Signatures of fractionalization in spin liquids from interlayer thermal transport

Shubhayu Chatterjee
Harvard University

APS March Meeting, New Orleans
March 13, 2017
In collaboration with:

Yochai Werman, Weizmann Inst.
Sid Morampudi, PKS Dresden/Boston U.
Erez Berg, Weizmann/U. Chicago

Y. Werman, S. Chatterjee, S. Morampudi and E. Berg (arXiv:170x.xxxxx)
• **Traditional quantum magnetism**: *Ordered* ground states with broken symmetry (Eg: Antiferromagnet)

![Diagram of quantum spin liquids](image)

• Geometric frustration: **Additional possibilities**

• **Spin liquids**: Mott insulators with no broken symmetry due to quantum fluctuations
Quantum Spin liquids

• How can we define spin liquids more precisely?

• Long range quantum entanglement

• 4-fold g.s. degeneracy on a torus (topological order)

• Excitations which carry fractional quantum number \((S = \frac{1}{2} \text{ spinons})\) coupled to emergent gauge fields.

Detecting Quantum Spin liquids

- **Experimental signatures:**
 - No magnetic order down to very low temperatures
 - Can we probe fractionalization directly?
 - Previous work: Neutron scattering, spin injection, coherent tunneling into superconductors...

This talk: Temperature dependent anisotropy of thermal conductivity in gapless QSLs

• Why thermal transport:

• Many proposed QSLs are layered materials, with possibly gapless charge-neutral spinons

• κ_c and κ_{ab} show parametrically different behavior as a function of temperature

Detecting QSLs: Thermal transport

- Why thermal transport:
- Contrast with an anisotropic metal having non-fractionalized excitations (electrons)

At low temperatures, \(\frac{\kappa_{ab}}{\kappa_c} \rightarrow \text{const} \gg 1 \)

Figures: E. Berg, U. Chicago
Detecting QSLs: Thermal transport

- Model and results:
 Weakly coupled stacks of Kitaev’s honeycomb model

- TRS preserved: Dirac cones
- TRS broken: Fermi surface

Distinguishing feature: Time reversal symmetry

Figures: E. Berg
Model and results:

Weakly coupled stacks of Kitaev’s honeycomb model

TRS disorder acts as random vector potential

<table>
<thead>
<tr>
<th></th>
<th>In-plane</th>
<th>c-axis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clean</td>
<td>Disordered</td>
</tr>
<tr>
<td>Z_2 Dirac</td>
<td>T</td>
<td>$[1]$</td>
</tr>
<tr>
<td>Z_2 FS</td>
<td>∞</td>
<td>T</td>
</tr>
<tr>
<td>$U(1)$</td>
<td>$T^{1/3}$</td>
<td>$[2]$</td>
</tr>
</tbody>
</table>

Parametrically different in-plane vs interplane thermal transport can be a valuable probe of fractionalization in layered spin liquids.

Thank you for your attention!