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Preview

Will present results of arXiv:1811.10592.

Thomas-Yau conjecture relates stability conditions on Fukaya categories of
Calabi-Yau manifolds with special Lagrangian geometry

“Toy model”: Fukaya categories of marked surfaces. Can construct stability
conditions using quadratic differentials

Given decomposition of a marked surface Σ, we define a way of constructing
a quadratic differential from local data on the pieces

Works for a general stability condition too, defining a relative stability
condition

Given charts covering the moduli spaces of quadratic differentials/stability
conditions

In “fully stopped” case, this can show every stability condition is given by
quadratic differential
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Fukaya categories: flash intro

Fix (M, ω) a symplectic manifold. The Fukaya category of M roughly has

Objects: Lagrangian submanifolds
L ↪→ M

Morphism space: spanned by
intersection points L1 t L2

Comes in many flavors: as an A∞-category, as a triangulated category Dπ(F(M))
etc.

Want objects to be quasi-isomorphic under Hamiltonian isotopy.
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Fukaya categories: flash intro

Fix (M, ω) a symplectic manifold. The Fukaya category of M roughly has

Objects: Hamiltonian isotopy classes
of Lagrangian submanifolds L ↪→ M

Morphism space: spanned by
intersection points p ∈ L1 t L2

Comes in many flavors: as an A∞-category, as a triangulated category Dπ(F(M))
etc.

Want objects to be quasi-isomorphic under Hamiltonian isotopy.

Use counts of holomorphic disks to correct for variation of intersections under
Hamiltonian isotopy.
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Bridgeland stability conditions

Fix triangulated category D. A Bridgeland stability condition on C is:

A central charge function Z : K0(D)→ C.

For each φ ∈ R, a full abelian subcategory Pφ of semistable objects of phase
φ.

satisfying some conditions. Guarantees that for every 0 6= X ∈ Ob(D) there is a
unique filtration

0 // X1
}}

// . . . // Xn−1 // Xn = X
yy

A1

^^

An

cc

where Ai is semistable of phase φi , φ1 > · · · > φn

Theorem (Bridgeland)

The set of stability conditions Stab(D) is naturally a complex manifold, and the
map Stab(D)→ HomZ(K0(D),C) is a local homeomorphism.
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The Thomas-Yau conjecture

Let (M, J, g ,Ω) be a Calabi-Yau m-fold with Calabi-Yau m-form Ω.

A Lagrangian
L is a special Lagrangian of phase φ if the phase of Ω is constant on L, ie.
Im(e iπφΩ|L) = 0.

Consider its triangulated Fukaya category Dπ(F(M)).

Conjecture (Thomas-Yau, Bridgeland, Smith etc.)

There is a stability condition (Z ,P) on Dπ(F(M)) such that

Central charge is given by Z : [L] 7→
∫
L

Ω

Object represented by L is semistable of phase φ if there is a special
Lagrangian L′ ∼ L of phase φ.
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“Toy model”: Fukaya categories of marked surfaces

Instead of Fukaya category of Calabi-Yau, look at marked surface (Σ,M). Solid =
marked, dashed = unmarked
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The Fukaya category F(Σ) is a triangulated category with

Indecomposable objects: immersed
(graded) curves γ with
indecomposable local system. Ends
of intervals need to be in marked
boundary M.

Morphisms: given by intersections
and shared marked boundary
components

Morphisms have a degree given by relative grading of curves. At intersection
p ∈ γ1 ∩ γ2, degrees add up to one ip(γ1, γ2) + ip(γ2, γ1) = 1. Something like a
1D Calabi-Yau category.
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Quadratic differentials

Haiden, Katzarkov and Kontsevich constructed stability conditions on F(Σ) using
quadratic differentials.

Quadratic differential ϕ ∈ Γ(T (1, 0)⊗2). Away from singularities, given by
ϕ = f (z)dz ⊗ dz .

φ defines flat metric away from singularities, and also horizontal foliation
~v ∈ TxΣ, ϕ(v , v) ∈ R+.

Figure: Regular point
ϕ ∼ dz2

Figure: Simple pole ϕ ∼ zdz2
Figure: Exponential-type
singularity ϕ ∼ exp(1/z3)dz2
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Horizontal strip decomposition

The horizontal lines coming out of the singularities of ϕ are the critical leaves of
the horizontal foliation.

If Σ has infinite area, the critical leaves cut Σ into horizontal strips.

Finitely many have finite height, with unique geodesics connecting singularities =
saddle connections

Figure: Horizontal strip of finite height Figure: Horizontal strip of infinite height
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Horizontal strip decomposition: examples

Figure: Horizontal foliation of exponential-type quadratic differential exp(z3)dz2 on the
complex plane
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HKK stability conditions

Start with a marked surface (Σ,M) (assume each boundary component S1
i

has ni > 0 marked intervals).

Compactify by contracting boundary circles into points. Remember numbers
ni associated with each point.

Look at quadratic differentials ϕ with singularities

ϕ ∼ exp(z−ni )dz2

around each of those points

Let M(Σ) be the moduli space of such differentials
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HKK stability conditions

Fix quadratic differential ϕ ∈M(Σ). Consider the following data:

Central charge function

Z : K0(F(Σ))→ H1(Σ,M)

∫ √
ϕ

−−−→ C

For φ ∈ R, Pφ = objects supported
on geodesics of slope φ (saddle
connections)

HKK prove that this defines a Bridgeland stability condition (Z ,P) on F(Σ). The
HN decomposition into semistable objects given by decomposing curves into a
chain of geodesics.
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HKK stability conditions

Theorem (Haiden-Katzarkov-Kontsevich)

Consider M(Σ) the moduli space of such quadratic differentials. Then the map

M(Σ)→ Stab(F(Σ))

is a homeomorphism to a union of connected components.

Question: does this cover all the stability conditions on F(Σ)? Or are there
‘exotic’, non-geometric components?
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Gluing quadratic differentials

Data of quadratic differential = topology of saddle connections + lengths and
phases of saddle connections.

Question

Given a decomposition of Σ (e.g. into polygons), what is the best way of
constructing a global quadratic differential locally?

An answer for a single cut Σ = ΣL ∪γ ΣR

Decompose γ into a chain of saddle connections

Cut along this chain, get quadratic differential on modified surfaces Σ̃L, Σ̃R
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Relative quadratic differentials

The modified marked surface Σ̃L differs from ΣL by the addition of some number
of marked boundary intervals.

Equivalently by gluing ∪γ∆n+2, where ∆n+2 is the disk with n + 2 markings.

Definition

A relative quadratic differential on (ΣL, γ) is a quadratic differential on
Σ̃L = Σ ∪γ ∆n+2
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Relative spaces

We define the space of relative quadratic differentials

M(ΣL, γ) =
⊔
n≥0

M(ΣL ∪γ ∆n+2)

/
∼

where ∼ is an equivalence relation. These spaces are unions of cells with

unbounded dimension but it is Hausdorff.

Filtered by finite parts

MN(ΣL, γ) =
n=N⊔
n=0

M(ΣL ∪γ ∆n+2)

/
∼
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Cutting and gluing relative quadratic differentials

Given decomposition Σ = ΣL ∪γ ΣR , there is a notion of compatibility

Γ ⊂M(ΣL, γ)×M(ΣR , γ)

and cutting and gluing maps

M(Σ)
cut−−→ Γ

glue−−→M(Σ)

Theorem (T.)

1 These maps are both homeomorphisms and compose to the identity.

2 Γ sits in some finite part of the relative stability spaces, ie.

Γ ⊂MNL(ΣL, γ)×MNR (ΣR , γ)

As a corollary: iterating this cutting procedure, for a decomposition of Σ into
simple pieces Σi , this gives charts on M(Σ) in terms of moduli spaces Σi .
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Relative stability conditions

All of this also works for stability conditions, without assuming a priori that they
come from quadratic differentials.

This defines spaces of relative stability conditions RelStab(Σ, γ), and
cutting/gluing maps.

Take any (‘fully stopped’) marked surface Σ. One can cut it the following way

into disks, annuli and punctured tori.

Cutting/gluing combined with local computations for these cases gives:

Theorem (T.)

The map M(Σ)→ Stab(F(Σ)) is a homeomorphism, ie. there are no other
‘non-geometric’ components of Stab(F(Σ)).

Alex A. Takeda (UC Berkeley/MSRI) Gluing stability conditions July 12, 2019 23 / 24



Relative stability conditions

All of this also works for stability conditions, without assuming a priori that they
come from quadratic differentials.

This defines spaces of relative stability conditions RelStab(Σ, γ), and
cutting/gluing maps.

Take any (‘fully stopped’) marked surface Σ. One can cut it the following way

into disks, annuli and punctured tori.

Cutting/gluing combined with local computations for these cases gives:

Theorem (T.)

The map M(Σ)→ Stab(F(Σ)) is a homeomorphism, ie. there are no other
‘non-geometric’ components of Stab(F(Σ)).

Alex A. Takeda (UC Berkeley/MSRI) Gluing stability conditions July 12, 2019 23 / 24



Relative stability conditions

All of this also works for stability conditions, without assuming a priori that they
come from quadratic differentials.

This defines spaces of relative stability conditions RelStab(Σ, γ), and
cutting/gluing maps.

Take any (‘fully stopped’) marked surface Σ. One can cut it the following way

into disks, annuli and punctured tori.

Cutting/gluing combined with local computations for these cases gives:

Theorem (T.)

The map M(Σ)→ Stab(F(Σ)) is a homeomorphism, ie. there are no other
‘non-geometric’ components of Stab(F(Σ)).

Alex A. Takeda (UC Berkeley/MSRI) Gluing stability conditions July 12, 2019 23 / 24



Relative stability conditions

All of this also works for stability conditions, without assuming a priori that they
come from quadratic differentials.

This defines spaces of relative stability conditions RelStab(Σ, γ), and
cutting/gluing maps.

Take any (‘fully stopped’) marked surface Σ. One can cut it the following way

into disks, annuli and punctured tori.

Cutting/gluing combined with local computations for these cases gives:

Theorem (T.)

The map M(Σ)→ Stab(F(Σ)) is a homeomorphism, ie. there are no other
‘non-geometric’ components of Stab(F(Σ)).

Alex A. Takeda (UC Berkeley/MSRI) Gluing stability conditions July 12, 2019 23 / 24



Questions

1 What’s the combinatorial structure that governs these charts on M(Σ)? Can
we use it to understand the topology/geometry of M(Σ)?

2 Can we weaken the fully stopped assumption? Ie. consider quadratic
differentials with zeros and poles?

3 Can this be done for Fukaya categories of higher-dimensional spaces?

Thanks!

Alex A. Takeda (UC Berkeley/MSRI) Gluing stability conditions July 12, 2019 24 / 24



Questions

1 What’s the combinatorial structure that governs these charts on M(Σ)? Can
we use it to understand the topology/geometry of M(Σ)?

2 Can we weaken the fully stopped assumption? Ie. consider quadratic
differentials with zeros and poles?

3 Can this be done for Fukaya categories of higher-dimensional spaces?

Thanks!

Alex A. Takeda (UC Berkeley/MSRI) Gluing stability conditions July 12, 2019 24 / 24



Questions

1 What’s the combinatorial structure that governs these charts on M(Σ)? Can
we use it to understand the topology/geometry of M(Σ)?

2 Can we weaken the fully stopped assumption? Ie. consider quadratic
differentials with zeros and poles?

3 Can this be done for Fukaya categories of higher-dimensional spaces?

Thanks!

Alex A. Takeda (UC Berkeley/MSRI) Gluing stability conditions July 12, 2019 24 / 24



Questions

1 What’s the combinatorial structure that governs these charts on M(Σ)? Can
we use it to understand the topology/geometry of M(Σ)?

2 Can we weaken the fully stopped assumption? Ie. consider quadratic
differentials with zeros and poles?

3 Can this be done for Fukaya categories of higher-dimensional spaces?

Thanks!

Alex A. Takeda (UC Berkeley/MSRI) Gluing stability conditions July 12, 2019 24 / 24


