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• Setting: Interacting electrons in tunnel-coupled (nearly flat) spin-ful
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• Consider a half-filled state (2/4 bands)
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Setting: Coupled spinful Chern bands

• Setting: Interacting electrons in tunnel-coupled (nearly flat) spin-ful
Chern bands with opposite Chern numbers

• Consider a half-filled state (2/4 bands)

• Without tunnel coupling, Coulomb repulsion leads to a 
ferromagnetic state in each Chern sector. 

• Expected from the Stoner criteria in the flat band limit, !(εF) → ∞

C = 1 C = -1
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Setting: Coupled spinful Chern bands

• Setting: Interacting electrons in tunnel-coupled (nearly flat) spin-ful
Chern bands with opposite Chern numbers

• In each Chern sector: Interaction driven quantum-Hall ferromagnet

• Tunnel-coupling leads to an antiferromagnetic (super-)exchange

• Ground state at half-filling (2/4 bands) is a spin-layer locked 
insulator

Bultinck et al, PRX (2020)
Repellin et al, PRL (2020)

C = 1 C = -1
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Setting: Coupled spinful Chern bands

• Concrete Hamiltonian: Interacting electrons in tunnel-coupled 
zeroth Landau levels with opposite magnetic fields

Isotropic super-exchange

Easy plane/easy 
axis anisotropy

Coulomb repulsion AF super-exchangeKinetic term

C = 1

C = -1 2/4 filling: AF insulator, preserves Tʹ = i !x "y K

Expect robust pairing of fermions related by Kramers T’

! = layer, " = spin
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Setting: Coupled spinful Chern bands

• In addition to particle-hole excitations, have topological textures: 
skyrmions in each Chern sector/layer carry charge 

1. Assuming the charge e skyrmions are energetically relevant (low 
spin-stiffness) – can they bind together into 2e pairs?

2. Can these 2e pairs give rise to superconductivity on doping the 
half-filled insulator?

3. If there is superconductivity, what is Tc for the BKT transition?

Sondhi et al,  PRL (1993)
Moon et al, PRB (1994)
Parameswaran et al, PRB 
(2012)
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Setting: Coupled spinful Chern bands

• In addition to particle-hole excitations, have topological textures: 
skyrmions in each Chern sector/layer carry charge 

1. Assuming the charge e skyrmions are energetically relevant (low 
spin-stiffness) – can they bind together into 2e pairs?

2. Can these 2e pairs give rise to superconductivity on doping the 
half-filled insulator?

3. If there is superconductivity, what is Tc for the BKT transition?

Sondhi et al,  PRL (1993)
Moon et al, PRB (1994)

Appeal 
to 

semi-
classics 

SC, N. Bultinck, M. Zaletel, PRB 2020, E. Khalaf, SC et al,  Sci. Adv. (2021)
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Setting: Coupled spinful Chern bands

• Can these 2e pairs give rise to superconductivity on doping the 
half-filled insulator?

• Superconductivity from 2e skyrmion condensation has been 
proposed in doped QSH insulators, and seen in sign-problem free 
Quantum Monte Carlo

• What is the phase diagram at T = 0 in presence of Coulomb 
repulsion? 

• Can we rule out Wigner crystals of 2e bosons?

Abanov and Weigeman, PRL (2001)
Grover and Senthil,  PRL (2008)
Christos et al, PNAS (2020)
Khalaf et al, arXiv:2012.05915
Wang et al, arXiv: 2006.13239

Need alternate numerical 
methods: DMRG 

SC, Ippoliti, Zaletel, arXiv:2010.01144
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Skyrmion-pairing mechanism

• Consider a skyrmion in one QH 
layer and an anti-skyrmion in the 
opposite layer

• Both carry same charge: Repelled 
by Coulomb but attracted by local 
antiferromagnetism J

• All electronic pairing mechanism 
without phonons/retardation/bosonic 
fluctuations

Single skyrmion
pays exchange 
penalty

Sk-Ask pair 
can spread out 
to minimize 
Coulomb 
without losing 
exchangeSC, N. Bultinck, M. Zaletel, PRB 2020

E. Khalaf, SC et al,  Sci. Adv. (2021)

Belavin, Polyakov , JETP 
(1975)
Sondhi et al,  PRL (1993)
Moon et al, PRB (1994)
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Skyrmion-pairing mechanism

• For charge e textures, kinetic energy quenched by magnetic field

• Charge 2e skyrmion with charge e in each layer sees no net magnetic 
field, can therefore be mobile

Tc ~ 1/Mpair ~ J ~ 1 K in MAG

E. Khalaf, SC et al,  Sci. Adv. (2021)

Kallin & Halperin, PRB (1984)
K. Yang, PRL (2001)



Experiments:
Cao et al, Nature (2018), Lu et al, Nature (2019), Yankowitz et al, Science (2019), Several others…

Theory:
Po et al , Yuan et al, Isobe et al, Zou et al, Kang et al, Lewandowski et al, lots of others…

Application to moire graphene: MATBG



A1

A2

B1

B2

Bistritzer, MacDonald  PNAS (2011), 

• Approach from a quantum Hall perspective: the chiral limit

w0/w1 goes down 
due to lattice 
relaxation

Application to moire graphene: MATBG



• Chiral limit (turn off w0 = AA hopping between layers): Additional 
chiral symmetry allows for sublattice and valley polarized basis

• Exactly flat Chern bands: each band behaves like a lowest Landau level, 
but different bands see opposite effective magnetic fields

C = 1

C = -1

Jose et al, PRL (2012), Tarnopolsky et al,  PRL (2019), J. Liu et al, PRB (2019)

Application to moire graphene: MATBG



• Adding dispersion introduces AF super-exchange between Chern
sectors (breaks U(2) ╳ U(2) to U(2))

Application to moire graphene: MATBG

C = 1

C = -1

• Effective Hamiltonian resembles weakly dispersive iso-spinful Chern
bands with antiferromagnetic exchange between opposite Chern sectors

Bultinck et al, PRX (2020), Kang & Vafek, PRL (2020)
Lian, Bernevig et al, arXiv:2009:13530



Ground state: easy-plane AF or KIVC

Schematic overview

MAG flat 
bands

Chiral 
limit

Chern
bands

FM in each 
Chern sector

Dispersion ➛ AF 
superexchange

Application to moire graphene: MATBG

Bultinck et al, PRX (2020), Kang & Vafek, PRL (2020)
Lian, Bernevig et al, arXiv:2009:13530
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Ground state: easy-plane AF or KIVC

Schematic overview

MAG flat 
bands

Chiral 
limit

Chern
bands

Application to moire graphene: MATBG
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Lian, Bernevig et al, arXiv:2009:13530
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Ground state: easy-plane AF or KIVC

Schematic overview

MAG flat 
bands

Chiral 
limit

Chern
bands

Application to moire graphene: MATBG

Bultinck et al, PRX (2020), Kang & Vafek, PRL (2020)

Lian, Bernevig et al, arXiv:2009:13530

FM in each 
Chern sector

Dispersion ➛ AF 
superexchange



Application to moire graphene: MATBG
• Established requisite band topology, but how about energetics?

• Need stiffness to be small

E. Khalaf, SC et al,  Sci. Adv. (2021)ΔKIVC =  gap from HF numerics
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Small critical doping beyond which 
charges enter as 2e skyrmions

Idealized
Realistic
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Detour: Doped phase diagram

• CP1 formulation in the AF manifold: n = (n1, n2, n3) = z†! z 

• Introduces gauge field aµ (phase of spinor z), with charge density ∝ curl(a)

• Each flux (vortex) of a carries U(1)c charge 2e

• We can write ΔSC = n4 + i n5

• Alternate CP1 formulation: m = (n3, n4, n5)  = w†! w 

• Emergent gauge field aV carries valley-charge U(1)v

KIVC insulator Superconductor

a vortex gapped,
aVvortex condensed

a vortex condensed,
aVvortex gapped

Senthil et al,  Science. (2004)
Senthil et al, PRB (2004)
Wang, Nahum et al, PRX (2017)

Easy-plane O(4) DQCP
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Detour: Doped phase diagram

• KIVC insulator: zi condensed, z1
* z2 condensed, 

vortices in aµ (charges) disallowed

E. Khalaf, SC et al,  Sci. Adv. (2021)

Doped phase diagram
• Chemical potential acts act 

magnetic field, nucleates  
vortices in n (2e skyrmions): 
coexistence: aµ in Coulomb 
phase, but z1

* z2 condensed 
(relative phase well-defined)

• Further raising µ: expect 
disappearance of KIVC

• Large N theory gives first order 
transition with



• Alternating angle twisted trilayer graphene = TBG flat bands + highly 
dispersive Dirac cone (like monolayer graphene)

Application to moire graphene: MATLG

Khalaf et al, PRB (2019).
Carr et al, Nano Letters (2020)



• Recently, robust superconductivity has been observed in MATLG, with 
multiple evidences in favor of a strong-coupling origin

Application to moire graphene: MATLG

Park et al, Nature (2021)
Hao et al, Science (2021)

• Tc appears to be proportional to doping ν

Khalaf et al, PRB (2019).
Carr et al, Nano Letters (2020)

Khalaf, SC et al,  arXiv:2004.00638
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Skyrmion-pairing mechanism

Skyrmion-pairing 
superconductivity

Quote: Queen, Figure credits: 
http://creatememe.chucklesnetwork.com/memes/16712
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DMRG: Model and phase diagram

• Essential ingredients: 

1. Spinful (nearly) flat bands with opposite Chern number ±1
2. AF interaction between the Chern sectors, in addition to Coulomb 

repulsion

• Test: AF couple spinful lowest Landau levels, amenable to DMRG
Zaletel et al,  PRL  (2013)

Related work: 
Kang, Vafek, PRB (2020)
Soejima, Parker et al, PRB (2020)
Eugenio, Dag, arXiv: 2004.10363
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DMRG: Model and phase diagram

• iDMRG for coupled Landau level model on a cylinder (Ly = 8-12 ℓB)
Ippoliti et al,  PRB (2018)

Isotropic super-exchange

Easy plane/easy 
axis anisotropy

Coulomb repulsion AF super-exchangeKinetic term

C = 1

C = -1

Purely repulsive model for J < 3.24 (ds = 3ℓB)

" = layer, # = spin

Smeared by LLL projection
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DMRG: Model and phase diagram
Phase diagram at doping 2 + 1/4
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DMRG: Model and phase diagram
Phase diagram at doping 2 + 1/4

• Superconductor at large J (layer-unpolarized) –
Kramers-pairing (Tʹ = i !x "y K)

• Single particle excitations have gap ∼ EC

• Algebraic decay of 
Kramers-pair correlations

• Scaling analysis shows true 
long range SC order in 2d 
limit (Ly→ ∞)
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DMRG: Model and phase diagram
Phase diagram at doping 2 + 1/4

• Coexisting XY-AF and CDW at 
small J (layer-polarized)

• Transition (first order) between 
CDW and SC as J is increased 

• Small region of coexistence of 
SC and XY-AF order at finite q*
(tied to the doping)

• The competing state is layer-
polarized, but depends on the 
filling (CDW at 2+1/4, CFL at 
2+1/2, IQHE at 2+1)

CDW: stripy correlations
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Evidence for skyrmion-pairing

What is the mechanism of SC? Are skyrmions relevant?

Intuition from NLSM: 
Yes, for small anisotropy

Both NLSM and DMRG give energy of charged excitations above insulator
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Evidence for skyrmion-pairing

• NLSM + Segment DMRG to determine energy of charged excitations

• Numerics for quantum system confirm classical expectations!

Δpair = 2 E1e - E2e
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Evidence for skyrmion-pairing

• Critical J*(!) → 0  as !→ 0, indicative of collective pairing mechanism

• Pairing is much more favorable in the easy plane case (good for MAG!)

• Good qualitative agreement between quantum and classical numerics

Typical RMS 
radius: 3 ℓB
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Evidence for skyrmion-pairing

• Critical J*(!) → 0  as !→ 0, indicative of collective pairing mechanism

• Pairing is much more favorable in the easy plane case (good for MAG!)

• Good qualitative agreement between quantum and classical numerics

J*(!=0, Ly = 10ℓB) ≅ 0.3
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Evidence for skyrmion-pairing
Phase diagram at doping 2 + 1/4

Comparison of phase boundary from doped DMRG 
with Δpair = 0 at Ly = 10ℓB from segment DMRG



Statistics

Conclusions and Outlook

• Numerically established skyrmion-antiskyrmion pair condensation 
as a viable mechanism for superconductivity 

• Band topology plays a crucial role (not seen in bands with same C in 
a control experiment)

• MATBG has the right physical ingredients to realize this mechanism: 
required band topology and low iso-spin stiffness ~ 1 meV, perhaps 
mirror symmetric MATLG too

• Open questions --- Effects of:
1. Non-uniform Berry curvature
2. Disorder
3. Spin-orbit coupling

Saito et al,  Nature (2021)
Park et al, Nature (2021)
Hao et al, Science (2021)

Arora et al, Nature (2020)



Thank you for your attention!


