Gluing stability conditions

Or: charts on spaces of holomorphic differentials

Alex A. Takeda

UC Berkeley/MSRI

July 12, 2019

Alex A. Takeda (UC Berkeley/MSRI)

Gluing stability conditions

July 12, 2019 1 / 24

Will present results of arXiv:1811.10592.

・ロト ・回ト ・ヨト ・ヨト

Will present results of arXiv:1811.10592.

• Thomas-Yau conjecture relates stability conditions on Fukaya categories of Calabi-Yau manifolds with special Lagrangian geometry

Will present results of arXiv:1811.10592.

- Thomas-Yau conjecture relates stability conditions on Fukaya categories of Calabi-Yau manifolds with special Lagrangian geometry
- "Toy model": Fukaya categories of marked surfaces. Can construct stability conditions using quadratic differentials

Will present results of arXiv:1811.10592.

- Thomas-Yau conjecture relates stability conditions on Fukaya categories of Calabi-Yau manifolds with special Lagrangian geometry
- "Toy model": Fukaya categories of marked surfaces. Can construct stability conditions using quadratic differentials
- Given decomposition of a marked surface Σ , we define a way of constructing a quadratic differential from local data on the pieces

(日) (同) (三) (三)

Will present results of arXiv:1811.10592.

- Thomas-Yau conjecture relates stability conditions on Fukaya categories of Calabi-Yau manifolds with special Lagrangian geometry
- "Toy model": Fukaya categories of marked surfaces. Can construct stability conditions using quadratic differentials
- Given decomposition of a marked surface Σ , we define a way of constructing a quadratic differential from local data on the pieces
- Works for a general stability condition too, defining a *relative stability condition*

<ロ> (日) (日) (日) (日) (日)

Will present results of arXiv:1811.10592.

- Thomas-Yau conjecture relates stability conditions on Fukaya categories of Calabi-Yau manifolds with special Lagrangian geometry
- "Toy model": Fukaya categories of marked surfaces. Can construct stability conditions using quadratic differentials
- Given decomposition of a marked surface Σ , we define a way of constructing a quadratic differential from local data on the pieces
- Works for a general stability condition too, defining a *relative stability condition*
- Given charts covering the moduli spaces of quadratic differentials/stability conditions

<ロ> (日) (日) (日) (日) (日)

Will present results of arXiv:1811.10592.

- Thomas-Yau conjecture relates stability conditions on Fukaya categories of Calabi-Yau manifolds with special Lagrangian geometry
- "Toy model": Fukaya categories of marked surfaces. Can construct stability conditions using quadratic differentials
- Given decomposition of a marked surface Σ , we define a way of constructing a quadratic differential from local data on the pieces
- Works for a general stability condition too, defining a *relative stability condition*
- Given charts covering the moduli spaces of quadratic differentials/stability conditions
- In "fully stopped" case, this can show every stability condition is given by quadratic differential

イロン イヨン イヨン イヨン

Fix (M,ω) a symplectic manifold. The Fukaya category of M roughly has

<ロ> (日) (日) (日) (日) (日)

Fix (M, ω) a symplectic manifold. The Fukaya category of M roughly has

- Objects: Lagrangian submanifolds $L \hookrightarrow M$
- Morphism space: spanned by intersection points $L_1 \pitchfork L_2$

Fix (M, ω) a symplectic manifold. The Fukaya category of M roughly has

- Objects: Lagrangian submanifolds $L \hookrightarrow M$
- Morphism space: spanned by intersection points $L_1 \pitchfork L_2$

イロト イヨト イヨト イヨト

Comes in many flavors: as an A_{∞} -category, as a triangulated category $\mathcal{D}^{\pi}(\mathcal{F}(M))$ etc.

Fix (M, ω) a symplectic manifold. The Fukaya category of M roughly has

- Objects: Lagrangian submanifolds $L \hookrightarrow M$
- Morphism space: spanned by intersection points $L_1 \pitchfork L_2$

<ロ> (日) (日) (日) (日) (日)

Comes in many flavors: as an A_{∞} -category, as a triangulated category $\mathcal{D}^{\pi}(\mathcal{F}(M))$ etc.

Want objects to be quasi-isomorphic under Hamiltonian isotopy.

Fukaya categories: flash intro

Fix (M, ω) a symplectic manifold. The Fukaya category of M roughly has

- Objects: Hamiltonian isotopy classes of Lagrangian submanifolds L → M
- Morphism space: spanned by intersection points p ∈ L₁ ∩ L₂

<ロ> (日) (日) (日) (日) (日)

Comes in many flavors: as an A_{∞} -category, as a triangulated category $\mathcal{D}^{\pi}(\mathcal{F}(M))$ etc.

Want objects to be quasi-isomorphic under Hamiltonian isotopy.

Use counts of holomorphic disks to correct for variation of intersections under Hamiltonian isotopy.

Fix triangulated category \mathcal{D} . A Bridgeland stability condition on \mathcal{C} is:

Fix triangulated category $\mathcal{D}.$ A Bridgeland stability condition on \mathcal{C} is:

- A central charge function $Z : K_0(\mathcal{D}) \to \mathbb{C}$.
- For each $\phi \in \mathbb{R}$, a full abelian subcategory \mathcal{P}_{ϕ} of *semistable objects of phase* ϕ .

satisfying some conditions.

<ロ> (日) (日) (日) (日) (日)

Fix triangulated category \mathcal{D} . A Bridgeland stability condition on \mathcal{C} is:

- A central charge function $Z : K_0(\mathcal{D}) \to \mathbb{C}$.
- For each $\phi \in \mathbb{R}$, a full abelian subcategory \mathcal{P}_{ϕ} of *semistable objects of phase* ϕ .

satisfying some conditions. Guarantees that for every $0 \neq X \in Ob(\mathcal{D})$ there is a unique filtration

$$0 \xrightarrow{\underset{\mathcal{F}_{n_{1}}}{\longrightarrow}} X_{1} + \ldots + X_{n-1} \xrightarrow{\underset{\mathcal{F}_{n_{n}}}{\longrightarrow}} X_{n} = X$$

where A_i is semistable of phase ϕ_i , $\phi_1 > \cdots > \phi_n$

Fix triangulated category $\mathcal{D}.$ A Bridgeland stability condition on \mathcal{C} is:

- A central charge function $Z : K_0(\mathcal{D}) \to \mathbb{C}$.
- For each $\phi \in \mathbb{R}$, a full abelian subcategory \mathcal{P}_{ϕ} of *semistable objects of phase* ϕ .

satisfying some conditions. Guarantees that for every $0 \neq X \in Ob(\mathcal{D})$ there is a unique filtration

$$0 \xrightarrow{\mathcal{K}_{n_{1}}} X_{1} \to \ldots \to X_{n-1} \xrightarrow{\mathcal{K}_{n_{n}}} X_{n} = X$$

$$A_{1} \xrightarrow{\mathcal{K}_{n_{n}}} A_{n} \xrightarrow{\mathcal{K}_{n_{n}}} A_{n}$$

where A_i is semistable of phase ϕ_i , $\phi_1 > \cdots > \phi_n$

Theorem (Bridgeland)

The set of stability conditions $\operatorname{Stab}(\mathcal{D})$ is naturally a complex manifold, and the map $\operatorname{Stab}(\mathcal{D}) \to \operatorname{Hom}_{\mathbb{Z}}(K_0(\mathcal{D}), \mathbb{C})$ is a local homeomorphism.

The Thomas-Yau conjecture

Let (M, J, g, Ω) be a Calabi-Yau *m*-fold with Calabi-Yau *m*-form Ω .

Let (M, J, g, Ω) be a Calabi-Yau *m*-fold with Calabi-Yau *m*-form Ω . A Lagrangian *L* is a *special Lagrangian of phase* ϕ if the phase of Ω is constant on *L*, ie. $Im(e^{i\pi\phi}\Omega|_L) = 0$.

Consider its triangulated Fukaya category $\mathcal{D}^{\pi}(\mathcal{F}(M))$.

Conjecture (Thomas-Yau, Bridgeland, Smith etc.)

There is a stability condition (Z, \mathcal{P}) on $\mathcal{D}^{\pi}(\mathcal{F}(M))$ such that

- Central charge is given by $Z : [L] \mapsto \int_L \Omega$
- Object represented by L is semistable of phase φ if there is a special Lagrangian L' ~ L of phase φ.

<ロ> (日) (日) (日) (日) (日)

"Toy model": Fukaya categories of marked surfaces

Instead of Fukaya category of Calabi-Yau, look at marked surface (Σ , M). **Solid** = marked, dashed = unmarked

イロト イポト イヨト イヨ

The Fukaya category $\mathcal{F}(\Sigma)$ is a triangulated category with

 Indecomposable objects: immersed (graded) curves γ with indecomposable local system. Ends of intervals need to be in marked boundary M.

The Fukaya category $\mathcal{F}(\Sigma)$ is a triangulated category with

- Indecomposable objects: immersed (graded) curves γ with indecomposable local system. Ends of intervals need to be in marked boundary M.
- Morphisms: given by intersections and shared marked boundary components

The Fukaya category $\mathcal{F}(\Sigma)$ is a triangulated category with

- Indecomposable objects: immersed (graded) curves γ with indecomposable local system. Ends of intervals need to be in marked boundary M.
- Morphisms: given by intersections and shared marked boundary components

イロト イポト イヨト イヨト

Morphisms have a degree given by relative grading of curves. At intersection $p \in \gamma_1 \cap \gamma_2$, degrees add up to one $i_p(\gamma_1, \gamma_2) + i_p(\gamma_2, \gamma_1) = 1$. Something like a 1D Calabi-Yau category.

Alex A. Takeda (UC Berkeley/MSRI)

July 12, 2019 8 / 24

Haiden, Katzarkov and Kontsevich constructed stability conditions on $\mathcal{F}(\Sigma)$ using quadratic differentials.

Haiden, Katzarkov and Kontsevich constructed stability conditions on $\mathcal{F}(\Sigma)$ using quadratic differentials.

Quadratic differential $\varphi \in \Gamma(T^{(1,0)}^{\otimes 2})$. Away from singularities, given by $\varphi = f(z)dz \otimes dz$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Haiden, Katzarkov and Kontsevich constructed stability conditions on $\mathcal{F}(\Sigma)$ using quadratic differentials.

Quadratic differential $\varphi \in \Gamma(T^{(1,0)^{\otimes 2}})$. Away from singularities, given by $\varphi = f(z)dz \otimes dz$.

 ϕ defines flat metric away from singularities, and also *horizontal foliation* $\vec{v} \in T_x \Sigma, \varphi(v, v) \in \mathbb{R}_+.$

<ロ> (日) (日) (日) (日) (日)

Haiden, Katzarkov and Kontsevich constructed stability conditions on $\mathcal{F}(\Sigma)$ using quadratic differentials.

Quadratic differential $\varphi \in \Gamma(T^{(1,0)}^{\otimes 2})$. Away from singularities, given by $\varphi = f(z)dz \otimes dz$.

 ϕ defines flat metric away from singularities, and also *horizontal foliation* $\vec{v} \in T_x \Sigma, \varphi(v, v) \in \mathbb{R}_+$.

Horizontal strip decomposition

The horizontal lines coming out of the singularities of φ are the *critical leaves* of the horizontal foliation.

Horizontal strip decomposition

The horizontal lines coming out of the singularities of φ are the $\mathit{critical}$ leaves of the horizontal foliation.

If Σ has infinite area, the critical leaves cut Σ into horizontal strips.

Finitely many have finite height, with unique geodesics connecting singularities = saddle connections

Figure: Horizontal strip of finite height

Figure: Horizontal strip of infinite height

イロト 不得下 イヨト イヨト

Horizontal strip decomposition: examples

Figure: Horizontal foliation of exponential-type quadratic differential $\exp(z^3)dz^2$ on the complex plane

Start with a marked surface (Σ, M) (assume each boundary component S¹_i has n_i > 0 marked intervals).

- Start with a marked surface (Σ, M) (assume each boundary component S¹_i has n_i > 0 marked intervals).
- Compactify by contracting boundary circles into points. Remember numbers n_i associated with each point.

- Start with a marked surface (Σ, M) (assume each boundary component S¹_i has n_i > 0 marked intervals).
- Compactify by contracting boundary circles into points. Remember numbers *n_i* associated with each point.
- Look at quadratic differentials φ with singularities

$$\varphi \sim \exp(z^{-n_i})dz^2$$

around each of those points

(日) (同) (三) (三)

- Start with a marked surface (Σ, M) (assume each boundary component S¹_i has n_i > 0 marked intervals).
- Compactify by contracting boundary circles into points. Remember numbers *n_i* associated with each point.
- Look at quadratic differentials φ with singularities

$$\varphi \sim \exp(z^{-n_i})dz^2$$

around each of those points

 \bullet Let $\mathcal{M}(\Sigma)$ be the moduli space of such differentials

Fix quadratic differential $\varphi \in \mathcal{M}(\Sigma)$. Consider the following data:

Fix quadratic differential $\varphi \in \mathcal{M}(\Sigma)$. Consider the following data:

Central charge function

$$Z: \mathcal{K}_0(\mathcal{F}(\Sigma)) \to \mathcal{H}_1(\Sigma, M) \xrightarrow{\int \sqrt{\varphi}} \mathbb{C}$$

 For φ ∈ ℝ, P_φ = objects supported on geodesics of slope φ (saddle connections)

Fix quadratic differential $\varphi \in \mathcal{M}(\Sigma)$. Consider the following data:

Central charge function

$$Z: \mathcal{K}_0(\mathcal{F}(\Sigma)) \to H_1(\Sigma, M) \xrightarrow{\int \sqrt{\varphi}} \mathbb{C}$$

 For φ ∈ ℝ, P_φ = objects supported on geodesics of slope φ (saddle connections)

HKK prove that this defines a Bridgeland stability condition (Z, \mathcal{P}) on $\mathcal{F}(\Sigma)$. The HN decomposition into semistable objects given by decomposing curves into a chain of geodesics.

Alex A. Takeda (UC Berkeley/MSRI)

Fix quadratic differential $\varphi \in \mathcal{M}(\Sigma)$. Consider the following data:

Central charge function

$$Z: \mathcal{K}_0(\mathcal{F}(\Sigma)) \to H_1(\Sigma, M) \xrightarrow{\int \sqrt{\varphi}} \mathbb{C}$$

 For φ ∈ ℝ, P_φ = objects supported on geodesics of slope φ (saddle connections)

HKK prove that this defines a Bridgeland stability condition (Z, \mathcal{P}) on $\mathcal{F}(\Sigma)$. The HN decomposition into semistable objects given by decomposing curves into a chain of geodesics.

Alex A. Takeda (UC Berkeley/MSRI)

Fix quadratic differential $\varphi \in \mathcal{M}(\Sigma)$. Consider the following data:

Central charge function

$$Z: \mathcal{K}_0(\mathcal{F}(\Sigma)) \to H_1(\Sigma, M) \xrightarrow{\int \sqrt{\varphi}} \mathbb{C}$$

 For φ ∈ ℝ, P_φ = objects supported on geodesics of slope φ (saddle connections)

HKK prove that this defines a Bridgeland stability condition (Z, \mathcal{P}) on $\mathcal{F}(\Sigma)$. The HN decomposition into semistable objects given by decomposing curves into a chain of geodesics.

Alex A. Takeda (UC Berkeley/MSRI)

July 12, 2019 15 / 24

Theorem (Haiden-Katzarkov-Kontsevich)

Consider $\mathcal{M}(\Sigma)$ the moduli space of such quadratic differentials. Then the map

 $\mathcal{M}(\Sigma) \to \mathsf{Stab}(\mathcal{F}(\Sigma))$

is a homeomorphism to a union of connected components.

Question: does this cover all the stability conditions on $\mathcal{F}(\Sigma)$? Or are there 'exotic', non-geometric components?

(日) (同) (日) (日)

Data of quadratic differential = topology of saddle connections + lengths and phases of saddle connections.

Data of quadratic differential = topology of saddle connections + lengths and phases of saddle connections.

Question

Given a decomposition of Σ (e.g. into polygons), what is the best way of constructing a global quadratic differential locally?

Data of quadratic differential = topology of saddle connections + lengths and phases of saddle connections.

Question

Given a decomposition of Σ (e.g. into polygons), what is the best way of constructing a global quadratic differential locally?

An answer for a single cut $\Sigma = \Sigma_L \cup_{\gamma} \Sigma_R$

- $\bullet\,$ Decompose γ into a chain of saddle connections
- Cut along this chain, get quadratic differential on modified surfaces $\tilde{\Sigma}_L, \tilde{\Sigma}_R$

< ロ > < 同 > < 三 > < 三

Data of quadratic differential = topology of saddle connections + lengths and phases of saddle connections.

Question

Given a decomposition of Σ (e.g. into polygons), what is the best way of constructing a global quadratic differential locally?

An answer for a single cut $\Sigma = \Sigma_L \cup_{\gamma} \Sigma_R$

- $\bullet\,$ Decompose γ into a chain of saddle connections
- Cut along this chain, get quadratic differential on modified surfaces $\tilde{\Sigma}_L, \tilde{\Sigma}_R$

< ロ > < 同 > < 三 > < 三

Data of quadratic differential = topology of saddle connections + lengths and phases of saddle connections.

Question

Given a decomposition of Σ (e.g. into polygons), what is the best way of constructing a global quadratic differential locally?

An answer for a single cut $\Sigma = \Sigma_L \cup_{\gamma} \Sigma_R$

- $\bullet\,$ Decompose γ into a chain of saddle connections
- Cut along this chain, get quadratic differential on modified surfaces $\tilde{\Sigma}_L, \tilde{\Sigma}_R$

Relative quadratic differentials

The modified marked surface $\tilde{\Sigma}_L$ differs from Σ_L by the addition of some number of marked boundary intervals.

Relative quadratic differentials

The modified marked surface $\tilde{\Sigma}_L$ differs from Σ_L by the addition of some number of marked boundary intervals.

Equivalently by gluing $\cup_{\gamma} \Delta_{n+2}$, where Δ_{n+2} is the disk with n+2 markings.

Relative quadratic differentials

The modified marked surface $\tilde{\Sigma}_L$ differs from Σ_L by the addition of some number of marked boundary intervals.

イロト イポト イヨト イヨ

Equivalently by gluing $\cup_{\gamma} \Delta_{n+2}$, where Δ_{n+2} is the disk with n+2 markings.

Definition

A relative quadratic differential on (Σ_L, γ) is a quadratic differential on $\tilde{\Sigma}_L = \Sigma \cup_{\gamma} \Delta_{n+2}$

Relative spaces

We define the space of relative quadratic differentials

$$\mathcal{M}(\Sigma_L,\gamma) = \bigsqcup_{n \geq 0} \mathcal{M}(\Sigma_L \cup_{\gamma} \Delta_{n+2}) \bigg/ \sim$$

Relative spaces

We define the space of relative quadratic differentials

$$\mathcal{M}(\Sigma_L, \gamma) = \bigsqcup_{n \geq 0} \mathcal{M}(\Sigma_L \cup_{\gamma} \Delta_{n+2}) \bigg/ \sim$$

where \sim is an equivalence relation. These spaces are unions of cells with unbounded dimension but it is Hausdorff.

We define the space of relative quadratic differentials

$$\mathcal{M}(\Sigma_L,\gamma) = \bigsqcup_{n \geq 0} \mathcal{M}(\Sigma_L \cup_{\gamma} \Delta_{n+2}) \bigg/ \sim$$

where \sim is an equivalence relation. These spaces are unions of cells with unbounded dimension but it is Hausdorff.

Filtered by finite parts

$$\mathcal{M}^N(\Sigma_L,\gamma) = \bigsqcup_{n=0}^{n=N} \mathcal{M}(\Sigma_L \cup_{\gamma} \Delta_{n+2}) \bigg/ \!\!\! \sim$$

Cutting and gluing relative quadratic differentials

Given decomposition $\Sigma = \Sigma_L \cup_{\gamma} \Sigma_R$, there is a notion of compatibility

 $\Gamma \subset \mathcal{M}(\Sigma_L, \gamma) imes \mathcal{M}(\Sigma_R, \gamma)$

Cutting and gluing relative quadratic differentials

Given decomposition $\Sigma = \Sigma_L \cup_{\gamma} \Sigma_R$, there is a notion of compatibility

$$\Gamma \subset \mathcal{M}(\Sigma_L, \gamma) \times \mathcal{M}(\Sigma_R, \gamma)$$

and cutting and gluing maps

$$\mathcal{M}(\Sigma) \xrightarrow{cut} \Gamma \xrightarrow{glue} \mathcal{M}(\Sigma)$$

Theorem (T.)

- These maps are both homeomorphisms and compose to the identity.
- **2** Γ sits in some finite part of the relative stability spaces, ie.

$$\mathsf{\Gamma} \subset \mathcal{M}^{\mathsf{N}_{\mathsf{L}}}(\mathsf{\Sigma}_{\mathsf{L}},\gamma) imes \mathcal{M}^{\mathsf{N}_{\mathsf{R}}}(\mathsf{\Sigma}_{\mathsf{R}},\gamma)$$

4 E

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Cutting and gluing relative quadratic differentials

Given decomposition $\Sigma = \Sigma_L \cup_{\gamma} \Sigma_R$, there is a notion of compatibility

 $\Gamma \subset \mathcal{M}(\Sigma_L, \gamma) \times \mathcal{M}(\Sigma_R, \gamma)$

and cutting and gluing maps

$$\mathcal{M}(\Sigma) \xrightarrow{cut} \Gamma \xrightarrow{glue} \mathcal{M}(\Sigma)$$

Theorem (T.)

- These maps are both homeomorphisms and compose to the identity.
- I sits in some finite part of the relative stability spaces, ie.

$$\mathsf{\Gamma} \subset \mathcal{M}^{\mathsf{N}_{\mathsf{L}}}(\mathsf{\Sigma}_{\mathsf{L}},\gamma) imes \mathcal{M}^{\mathsf{N}_{\mathsf{R}}}(\mathsf{\Sigma}_{\mathsf{R}},\gamma)$$

As a corollary: iterating this cutting procedure, for a decomposition of Σ into simple pieces Σ_i , this gives charts on $\mathcal{M}(\Sigma)$ in terms of moduli spaces Σ_i .

• • • • • • • • • • • • •

All of this also works for stability conditions, *without assuming a priori* that they come from quadratic differentials.

All of this also works for stability conditions, *without assuming a priori* that they come from quadratic differentials.

This defines spaces of relative stability conditions RelStab(Σ, γ), and cutting/gluing maps.

All of this also works for stability conditions, *without assuming a priori* that they come from quadratic differentials.

This defines spaces of relative stability conditions ${\rm RelStab}(\Sigma,\gamma),$ and cutting/gluing maps.

Take any ('fully stopped') marked surface Σ . One can cut it the following way

into disks, annuli and punctured tori.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

All of this also works for stability conditions, *without assuming a priori* that they come from quadratic differentials.

This defines spaces of relative stability conditions ${\rm RelStab}(\Sigma,\gamma),$ and cutting/gluing maps.

Take any ('fully stopped') marked surface Σ . One can cut it the following way

into disks, annuli and punctured tori.

Cutting/gluing combined with local computations for these cases gives:

Theorem (T.)

The map $\mathcal{M}(\Sigma) \to \text{Stab}(\mathcal{F}(\Sigma))$ is a homeomorphism, i.e. there are no other 'non-geometric' components of $\text{Stab}(\mathcal{F}(\Sigma))$.

• What's the combinatorial structure that governs these charts on $\mathcal{M}(\Sigma)$? Can we use it to understand the topology/geometry of $\mathcal{M}(\Sigma)$?

- What's the combinatorial structure that governs these charts on $\mathcal{M}(\Sigma)$? Can we use it to understand the topology/geometry of $\mathcal{M}(\Sigma)$?
- ② Can we weaken the fully stopped assumption? le. consider quadratic differentials with zeros and poles?

- What's the combinatorial structure that governs these charts on $\mathcal{M}(\Sigma)$? Can we use it to understand the topology/geometry of $\mathcal{M}(\Sigma)$?
- Or an we weaken the fully stopped assumption? I. consider quadratic differentials with zeros and poles?
- So Can this be done for Fukaya categories of higher-dimensional spaces?

- What's the combinatorial structure that governs these charts on $\mathcal{M}(\Sigma)$? Can we use it to understand the topology/geometry of $\mathcal{M}(\Sigma)$?
- ② Can we weaken the fully stopped assumption? le. consider quadratic differentials with zeros and poles?
- So Can this be done for Fukaya categories of higher-dimensional spaces?

Thanks!