any surface Σ we consider the following decomposition



There are three base cases to consider: the disk, the annulus and the punctured torus

FINITE-HEART STABILITY CONDITIONS

DEF A stability condition is finite-heart if the corresponding heart is a finite abelian category, ie. every object has finite length and there are finitely many isomorphism classes of simples.

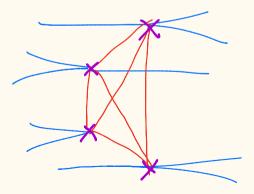
For a given stability condition, set $\Theta = \{\text{phases of semistable objects}\} \subseteq S^1$

- **LEM** For a category T such that $rank(K_0(T)) < \infty$, and a given stability condition, if Θ has a gap containing phase zero, then the stability condition is finite-heart.
- **THM** (HKK) Any finite-heart stability condition on $\mathcal{F}(\Sigma)$ is HKK. =

 \Rightarrow also any deformation of a finite-heart stab. condition

THE DISK

The category for the disk is $\mathscr{F}(\Delta_i) = D^b(\operatorname{Rep} A_{i+1})$



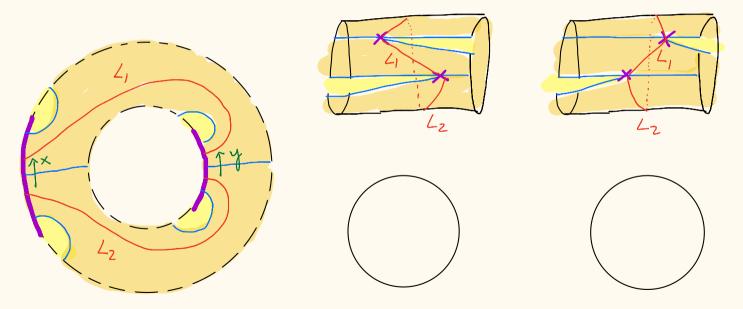
All stability conditions are finite-heart, and Φ is discrete.

 \Rightarrow is HKK

THE ANNULUS

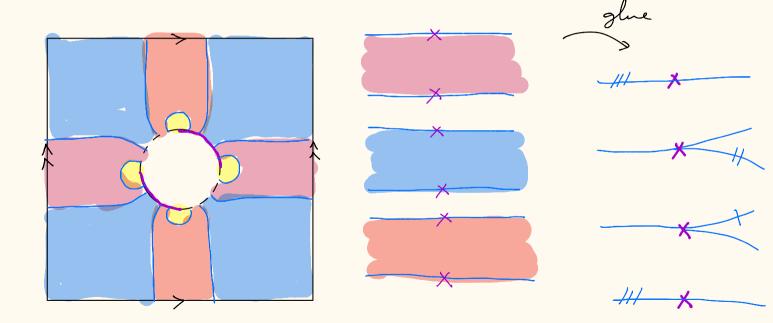
The category for the annulus is $\mathscr{F}(\Delta^*_i) = D^b(\operatorname{Rep} \hat{A}_{i+1})$.

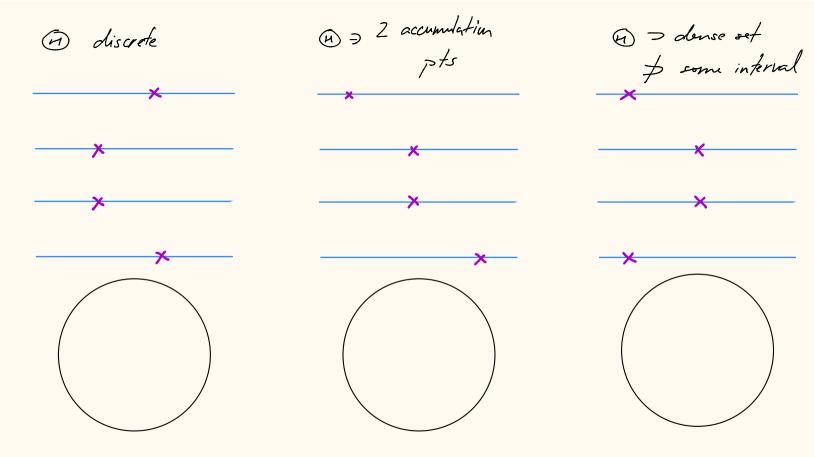
THM (HKK) Any stability condition, possibly after infinitesimal phase rotation, is finite-heart. Θ either is discrete or has two accumulation points. \Rightarrow is HKK



THE PUNCTURED TORUS

LEM Any stability condition σ on $\mathcal{F}(T^*_r)$, possibly (after infinitesimal deformation) and finite phase rotation, is finite-heart. Θ may be dense, but only on a proper subset of the circle (ie. has a gap) $\Rightarrow \sigma$ is HKK





THM For any (fully stopped) surface Σ , every stability condition is HKK.

(STILL) UNWRITTEN WORK

- **THM*** For any fully stopped surface Σ the stability space $Stab(\mathcal{F}(\Sigma))$ is contractible
 - \Rightarrow Stab(D(A)) is contractible for any homologically smooth and proper \mathbb{Z} -graded gentle algebra A.

Idea of proof:

- every (relative) stability space has a maximally degenerate locus *MaxDeg* (maximal alignment of phases of stable objects), which sits inside the closure of every chamber
- MaxDeg itself is generally disconnected, but it has a neighborhood which is connected
- Cutting/gluing/compatibility preserves the maximally degenerate loci