Skyrmion superconductivity: Application to moiré graphene platforms and DMRG evidence

Shubhayu Chatterjee University of California, Berkeley

> Informal Theory Seminar Cornell University August 19, 2021

In collaboration with:

Matteo Ippoliti Stanford

Eslam Khalaf Harvard

Ashvin Vishwanath Harvard

Nick Bultinck UC Berkeley \rightarrow Oxford

Mike Zaletel UC Berkeley

SC, N. Bultinck, M. P. Zaletel, PRB 101, 165141 (2020)

E. Khalaf, SC, N. Bultinck, M. P. Zaletel, A. Vishwanath, Sci. Adv. 7, eabf5299 (2021)

SC, M. Ippoliti, M. P. Zaletel, arXiv:2010.01144

• Setting: Interacting electrons in tunnel-coupled (nearly flat) spin-ful Chern bands with opposite Chern numbers

• Consider a half-filled state (2/4 bands)

• Setting: Interacting electrons in tunnel-coupled (nearly flat) spin-ful Chern bands with opposite Chern numbers

- Consider a half-filled state (2/4 bands)
- Without tunnel coupling, Coulomb repulsion leads to a ferromagnetic state in each Chern sector.
- Expected from the Stoner criteria in the flat band limit, $\nu(\varepsilon_F) \rightarrow \infty$

• Setting: Interacting electrons in tunnel-coupled (nearly flat) spin-ful Chern bands with opposite Chern numbers

$$n_+$$
 C = 1 h C = -1 n_-

- In each Chern sector: Interaction driven quantum-Hall ferromagnet
- Tunnel-coupling leads to an antiferromagnetic (super-)exchange
- Ground state at half-filling (2/4 bands) is a spin-layer locked insulator

Bultinck *et al*, PRX (2020) Repellin *et al*, PRL (2020)

• Concrete Hamiltonian: Interacting electrons in tunnel-coupled zeroth Landau levels with opposite magnetic fields

$$H = \psi^{\dagger} \frac{(\mathbf{p} + e\gamma^{z} \mathbf{A})^{2}}{2m} \psi + \frac{1}{2} \int :n(r) V_{C}(r - r') n(r') :- E_{C} \ell_{B}^{2} \sum_{i=x,y,z} J_{i} : \left(\psi^{\dagger} \gamma^{z} \eta^{i} \psi(r)\right)^{2}$$

AF super-exchange

Easy plane/easy

axis anisotropy

$$\gamma$$
 = layer, η = spin

C = 1

Kinetic term

 $J_x = J_y = J + \lambda, J_z = J - \lambda \longrightarrow$ \downarrow Isotropic super-exchange

Coulomb repulsion

2/4 filling: AF insulator, preserves $T' = i \gamma^x \eta^y K$

Expect robust pairing of fermions related by Kramers $\textbf{T}^{'}$

• In addition to particle-hole excitations, have topological textures: skyrmions in each Chern sector/*layer* carry charge

$$Q_{physical} = CQ_{topological}$$

Sondhi *et al*, PRL (1993) Moon *et al*, PRB (1994) Parameswaran *et al*, PRB (2012)

- 1. Assuming the charge e skyrmions are energetically relevant (low spin-stiffness) can they bind together into 2e pairs?
- 2. Can these 2e pairs give rise to superconductivity on doping the half-filled insulator?
- 3. If there is superconductivity, what is T_c for the BKT transition?

• In addition to particle-hole excitations, have topological textures: skyrmions in each Chern sector/*layer* carry charge

$$Q_{physical} = CQ_{topological}$$

Sondhi *et al*, PRL (1993) Moon *et al*, PRB (1994)

1. Assuming the charge e skyrmions are energetically relevant (low spin-stiffness) – can they bind together into 2e pairs?

Appeal

to

2. Can these 2e pairs give rise to superconductivity on doping the half-filled insulator?

semiclassics

3. If there is superconductivity, what is T_c for the BKT transition?

SC, N. Bultinck, M. Zaletel, PRB 2020, E. Khalaf, SC et al, Sci. Adv. (2021)

- Can these 2e pairs give rise to superconductivity on doping the half-filled insulator?
- Superconductivity from 2e skyrmion condensation has been proposed in doped QSH insulators, and seen in sign-problem free Quantum Monte Carlo
 Abanov and Weigeman, PBL (20)

Abanov and Weigeman, PRL (2001) Grover and Senthil, PRL (2008) Christos *et al*, PNAS (2020) Khalaf *et al*, arXiv:2012.05915 Wang *et al*, arXiv: 2006.13239

- What is the phase diagram at T = 0 in presence of Coulomb repulsion?
- Can we rule out Wigner crystals of 2e bosons?

Need alternate numerical methods: DMRG

SC, Ippoliti, Zaletel, arXiv:2010.01144

Skyrmion-pairing mechanism

• Consider a skyrmion in one QH layer and an anti-skyrmion in the opposite layer

$$Q_{physical} = CQ_{topological}$$

- Both carry same charge: Repelled by Coulomb but attracted by local antiferromagnetism J
- *All electronic pairing mechanism* without phonons/retardation/bosonic fluctuations

SC, N. Bultinck, M. Zaletel, PRB 2020 E. Khalaf, SC *et al*, Sci. Adv. (2021)

Single skyrmion pays exchange penalty

Belavin, Polyakov , JETP (1975) Sondhi *et al*, PRL (1993) Moon *et al*, PRB (1994)

Sk-Ask pair can spread out to minimize Coulomb without losing exchange

Skyrmion-pairing mechanism

- For charge e textures, kinetic energy quenched by magnetic field
- Charge 2e skyrmion with charge e in each layer sees *no net magnetic field*, can therefore be mobile

Experiments:

Cao et al, Nature (2018), Lu et al, Nature (2019), Yankowitz et al, Science (2019), Several others...

Theory:

Po et al, Yuan et al, Isobe et al, Zou et al, Kang et al, Lewandowski et al, lots of others...

- Chiral limit (turn off w_0 = AA hopping between layers): Additional chiral symmetry allows for sublattice and valley polarized basis Jose et al, PRL (2012), Tarnopolsky *et al*, PRL (2019), J. Liu *et al*, PRB (2019)
- Exactly flat Chern bands: each band behaves like a lowest Landau level, but different bands see opposite effective magnetic fields

Adding dispersion introduces AF super-exchange between Chern sectors (breaks U(2) × U(2) to U(2))

• Effective Hamiltonian resembles weakly dispersive iso-spinful Chern bands with antiferromagnetic exchange between opposite Chern sectors

Bultinck *et al*, PRX (2020), Kang & Vafek, PRL (2020) Lian, Bernevig et al, arXiv:2009:13530

- Established requisite band topology, but how about energetics?
- Need stiffness to be small

Small critical doping beyond which charges enter as 2e skyrmions

E. Khalaf, SC et al, Sci. Adv. (2021)

Detour: Doped phase diagram

- CP¹ formulation in the AF manifold: $\mathbf{n} = (n_1, n_2, n_3) = z^{\dagger} \boldsymbol{\eta} z$
- Introduces gauge field a_{μ} (phase of spinor z), with charge density \propto curl(a)

Senthil et al, Science. (2004)

Wang, Nahum et al, PRX (2017)

Senthil et al, PRB (2004)

- Each flux (vortex) of **a** carries U(1)_c charge 2e
- We can write $\Delta_{SC} = n_4 + i n_5$
- Alternate CP¹ formulation: $\mathbf{m} = (n_3, n_4, n_5) = \mathbf{w}^{\dagger} \boldsymbol{\eta} \mathbf{w}$
- Emergent gauge field \mathbf{a}_{V} carries valley-charge U(1)_v

Detour: Doped phase diagram

- KIVC insulator: z_i condensed, z₁* z₂ condensed, vortices in a_μ (charges) disallowed
- Chemical potential acts act magnetic field, nucleates vortices in n (2e skyrmions): coexistence: a_μ in Coulomb phase, but z₁* z₂ condensed (relative phase well-defined)
- Further raising µ: expect disappearance of KIVC
- Large N theory gives first order transition with

$$T_c = \frac{3JA_M\nu}{\pi N}$$

• Alternating angle twisted trilayer graphene = TBG flat bands + highly dispersive Dirac cone (like monolayer graphene)

• Recently, robust superconductivity has been observed in MATLG, with multiple evidences in favor of a strong-coupling origin

- Essential ingredients:
- 1. Spinful (nearly) flat bands with opposite Chern number ± 1
- 2. AF interaction between the Chern sectors, in addition to Coulomb repulsion

Related work: Kang, Vafek, PRB (2020) Soejima, Parker *et al*, PRB (2020) Eugenio, Dag, arXiv: 2004.10363

• Test: AF couple spinful lowest Landau levels, amenable to DMRG

Zaletel et al, PRL (2013)

• iDMRG for coupled Landau level model on a cylinder ($L_y = 8-12 \ell_B$) Ippoliti *et al*, PRB (2018)

$$H = \psi^{\dagger} \frac{(\mathbf{p} + e\gamma^{z}\mathbf{A})^{2}}{2m} \psi + \frac{1}{2} \int :n(r)V_{C}(r - r')n(r') : -E_{C}\ell_{B}^{2} \sum_{i=x,y,z} J_{i} : (\psi^{\dagger}\gamma^{z}\eta^{i}\psi(r))^{2} :$$
Kinetic term
$$\gamma = \text{layer, } \eta = \text{spin}$$

$$J_{x} = J_{y} = J + \lambda, J_{z} = J - \lambda \longrightarrow \begin{array}{c} \text{Easy plane/easy} \\ \text{axis anisotropy} \end{array}$$

$$I_{x} = J_{y} = J + \lambda, J_{z} = J - \lambda \longrightarrow \begin{array}{c} \text{Easy plane/easy} \\ \text{axis anisotropy} \end{array}$$

$$I_{x} = J_{y} = J + \lambda, J_{z} = J - \lambda \longrightarrow \begin{array}{c} \text{Easy plane/easy} \\ \text{axis anisotropy} \end{array}$$

$$I_{x} = J_{y} = J + \lambda, J_{z} = J - \lambda \longrightarrow \begin{array}{c} \text{Easy plane/easy} \\ \text{axis anisotropy} \end{array}$$

$$V_{+\uparrow,-\downarrow}(r) = V_{C}(r) - 2JE_{C}\ell_{B}^{2} \delta(\mathbf{r})$$

$$I_{x} = J_{y} = J + \lambda, J_{z} = J - \lambda \longrightarrow \begin{array}{c} \text{Easy plane/easy} \\ \text{Easy plane/easy} \\ \text{axis anisotropy} \end{array}$$

$$I_{x} = J_{y} = J + \lambda, J_{z} = J - \lambda \longrightarrow \begin{array}{c} \text{Easy plane/easy} \\ \text{Easy plane/eas$$

Phase diagram at doping 2 + 1/4

1.0 SC 0.8 0.6 0.4 0.2 $L_{\mu} = 12\ell_B$ $\langle N^+(x)N^-(0)\rangle$ $\langle \Delta(x)\Delta(0)\rangle$ $L_y = 11\ell_B$ $\eta_{XY} = 0.086$ $L_y = 8\ell_B$ $\eta_{\Delta} = 1.08$ $\eta_{XY} = 0.125$ $L_y = 8\ell_B$ 100 $\eta_{\Delta} = 1.38$ χ 10-2 1200 χ 2000 2700 3000 4500 4500 10-3 8000 $10^2 x/\ell_B$ 100 10¹ 101 100 102 x/ℓ_B

- Superconductor at large J (layer-unpolarized) Kramers-pairing (T' = i $\gamma^x \eta^y K$)
- Single particle excitations have gap $\sim E_C$
 - Algebraic decay of Kramers-pair correlations $\langle \Delta^{\dagger}(x,0)\Delta(0,0)\rangle \propto x^{-\eta_{SC}}$ $\eta_{SC} \propto L_u^{-1}$
 - Scaling analysis shows true long range SC order in 2d limit $(L_y \rightarrow \infty)$

Phase diagram at doping 2 + 1/4

- Coexisting XY-AF and CDW at small J (layer-polarized)
- Transition (first order) between CDW and SC as J is increased
- Small region of coexistence of SC and XY-AF order at finite q* (tied to the doping)
- The competing state is layerpolarized, but depends on the filling (CDW at 2+1/4, CFL at 2+1/2, IQHE at 2+1)

Both NLSM and DMRG give energy of charged excitations above insulator

• Numerics for quantum system confirm classical expectations!

- Critical $J_*(\lambda) \to 0$ as $\lambda \to 0$, indicative of collective pairing mechanism
- Pairing is much more favorable in the easy plane case (good for MAG!)

• Good qualitative agreement between quantum and classical numerics

- Critical $J_*(\lambda) \to 0$ as $\lambda \to 0$, indicative of collective pairing mechanism
- Pairing is much more favorable in the easy plane case (good for MAG!)

Conclusions and Outlook

- Numerically established skyrmion-antiskyrmion pair condensation as a viable mechanism for superconductivity
- Band topology plays a crucial role (not seen in bands with same C in a *control* experiment)
- MATBG has the right physical ingredients to realize this mechanism: required band topology and low iso-spin stiffness ~ 1 meV, perhaps mirror symmetric MATLG too

Saito *et al*, Nature (2021) Park *et al*, Nature (2021) Hao *et al*, Science (2021)

- Open questions --- Effects of:
- 1. Non-uniform Berry curvature
- 2. Disorder
- 3. Spin-orbit coupling Arora et al, Nature (2020)

Thank you for your attention!

