Superconductivity from confinement transition of a FL* metal with Z_2 topological and Ising nematic order
(arXiv:1603.03041)

Shubhayu Chatterjee1, Yang Qi2, Subir Sachdev1,2 and Julia Steinberg1

1Harvard University, USA and 2Perimeter Institute, Canada

Z$_2$ spin liquids
- Quantum disordered ground states of certain Mott insulators
- No broken symmetry, topological degeneracy of ground states
- Schwinger boson or Abrikosov fermion mean-field theory:
 \[
 S = \frac{1}{2} a_i^\dagger a_i b_i^\dagger b_i, \quad \text{or} \quad S = \frac{1}{2} a_i^\dagger a_i f_i^\dagger f_i
 \]
- Examinations:
 1. Fractionalized spin-half spinons
 2. Visons or vortices of the Z_2 gauge field
 - Spinons and visons are mutual semions
 - $J_{s-c} \sim J_{c-s} $ Heisenberg model on the square lattice
 - Quantum fluctuations can drive a continuous phase transition from a spiral the fermionic gapped state

Fractionalized Fermi liquid (Z$_2$ FL*)
- Metallic state with charge π-spin-half c fermions in the background of a Z_2 spin liquid
 - Pure, Alice and Sachdev, PNAS 112, 9502 (2015)
- The size of the Fermi surface is determined by dopant density p
 - Senffl, Vojta and Sachdev, PRL 96, 216403 (2006)
- No low energy fractionalized excitations
 - Panagopoulos and Vishwanath, PRL 78, 245101 (2002)
- The vortices of the internal Z_2 gauge field (visons) survive in the FL* metal, hence its topological character
 - Violates Luttinger’s theorem due to presence of emergent gauge excitations

Linking bosonic and fermionic descriptions
- **Topological properties of Z_2 gauge theory**
 - 4 kinds of topologically distinct excitations: e, m, ϵ and 1 (topologically trivial)
- **Fusion rules**:
 - $\epsilon \times \epsilon = m \times m = e \times \epsilon = e \times e = \epsilon$
 - $1 \times 1 = 1$, $e \times 1 = m$, $m \times 1 = m$, $\epsilon \times 1 = \epsilon$
 - $\epsilon \times m = \epsilon$, $m \times \epsilon = m$, $m \times m = e$
- **In the context of Z_2 spin liquids**:
 - $e \rightarrow b$ (bosonic spinon)
 - $e \rightarrow f$ (fermionic spinon)
 - $m \rightarrow (\text{vison})$
- **Symmetry fractionalization**:
 - Each symmetry (space-group, time-reversal) combination equivalent to identity, we can associate a Z_2 quantum number for each anyon
 - From the Z_2 quantum numbers of the bosonic spinons and visons, we can determine the symmetry fractionalization quantum numbers of the fermionic spinons for a fully gapped Z_2 spin liquid
- **Equivalence of bosonic and fermionic Z_2 spin liquids on the rectangular lattice**:
 - Can write down a Hamiltonian consistent with the projective symmetry realization for the fermionic spinons \leftrightarrow Pf-flux gapped spin liquid

> Figure: K. Fujita and J. C. Seamus Davis