Probing excitations in insulators via injection of spin-currents

Shubhayu Chatterjee
Harvard University

IACS, Kolkata
January 8, 2016
Collaborator: Prof. Subir Sachdev, Harvard/Perimeter Institute

Brief plan

- Motivation - spin liquid ground states of Mott insulators
- Setup and formalism to calculate spin current
- Application to antiferromagnetic insulators
- Results for insulators without magnetic order
Mott insulators and spin liquids

Mott insulators

- One electron per unit cell - band theory predicts a metallic state \((d \geq 2) \)
- Strong electron-electron repulsion drives the system to an insulating state
- \(H_{Hubbard} = - \sum_{i,j} t_{ij} c_i^\dagger c_j + h.c + \sum_i U n_i(n_i - 1)/2 \)
- Perturbation theory on the Hubbard model yields an effective Heisenberg Hamiltonian

\[
H \approx J_H \sum_{<ij>} \vec{S}_i \cdot \vec{S}_j
\]

- Do the spins always order at low enough temperatures?
Possible scenarios when we might expect no long range magnetic order:

1. Small spins (like $S = 1/2$) \Rightarrow large quantum fluctuations
2. Geometric frustration
3. Low dimension
Mott insulators and spin liquids

Ground states with no magnetic order

Are the disordered ground states just like thermal paramagnets, or do these describe different quantum phases of matter?

Figure: a. Neel order, b. Frustration (Nature, v456 n7224)
Experimental evidences

- Triangular lattice organic salts are electrical insulators, but show behavior similar to metals

Figure: Low T specific heat of κET, [S Yamashita et al, *Nature Physics*, 2008]
Mott insulators and spin liquids

Experimental evidences

Figure: Low T thermal conductivity of dmit, [M Yamashita et al, Science, 2010]
Figure: Layered Kagome lattice formed by Cu^{2+} with $S = \frac{1}{2}$

- Magnetic susceptibility measurements show no sign of magnetic order down to 50 mK, which is 4 orders of magnitude below $J_H \approx 200K$.
Mott insulators and spin liquids

Experimental evidences

Figure: Layered Kagome lattice formed by Cu^{2+} with $S = \frac{1}{2}$

- No sharp features in the structure factor as we would expect in an ordered antiferromagnet
Alternative scenario

▶ Are there charge neutral mobile fractionalized spin half excitations (spinons) in Mott insulators?

Figure: Caricature of a spin liquid (T. Senthil, MIT)
Spin liquid ground state

- Neel order is destroyed by quantum fluctuations - no symmetry is broken in the ground state
- Model ground state - resonating valence bond liquid

Figure: RVB state - each bond represents a singlet (S. Sachdev, Harvard)
Spin liquid ground state

- Neel order is destroyed by quantum fluctuations - no symmetry is broken in the ground state
- Model ground state - resonating valence bond liquid

Figure: RVB state - each bond represents a singlet (S. Sachdev, Harvard)
Spin liquid ground state

- Neel order is destroyed by quantum fluctuations - no symmetry is broken in the ground state
- Model ground state - resonating valence bond liquid

Figure: RVB state - each bond represents a singlet (S. Sachdev, Harvard)
Spin liquid ground state

- Neel order is destroyed by quantum fluctuations - no symmetry is broken in the ground state
- Model ground state - resonating valence bond liquid

Figure: RVB state - each bond represents a singlet (S. Sachdev, Harvard)
Spin liquid ground state

- Has fractionalized spin half excitations and emergent gauge fields in the deconfined phase
- States have topological order - characterized by locally indistinguishable ground states which are degenerate on a cylinder/torus

Figure: Spinon excitation of the RVB state (S. Sachdev, Harvard)
Schwinger boson mean field approach - the parton construction with bosonic spins

\[\vec{S}_i = \frac{1}{2} b_{i\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} b_{i\beta}, \text{ with } \sum_{\alpha} b_{i\alpha}^{\dagger} b_{i\alpha} = 1 \]

Mean field decoupling of the Heisenberg Hamiltonian in the spin singlet channel leads to

\[H = -J \sum_{ij} Q_{ij}^* \epsilon_{\alpha\beta} b_{i\alpha} b_{j\beta} + h.c + \sum_{i} \lambda_i (b_{i\alpha}^{\dagger} b_{i\alpha} - 1) \]

\(Q_{ij} = \epsilon_{\alpha\beta} \langle b_{i\alpha} b_{j\beta} \rangle / 2 \), and \(\lambda_i \) are the mean-fields

Emergent gauge field arises from phase fluctuations of the spinon-pairing field \(Q_{ij} \) and the Lagrange multipliers \(\lambda_i \) that enforces single occupancy on average

Low energy effective theory has dynamic gauge fields coupled to spinons
Questions

- Large N (spinon-flavor) theory predict a gapped \mathbb{Z}_2 spin liquid [Sachdev, *PRB*, 1992]
- Projected wave-function studies predict a gapless U(1) spin liquid [Ran et al, *PRL*, 2007]
- DMRG calculations provide evidence for a gapped spin liquid ground state, with gap ≈ 0.1 J [Depenbrock et al, *PRL*, 2012]
- Inelastic neutron scattering on Herbertsmithite single crystals has not observed a gap
- Site-specific NMR measurements show evidence of a spin gap ≈ 0.05 J [Fu et al, *Science*, 2015]

What is the true nature of the ground state and the low-energy excitations?
Experiments till this point:
1. Thermodynamic measurements - magnetic susceptibility and specific heat
2. Thermal conductivity
3. NMR and μSR
4. Inelastic neutron scattering

What other experiments can tell us about the nature of excitations above the ground state?

Spin transport measurements might be helpful in resolving some of these puzzles
Setup and formalism

Geometry

- Couple metal with non-equilibrium distribution of spin to an insulating spin-system at the boundary

\[H = J \sum_j \vec{S}_e \cdot \vec{S}_j \delta^d(\vec{x} - \vec{X}_j) \]

Figure: Geometry of \(d \)-dimensional metal coupled to an insulating spin system at \(d - 1 \)-dimensional boundary
Setup and formalism

Creating spin accumulation

- Use a longitudinal electric current in the metal to set up a spin accumulation at the boundary

Figure: Spin Hall effect (G. Vignale, University of Missouri)
Injecting a spin current

- Model the spin polarization of the boundary as different chemical potentials for up and down spins

\[n_{\uparrow}(\xi_{\vec{k}}) = n_F(\xi_{\vec{k}} - V), \quad n_{\downarrow}(\xi_{\vec{k}}) = n_F(\xi_{\vec{k}}) \]

with \(\xi_{\vec{k}} = \epsilon_{\vec{k}} - \mu_{\downarrow} \) and \(V = \mu_{\uparrow} - \mu_{\downarrow} \)

Figure: Injecting spin currents, via spin hall effect
Setup and formalism

Detecting the spin current

- Spin transport across the insulator will set up a charge current via the inverse spin hall effect

Figure: Detecting spin currents, via the inverse spin hall effect
Figure: Thermal generation and detection of spin current from AF Cr_2O_3 to Pt, via inverse spin hall effect [Seki et al, *PRL*, 2015]
Use Fermi’s golden rule to calculate spin current due to spin-flip scattering at the boundary.
\[I_{\text{spin, } \uparrow} = \frac{\pi J^2 A_\perp}{2m_e} \int_{k_{1x}>0} \frac{d^d k_1}{(2\pi)^d} \int_{q_x>k_{1x}} \frac{d^d q}{(2\pi)^d} \times \]
\[n_\uparrow(\xi_{\vec{k}_1}) (1 - n_\downarrow(\xi_{\vec{k}_1 - \vec{q}})) q_x S_{-+}(\vec{q}_\perp, \omega = \frac{2\vec{k} \cdot \vec{q} - \vec{q}^2}{2m_e}) \]

where the spin-structure factor \(S_{-+}(\vec{q}, \omega) \) is given by

\[S_{-+}(\vec{q}, \omega) = \frac{1}{A_\perp} \sum_{l,j} e^{-i\vec{q} \cdot (\vec{X}_l - \vec{X}_j)} \int_{-\infty}^{\infty} dt \ e^{i\omega t} \langle S_{l-}(t)S_{j+}^+(0) \rangle \]

\[I_{\text{spin}} = I_{\text{spin, } \uparrow} - I_{\text{spin, } \downarrow} \]
The spin current simplifies when $S_{-+}(\vec{q}_\perp, \omega)$ is significant for small $|\vec{q}_\perp|, \omega$.

Figure: A scattering event (gap exaggerated)
The spin current simplifies when $S_{-+}(\vec{q}_\perp, \omega)$ is significant for small $|\vec{q}_\perp|, \omega$

$$I_{spin} \xrightarrow{T \to 0} \frac{\pi J^2 A_\perp \nu(\epsilon_F)}{2} \int_0^V \frac{d\omega}{2\pi} \int \frac{d^{d-1}q_\perp}{(2\pi)^{d-1}} (V-\omega) S_{-+}(\vec{q}_\perp, \omega)$$

If $S_{-+}(\vec{q}_\perp, \omega)$ is peaked about momenta $\{\vec{Q}_\perp\}$ (well-isolated), the only change is a constant angular factor $f_{ang}(k_F/Q_\perp)$
Square lattice antiferromagnet with ordering wave-vector \(\vec{Q}_\perp = (\pi, \pi) \)

Low energy excitations are spin waves with \(\omega(\vec{q}) = v_s |\vec{q}| \)

Figure: Square lattice AF at wavevector \(\vec{Q}_\perp = (\pi, \pi) \)
Antiferromagnets

- Neel order pointing perpendicular to the spin-quantization axis in the metal
- Formerly analyzed for elastic spin-flip scattering [Takei et al, *PRB*, 2014]

Figure: Spin current carried by a dynamically precessing Neel texture
We calculate the elastic contribution assuming an average magnetic moment, and also find the inelastic contributions due to propagating spin wave modes.

\[I_{\text{spin}}^{T \to 0} \equiv \frac{\pi J^2 A_{\perp} \nu(\epsilon_F)V}{4} (f_{\text{ang}} + \text{const.} (1 + f_{\text{ang}})V^3) \]

The first term is the elastic contribution that can be obtained from a Landauer formalism, the second term represents the excess spin current carried by magnons.
Insulators without magnetic order

Valence bond solid (VBS) solids

- SU(2) spin-rotation symmetry is unbroken, but translational symmetry is spontaneously broken
- The dominant excitations at low energy are gapped triplons

Figure: VBS state on a square lattice (S. Sachdev, Harvard)

\[
I_{spin} \overset{T \rightarrow 0}{\propto} (V - \Delta_T)^{d/2+1} \Theta(V - \Delta_T)
\]
Each spin flip scattering excites two spinons that share the momentum

\[
\vec{k} + \vec{q}, i\Omega_n + i\omega_n
\]

\[-\vec{k}, -i\Omega_n\]

Continuum field theory calculation using quadratic spinon bands for a model ground state with a spinon gap of \(\Delta_s \)

\[
I_{\text{spin}} \xrightarrow{T \to 0} (V - 2\Delta_s)^3 \Theta(V - 2\Delta_s)
\]
For a generic low energy dispersion $\epsilon(\vec{k}) = \Delta_s + v_\alpha |\vec{k}|^\alpha$ and dimensionality d of the system, we can use scaling and phase space restrictions to figure out the exponent above the threshold

$$I_{spin} \xrightarrow{T \rightarrow 0} (V - 2\Delta_s)^{1 + \frac{2(d-1)}{\alpha}} \Theta(V - 2\Delta_s)$$

For a gapped spin liquid, this result should hold to a very good approximation for $T \ll \Delta_s$
Spin liquids

- Using a Schwinger boson mean field approach on the Kagome lattice - two inequivalent choices of the mean field Q’s for ground states [Sachdev, PRB, 1992]

- Both the $Q_1 = Q_2$ and $Q_1 = -Q_2$ states have gapped spinons with quadratic dispersion near the band minima

Figure: $Q_{ij} = Q_1$ for single arrows and Q_2 for double arrows
Numerical calculations for the spin-current were carried out for the $Q_1 = Q_2$ state, a candidate ground state for Herbertsmithite [Punk et al, *Nature Physics*, 2014]
Spin currents may be used as a gateway to probe the nature of possible exotic states in Mott insulators.

For antiferromagnets with gapless excitations, the spin current is calculated taking into account both elastic and inelastic scattering processes to check the formalism.

For spin liquids with a gap, the spin current is zero below a threshold, and rises as a function of the voltage with a power law that depends on the spinon dispersion and the dimensionality of the system.

The spin current is also able to distinguish between competing non-magnetic ground states - spin liquids and VBS.
Thank you for your attention!