Using School-Gardens as a Physical and Virtual Modeling Environment

Becca Shareff
UC Berkeley
Summer 2017
Vision

Students will engage in a multi-week garden unit with their science class where they tend to the ecosystem and make detailed observations of biotic - abiotic relationships.

They will test and model their ideas about the relationships in the virtual space, using others’ ideas to help them revise and refine their own.
Motivation

Engagement
Outdoor experiential learning offers the chance to personally connect to science content through multi-sensory activities, particularly students typically excluded from traditional STEM fields.

Bell et al. (2009); Ozer (2007); Ralston (2011)

Complexity
Students can develop both domain and complex systems knowledge by conjecturing about and programming their garden observations into an agent-based behavioral language.

Eilam (2012); Harel & Papert (1990); Manz (2012)

Collective Inquiry
Sharing models and iterating on ideas within a whole-class network can develop students’ understandings of both the physical ecosystem and its virtual representation.

Jacobson & Wilensky (2006); Lehrer & Schauble (2004); Wilkerson et al. (2015)
Research Questions

Learning through Design

What design-oriented scientific practices are occurring?
The garden model is collectively built with students. How can the design process itself be a productive learning opportunity?

Stakeholder Diversity

What needs and skills do they express?
Do students and teachers envision the same end-goal? To what degree are teachers’ concerns for students’ capabilities reflected in initial interviews?

Tools & Connections

How can they best support learning?
What supporting instructional materials can best contribute to the implementation of the activity sequence? How should they work?
Design Sketches/ Vision
Model 1 Components

- **Crops**
- **Weeds**
- **Background patches, depicting soil quality**
- **Farmer**

Components:
- **Setup**
 - Number of plants: 36
 - Spacing: 3
 - Plant cost: 1.00
 - Budget: 400

Actions:
- **Re-seed**
- **Apply compost**
- **Sell crop**
- **Apply herbicide**

Graph:
- **Populations**
 - Population vs. time

Graphical data visualizations include:
- **Money**
 - Value: 364
- **Crop harvest**
 - Value: 0
Project timeline

- **Fall 2015**: Idea conception and first model build, pilot student data collection
- **Spring 2016**: Data collection with graduate students
- **Fall 2016**: First round of analysis complete; presentation to environmental educators
- **Spring 2017**: Data collection with middle-school teachers
- **Next Steps**: Model revision; second-round student data collection; identify teacher-collaborator
Methodology
Participatory design-based research

- Middle-school with existing garden-academic project-based curriculum
- Longstanding relationship with district curriculum team, teachers, and principal

Analytical Constructs:

- Current education standards (science content and practices)
- Design heuristics and principles
- Application of external knowledge and contexts
 - Social-emotional learning, affect, and scientific identity
Theoretical Frameworks

- Social
 - Stakeholder roles
 - Rules
 - Division of labor

- Environmental
 - Resource systems
 - Instruments

- Conceptual Development
 - Modeling Proficiency (Manz 2012)
 - Ecological Complexity (Hmelo-Silver et al., 2007)

Social-ecological system

Activity network theory

Krasny & Roth (2010)
Engeström (1987)
Preliminary findings
When Kids Co-Design and Offer Feedback

Shaded regions indicate at least one occurrence of expressed learning by that student. The dark color of J’s model-based reasoning cell indicates advanced reasoning, to be explicated below.

<table>
<thead>
<tr>
<th>Student</th>
<th>Disciplinary Content Learning</th>
<th>Scientific Practices</th>
<th>Design Attributes</th>
<th>Application of outside experience</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hericide</td>
<td>Plant Nutrition</td>
<td>Abiotic/Biotic Interactions</td>
<td>Making predictions/Constructing Explanations</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Possible impact/ Contribution
“Typically middle school students haven’t ever been asked to develop the model itself... I can see that the garden gives them something really tangible to work with, that they can observe phenomena in nature and apply it to this model, [which] could give them some experience for...something that’s more abstract like a chemical reaction.”

-Science Teacher, Grade 8

“Meeting standards, cognitive challenge, and stepping stone to abstract systems & simulations.

“You can learn how plants actually grow”

-Amelia, Grade 6

Science learning can be enriched when hands-on experiences couple with virtual representations.
Thank you!

Becca Shareff
rlshareff@berkeley.edu

[All images from thenounproject.org]
Round 1

- Existing knowledge generates ideas for model additions
- Code drives inferences about ecosystem properties
- Garden experience begets perception of applicability

Round 2

- Teachers view broad subject appeal (history, math, science)
- Different handles on the flexibility for student use