Diagnosing phases of magnetic insulators via noise magnetometry with spin qubits

Shubhayu Chatterjee
University of California, Berkeley

Yao Lab Group Meeting
February 15, 2019
In collaboration with:

Joaquin F. Rodriguez-Nieva
Harvard University

Eugene Demler
Harvard University

SC, J. F. Rodriguez-Nieva and E. Demler

arXiv:1810.04183
Conventional phases of matter

- Paradigm of symmetry breaking and local order parameters

At room temperature, this magnet attracts iron pins.

When heated, it stops doing so

Solid ice → Liquid water
Conventional phases of matter

- Paradigm of symmetry breaking and local order parameters

- Density is non-uniform
- Moments are aligned

- Density is uniform
- Moments point random

Order parameter: Density
Order parameter: Magnetization

- Symmetry is broken
- Non-zero local order parameter

Lev. D. Landau
• Unconventional phases of matter in magnetic insulators

• NV centers as quantum sensors in condensed matter

• Footprints of a phase in magnetic noise

• Sensing anyonic statistics using NVs

• Material candidates

• Conclusions and outlook
Unconventional phases of matter in magnetic insulators

• NV centers as quantum sensors in condensed matter
• Footprints of a phase in magnetic noise
• Sensing anyonic statistics using NVs
• Material candidates
• Conclusions and outlook
Unconventional phases of matter

• Not described by broken symmetries or local order parameters

• Consider an insulator: Degrees of freedom are spins

• Frustration or larger quantum fluctuations: Additional possibilities beyond the paradigm of symmetry breaking

Antiferromagnetic exchange causes geometric frustration in non-bipartite lattices
Different possible phases of 2d magnetic insulators:

- **Quantum spin liquids:**
 - No broken symmetry
 - Long range entanglement + topological order
 - May be gapped or gapless

- **Valence bond solids (VBS):**
 - Broken translation symmetry
 - Gapped triplon (S=1) excitations

- **Disordered random singlet phases:**
 - Statistically preserves translation symmetry
 - Long-range singlets but topologically trivial

Figures: T. Senthil (MIT), S. Sachdev (Harvard), Kimchi *et al*, PRX 2018
Quantum spin liquids

• Long range entanglement: Non-trivial ground state degeneracy on a cylinder/torus: Can be used as stable qubits for quantum computation!

• More curiously, the excitations carry fractional quantum numbers of global symmetry (like $S = 1/2$ spinons) and are coupled to emergent gauge fields

• Gauge flux and spinon are mutual semions (like e and m particles of the Kitaev toric code)

Excitations in spin liquids: $S = \frac{1}{2}$ Spinons

- Low energy excitations: $S = \frac{1}{2}$ spinons, must occur in pairs

Figure: S. Sachdev (Harvard)
Excitations in ordered phases: $S = 1$ Magnons

- Contrast this with a magnetically ordered phase (ferromagnets or antiferromagnets)

- Low energy excitations: $S = 1$ magnons, Goldstone bosons of broken spin-rotation symmetry

Figure: rug.nl/research/zer

VBS phases

- Clean VBS phases break lattice translation symmetry
- Gapped S = 1 triplon excitations (discrete broken symmetry, no Goldstone modes)
- May have non-trivial triplon bands with gapless chiral edge modes

What is the fate of the VBS phase in presence of disorder?
Disordered VBS phases

- Disordered VBS phases in two dimensions naturally nucleate defects
- Defects carry spin-half because of topological reasons
- The low energy physics is governed by this random network of weakly coupled spins

\[H_{\text{eff}} = \sum_{i,j} J_{i,j}^{\text{eff}} \mathbf{S}_i \cdot \mathbf{S}_j \]

Kimchi et al., PRX 2018
Quantum spin liquids in experiments

• Traditionally, cool down to very low temperatures, and look for signatures of *nothing*

![Graph showing linear thermal conductivity](image1)

Linear in T thermal conductivity

![Neutron scattering spectrum](image2)

Broad continuum of two-particle like spectrum in neutron scattering
• Unconventional phases of matter in magnetic insulators

• NV centers as quantum sensors in condensed matter

• Footprints of a phase in magnetic noise

• Sensing anyonic statistics using NVs

• Material candidates

• Conclusions and outlook
NV centers as quantum sensors

• Issues with transport/neutron scattering: contamination by phonons, lack of low energy resolution, etc

Can we probe the fractional spin-excitations directly and exclusively?

• Enter NV centers as quantum sensors of magnetic fluctuations!

• Measures AC magnetic noise at frequency ω_{probe}

• In insulators, dominated by spin fluctuations due to large charge gap
NV centers as quantum sensors

- Polarized/Initialized via laser pumping
- Read-out via spin-dependent fluorescence

Figure: S. Hsieh (UC Berkeley)
NV centers as quantum sensors

- Couples efficiently to magnetic field created by fluctuating spins
- Sensitive to only spin-correlations (avoids phonons, charged disorder, localized modes etc)
- Excellent momentum (up to few nm) and energy resolution (up to few mK)
- Optical initialization and readout capabilities
- Minimally invasive (no external drive required)
NV centers as quantum sensors

- Relaxation time is sensitive to magnetic noise at momenta $q \sim d^{-1}$ and energy $\omega = \omega_{\text{probe}}$

$$\frac{1}{T_1} = \left(\frac{g_\sigma \mu_B \mu_0}{2} \right)^2 \coth \left(\frac{\omega}{2T} \right) \int \frac{d^2 q}{(2\pi)^2} F(d, q) \left[\frac{1}{4} \left(S_{-+}(q, \omega) + S_{+-}(q, \omega) \right) + S_{zz}(q, \omega) \right], \quad F(d, q) \sim q^2 e^{-2qd}$$

- $S_{\alpha\beta}(q, \omega)$ is the retarded spin-spin correlation function in Fourier space
Outline

• Unconventional phases of matter in magnetic insulators

• NV centers as quantum sensors in condensed matter

• Footprints of a phase in magnetic noise

• Sensing anyonic statistics using NVs

• Material candidates

• Conclusions and outlook
Sensing quantum spin liquids

• Distinct behavior of $1/T_1$ as a function of experimentally tunable knobs:
 1. Probe frequency ω
 2. Temperature T
 3. Sample-probe distance d
Sensing quantum spin liquids

- For a single magnetic dipole, \(B \approx \mu_0 \mu_B S_i / D^3 \)

\[
\frac{1}{T_1} \approx \mu_0^2 \mu_B^4 \sum_{i,j} \langle [S_{i\alpha} / D^3, S_{j\alpha} / D^3] \rangle_{\omega} = \frac{\mu_0^2 \mu_B^4}{D^6} \int d^2 \mathbf{r} \int d^2 \mathbf{r} \langle [S_{\alpha}(\mathbf{r}), S_{\alpha}(0)] \rangle_{\omega}
\]

- For a paramagnet, \(\langle [S_\alpha(\mathbf{r}), S_\alpha(0)] \rangle \sim e^{-r/\xi} \) so \(\frac{1}{T_1} \sim D^{-4} \)

- For a gapless spin liquid, \(\langle [S_\alpha(\mathbf{r}), S_\alpha(0)] \rangle \sim 1/r^\delta \) so \(\frac{1}{T_1} \sim D^{-(2+\delta)} \)
Sensing quantum spin liquids

• Concrete computation on Kitaev’s honeycomb model

• Exactly solvable model with a spinon Dirac cone (time-reversal preserved), spinon Fermi surfaces (time-reversal broken)

• Effect of disorder can be studied by mapping onto the problem of phase transition between trivial and integer quantum hall phase

Ludwig et al, PRB 1994
Sensing quantum spin liquids

Parameter dependences of $1/T_1$

<table>
<thead>
<tr>
<th></th>
<th>T dependence</th>
<th>d dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clean</td>
<td>Dirty</td>
</tr>
<tr>
<td>$\omega \ll T$</td>
<td>T^2</td>
<td>$T^{2-\alpha_1}$</td>
</tr>
<tr>
<td>Z_2 Dirac</td>
<td>T^0</td>
<td>T</td>
</tr>
<tr>
<td>$U(1)$ FS</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Contrast with ordered phases

<table>
<thead>
<tr>
<th></th>
<th>ω, T</th>
<th>d^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>AFM</td>
<td>$\omega^3 T$</td>
<td>d^0</td>
</tr>
</tbody>
</table>

Contrast with trivial paramagnet

\[
\frac{1}{T_1} \propto d^{-4}
\]

A. Kitaev, Annals Phys. 2006
Song, You, Balents, PRL 2016

Time reversal symmetry

- **Preserved**
- **Broken**
Sensing disordered VBS phases

- Clean VBS phases are gapped
- For a disordered VBS phase, the low energy physics is governed by a random network of weakly coupled spins, with a power law behavior of coupling J (appears gapless)

\[\frac{1}{T_1} \sim (\omega - \Delta_T)e^{-2d\sqrt{2m(\omega-\Delta_T)}}\Theta(\omega - \Delta_T) \]

Kimchi et al, PRX 2018

- Characteristic dip in T_1 at $\omega = h$ due to resonance
• Unconventional phases of matter in magnetic insulators
• NV centers as quantum sensors in condensed matter
• Footprints of a phase in magnetic noise
• Sensing anyonic statistics using NVs
• Material candidates
• Conclusions and outlook
Sensing anyonic statistics

- Identical particles in a two-dimensional world can have arbitrary phases under exchange – neither bosons nor fermions!

- Correlation functions of local observables have a robust universal threshold behavior depending on statistics parameter α

\[
\begin{align*}
 \text{Boson: } & e^{i\pi \alpha} = 1 \\
 \text{Fermion: } & e^{i\pi \alpha} = -1
\end{align*}
\]

Morampudi et al, PRL 2017

Sensing anyonic statistics

- If the anyons carry spin, this translates to a universal relaxation rate at low energy for NV centers

\[\frac{1}{T_1} \sim (\omega - \Delta_s)^{2+\alpha} \Theta(\omega - \Delta_s) \]

- Example: chiral spin liquid state with spin-ful semions (\(\alpha = \frac{1}{2} \))

 \[e^{\pi i \alpha} \]

 Laughlin, Kalmeyer, PRL 1987

- Robust to short-range interactions because of statistical repulsion (except bosons that have logarithmic corrections)

 Morampudi et al, PRL 2017
• Unconventional phases of matter in magnetic insulators
• NV centers as quantum sensors in condensed matter
• Footprints of a phase in magnetic noise
• Sensing anyonic statistics using NVs
• Material candidates
• Conclusions and outlook
Confusion in the material world

- Spin-orbit coupled iridates, like α-RuCl$_3$ are well-described by a Kitaev Hamiltonian, but order at low T. Magnetic order can be suppressed by magnetic fields – what is the nature of the tentative spin-liquid phase?

 Lampen-Kelly et al, PRL 2017
 Y. Kasahara et al, PRL 2018

- Inorganic compounds like YbMgGaO$_4$ are a subject of debate – spinon Fermi surface vs disordered VBS phase?

 Kimchi et al, PRX 2018

- Frustrated $S = 1$ compound Ba$_3$NiSb$_2$O$_9$: Candidate for quadratic band touching spin liquid and spinon Fermi surface.

 Xu et al, PRL 2012
 Fak et al, PRB 2017

Noise magnetometry can help answer all these questions
Outline

• Unconventional phases of matter in magnetic insulators

• NV centers as quantum sensors in condensed matter

• Footprints of a phase in magnetic noise

• Sensing anyonic statistics using NVs

• Material candidates

• Conclusions and outlook
Conclusions

- Single spin qubits (like NV centers) can be used to distinguish exotic ground states of magnetic insulators from conventional magnets.

- They can also detect elusive anyonic statistics in gapped systems, provided the anyons carry spin.

- They offer several advantages over conventional solid-state probes.

- Similar experiments have been done for magnetic metals in this group, so I hope insulators are not far away!

Hsieh et al, arXiv: 1812.08796
Conclusions

- Single spin qubits (like NV centers) can be used to distinguish exotic ground states of magnetic insulators from conventional magnets.
- They can also detect elusive anyonic statistics in gapped systems, provided the anyons carry spin.
- They offer several advantages over conventional solid-state probes.

Similar experiments have been done for magnetic metals in this group, so I hope insulators are not far away!

Hsieh et al, arXiv: 1812.08796

Thank you for your attention!