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ABSTRACT

Context. To help quantify the numerical and statistical properties of a novel imaging process to be used specifically in the search for
the highly redshifted (z > 5) Epoch of Reionization (EoR) 21 cm neutral hydrogen signal.
Aims. This new imaging process—Direct Optimal Mapping (DOM)—requires more computational resources than typical; so, show-
ing how the results of this imaging process scales with resolution and stacks up against the competition is the ultimate goal.
Methods. DOM is compared and contrasted with the Common Astronomy Software Applications (CASA) imaging package using
visibilities generated with pyuvsim and an “expectation” image generated to use as a proxy for “ground truth”.
Results. The computational headroom of DOM is clear and memory requirements grow quickly as a function of field of view. DOM
provides access to a full covariance matrix and has roughly the same image fidelity as CASA, further studies will have to show how
this can be harnessed to extract the EoR signal from high dynamic range maps with bright foregrounds. A slightly trivial example also
shows the potential for future algorithms to potentially achieve a linear deconvolution pipeline.
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1. Introduction

In the search for the Epoch of Reionization (EoR) signal us-
ing radio telescopes there are a number of large obstacles; see
Morales (2010) and Zaroubi (2012). There is local Radio Fre-
quency Interference (RFI), ionospheric phase fluctuations lim-
iting observations to above 10 MHz and baselines to less than
10 km, and extremely bright galactic and extra-galactic fore-
grounds. The dynamic range of the sky brightness distribution
(∼300K-10mK) requires a precise measurement of the radio in-
terferometric visibility function to better than one part in 104.
The HERA collaboration is using highly redundant baselines to
improve self-calibration techniques, extensive RFI mitigation,
and a radio-quiet location to accomplish this DeBoer (2017).
Further improvement of the data processing pipeline naturally
follows with a direct and optimal mapping process that has well-
defined statistical properties (i.e., a full pixel covariance matrix);
see Dillon (2015) and Xu (2022).1.

Typically, for radio interferometers, the visibilities generated
by correlation of various antennae pairs are placed on a grid
amendable to a 2D Fast Fourier Transform (FFT). The process
of gridding can often be more computationally intensive than
the optimized FFT, which reduces an order n2 computational
problem to n log (n). So-called “optimal” mapping methods have
been implemented before in precision cosmology applications,
where Tegmark (1997) showed they can be used to generate loss-
less images with minimum errors by keeping track of error prop-
agation with a restricted set of traceable operations; optimal is
basically a stand-in for linear. Direct Optimal Mapping (DOM)
builds on this framework and extends it to wide-field radio inter-
ferometric imaging. The final result is a spherical (healpix) map
with a corresponding pixel covariance matrix, which quantifies
the correlation between all pixels in the map; while the process
of precision map making is computationally intensive it can also
be used for data compression.

1 github.com/HERA-Team/direct_optimal_mapping

2. Direct Optimal Mapping, simulated visibilities,
and an expectation image

The field of precision cosmology has requires an enhanced ap-
proach to imaging. In order to produce reliable statistical mea-
sures of the large spatial structure contained in maps (instead of
modeling and fitting specific localized objects) an understanding
of the imaging process and its effect on the output map is impor-
tant. This was first spearheaded by the optimal imaging methods
built for studying the Cosmic Microwave Background (CMB)
and is being extended into 21 cm cosmology. Most projects
working in this field are utilizing aperture synthesis radio tele-
scopes, which adds a considerable amount of complexity to the
imaging process. Many of the industry standard imaging tech-
niques for these interferometers rely on simplifying assumptions
to speed up the process—for precision cosmology these types of
trade-offs are not acceptable.

While the other imaging techniques can produce accurate
maps they do not preserve the inputs. This is especially true in
non-linear deconvolution algorithms. DOM, in theory, not only
produces an accurate map but also a precise mapping from the
inputs (i.e., samples of the visibility of the sky brightness distri-
bution) to the map without squeezing and streching the inputs to
fit a grid; direct is basically a stand-in for ungridded. While this
technique is more computationally expensive ≤ O(n4) the im-
mediate benefits are three fold: 1) the imaging process effective
compresses the data; 2) a w-term approximation is not needed
for any non-coplanarity; and 3) the maps can be decomposed us-
ing sufficiently well-established models of foregrounds and any
sources of noise.2 The other upshot of this technique would be
a linear deconvolution algorithm, which could be useful in other
areas of radio astronomy.

2 It is hoped this computational complexity can be eventually reduced
to ∼ n log (n); see Dillon (2015). The run times for this work were con-
siderably longer than CASA. Calculating the matrix P (see Equation 3)
was especially time consuming.

https://github.com/HERA-Team/direct_optimal_mapping


A brief review of DOM hinges upon the equation (and its
assumption of a linear relation between time series visibility data
and the resulting map):

y = Ax + n, (1)

where the instrument A operates on the (true) sky brightness dis-
tribution x to produce the measurements of the visibility function
y with any other noise n. While seemingly innocuous the matrix
A grows with observation time, bandwidth, and baselines; it has
the shape m×n with m being the number of visibility samples and
n the discretization of the sky in terms of pixels and frequency.
The imaging process then is essentially solving for x, however,
while noise can usually be subtracted (using techniques like fre-
quency switching) the matrix A is most often not invertible—this
would require a square matrix, which would necessitate a large
oversampling of the visibility function to match a discretization
of the sky commensurate with a given telescope’s resolution.3
So, instead of solving for the solution, a map estimator is calcu-
lated from the following equation:

x̂ = DA†N−1y, (2)

where N−1 is the inverse noise matrix and D can be any invertible
matrix used to normalize.4 Expanding the right side and averag-
ing over time (to remove the noise term in y) produces a matrix
of point spread functions P, e.g.,

〈x̂〉 = DA†N−1Ax = Px, (3)

that precisely maps pixels from the true sky to the estimator; and,
if it could be inverted, this would allow a linear deconvolution,
i.e., solving for x.

In order to test and validate DOM it makes sense to use sim-
ulated visibilities both with and without noise. This allows for
a quantitative comparison between standard imaging techniques
and an exploration of how DOM could allow for extraction of
foregrounds and noise from the output maps. A catalog of 1/2 Jy
point sources that spells out HERA in a patch of sky roughly
∼ 20◦ × 10◦ was used to generate visibility data with pyuvsim.5
A high-precision beam file based on the HERA dipole feed was
used in conjunction with an array with similar uv-plane coverage
to the Murchison wide-field Array (MWA; specifically an 89 an-
tennae version without the core cluster). The visibility data were
converted to a measurement set to image with CASA and run
through the DOM code.

The uvw-plane coverage is shown in Figure 1 where the array
is visibly shown to be on an inclined plane in the E-W direction.
The N = 89 elements produced N(N − 1)/2 = 3916 baselines.
These point sources should be expected to be unresolved and this
was confirmed by plotting the visibility amplitude against base-
line length in Figure 2. A Savitzky–Golay filter of order 3 was
applied with two window lengths of 101 and 301, which recov-
ers the zero spacing amplitude and shows a flat line confirming
unresolved sources. These noiseless visibility amplitudes could
then be perturbed with noise; see Section 7.
3 This could possibly be realized using multi-element feeds.
4 This is taken to be ∼ 1/beam2 in this memo, although there is an
ideal alternative which explained in further detail by Dillon (2015)
5 The simulation was run from an exact text-based point source cata-
log and a healpix map with “smeared” point sources. All images pre-
sented are based on the latter, although errors are provided for both.
github.com/RadioAstronomySoftwareGroup/pyuvsim

Fig. 1. uvw coverage in units of wavelength λ ≈ 3 meters for one time.
Contour plot shows an interpolated representation of the array topology.

Fig. 2. Baseline length plotted against visibility amplitude.

Usually, in radio astronomy, the exact sky brightness distri-
bution is not known. There is no “ground truth” to compare the
output of a given imaging process with. For the purposes of test-
ing DOM the simulated visibilities can be circumvented with a
direct point source image. This map with zero flux everywhere
besides the point source locations could then be multiplied by the
matrix P above to produce what would be expected from DOM;
this would be the sky brightness distribution “convolved” with
the instrument response, i.e., the dirty beam, which is like an op-
tical point spread function. Any differences should be due to the
visibilities relative to the exact point sources in (α, δ), which had
to be “smeared” onto the healpix map.

https://github.com/RadioAstronomySoftwareGroup/pyuvsim


Fig. 3. Point sources (top). Point sources dotted with P matrix (bottom).

Fig. 4. DOM output (nside=1024).

Having such an “expectation image” should allow for a quan-
tification of image fidelity. A measure of how accurately the
imaging process is able to match the correct output. The expecta-
tion image before and after the matrix multiplication is shown in
Figure 3. The output of DOM is shown in Figure 4. See section
4 for the full quantitative comparisons.

3. CASA and Healpix maps

While DOM has already been designed for wide-field imag-
ing and specifically making healpix maps Gorski (2005), CASA
generates images with a 2D projection. Converting these 2D im-
ages into healpix maps for comparison with DOM was accom-
plished by loading FITs files from CASA into a python-based
framework where astropy, reproject, and healpy were used
to recreate the images on a blank healpix canvas. There were
four versions of this process that were tested using the settings
[‘bicubic’, ‘biquadratic’, ‘bilinear’, and ‘nearest-neighbor’]. The
method ‘bicubic’ yielded the lowest error; see Table 2.

The CASA images used were higher of a resolution than the
more restricted healpix format because the error scaled roughly

Table 1. Healpix map resolutions

Healpix nside value resolution

512 6.870′
1024 3.435′
2048 1.718′

like ∼ cell/beam for cell < beam but not cell � beam. The
discrete steps of nside values for healpix maps result in pixel
resolutions listed in Table 1. When imaging in CASA with the
task tclean the parameter “cell” sets the angular resolution of
the image (a cell size of 1’ was used for all CASA images be-
cause it provided the lowest error). For the array described in
Section 2 the resolution can be estimated to be ∼ λ/B where B
is the longest baseline. Using the values of 1km and 3m results
in an angular resolution of roughly 10′.

To fully Nyquist sample the spatial frequency distribution
then would require a pixel output resolution twice as small. The
CASA documentation even suggests oversampling with 5 pixels
per beam, so a healpix map of nside 2048 might be the min-
imum resolution for capturing the full instrumental response to
the sky brightness distribution (∼ 10′/5). Higher resolution maps
were produced for both CASA and DOM for testing purposes,
however, calculating the P matrix became extremely resource
intensive with respect to RAM, requiring over 700GB for an
nside of 2048. Interestingly, the quantitative measures did re-
spond to these increases in resolution. This will be important for
higher resolution work; see Section 4.

4. Dynamic range, SNR, and image fidelity

In addition to the standard statistical measures—Root Mean
Square (RMS), max, and min—a quantity related to the dynamic
range—the Signal-to-Noise Ratio (SNR)—and image fidelity
have been calculated. Dynamic range is generally determined
by the subject in photography; for example, a photograph with
maximum dynamic range would include the sun and shadowy
areas like a cave. The dynamic range of such an image could
be over 107. Most generally, the dynamic range is the difference
between the maximum and minimum value in an image. This
would apply to the sky brightness distribution, however, the dy-
namic range of a radio telescope and the maps it produces is not
quite the same. The noise floor of the instrument is almost al-
ways above the minimum value, so the dynamic range is ideally
thermally limited in practice.

The sky brightness distributions that will be observed with 21
cm precision cosmology instruments will contain large intrinsic
dynamic ranges with the target signal at the low end of the range.
Extremely bright Radio Frequency Interference (RFI) can cause
confusion even in high polar angle sidelobes with TB > 109 K.
Galactic and extra-galactic foregrounds generally have a rising
flux density at low frequency from synchrotron emission with
brightness temperatures around TB ∼ 102 K. Observations will
take place at night to avoid the sun TB > 105 K. Other sources
like the A-team will have to be avoided to permit sound obser-
vations of the redshifted 21 cm signal with TB ≈ 10 mK. These
type of sources can push the dynamic range beyond the limits of
what instruments can handle: ∼ 105.

For this memo the testing treats dynamic range and the SNR
as being effectively the same thing. The maps presented without
noise would have the SNR being equal to the dynamic range.



Table 2. Map statistics

Name Max Min RMS SNR RE

DOM
512

0.33 −0.18 0.03 1.02 76.55%

CASA
512

0.35 −0.19 0.05 0.89 68.07%

DOM
1024

0.51 −0.20 0.03 1.21 3 · 10−4%

CASA
1024

0.51 −0.20 0.04 1.10 4.250%

Any images with noise where it can be measured accurately
might have a different value for the SNR, however, they will
both be considered as difference between the maximum value
and σRMS in a blank patch of the map:

S NR ≡ log10 (max_value) − log10 (σRMS ). (4)

A more in depth discussion of this topic can be found in Burke
(2019). All of the images presented here will be a linear stretch
of the values unless otherwise noted.

Image fidelity is not quantifiable for most radio astronomy
applications—only when there is an adequate model of the sky
brightness distribution can this be achieved. Given the images
produced in this memo are from a simulation it was possible to
construct the expectation map (a proxy for “ground truth”) pre-
sented in Section 2. For scalar values a relative error can be cal-
culated when the exact solution is known. For maps this notation
has to be generalized by the following mathematics:

RE ≡
||M − E||F
||E||F

, ||E||F ≡

∑
i, j

|ei, j|
2

1/2 (5)

where M is a map, E is the expectation, and the equation on
the right is the definition of the Frobenius norm, which has been
implemented in the numpy package.6 The resulting quantity will
be called the Relative Error (RE).

5. Histograms and difference images

At the resolution corresponding to nside=1024 the CASA,
DOM, and expectation maps can be plotted together in a his-
togram of their intensity distributions. This is shown in Figure 5.
The DOM and expectation points overlap to a large extent and
the CASA histogram notably shows more high-flux counts. It is
not clear what exactly causes the differences. The issue of wide-
field imaging and the w-term will be addressed in Section 6.

The expectation histogram was fit with a Gaussian distribu-
tion to quantify the variance. The result is provided in the legend.
In this area of the histogram, around zero, there should mostly
be noise; however, these maps do not contain any noise, only
the effects of the instrument, i.e., the dirty beam. Negative val-
ues are expected with any interferometer that has not sampled
the zero spacing. Modeling the negative basin could provide an
extra check for the minimum values and allow for corrections.
6 numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html

Fig. 5. Histograms of DOM, CASA, and expectation map; bins=2048.

Fig. 6. CASA healpix map (‘bicubic’).

Additionally, three difference maps were made between
DOM and the expectation, CASA and the expectation, and DOM
and CASA. The results with CASA are open to errors from the
healpix transfer process, although this was largely mitigated by
basing the simulation on a healpix map. Qualitatively, there are
little differences. The values in Table 2 show the RE values for
DOM and CASA; larger errors for text-based simulated visibili-
ties are omitted (∼ 40% for both CASA and DOM).

The three difference maps containing residuals are found in
Figure 7. The most interesting feature is the non-linear look-
ing transformation that appears in the middle, which is patterned
for bicubic and has curving arcs for bilinear. The normalization
scheme used in the matrix D appears to some degree in all three
images. While this scheme improves the images in the widefield
zone—it unfortunately up-weights small variations on the pe-
riphery. Note that this normalization was factored into DOM,
CASA, and the expectation map—although at different stages;
nevertheless, because the pattern on the edges is in all the differ-
ence images, it lends support to the notion that the normalization
is magnifying a combination of wide-field, interpolation regard-
ing coordinate systems, and dirty beam-related issues.

https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html


Fig. 7. Difference maps; see annotations (E is expectation, Figure 3).
The colorbar amplitude for the top panel is about 4 dex less.

6. Wide-field imaging and the w-term

For small fields of view—within the synthesized beam of a radio
interferometer—it is easier to jump from the full 3D visibility
relation between the sky and the uvw-plane Thompson (2017)

V(u, v,w) =
1
Ω

"
A(l,m)I(l,m)e− j2π[ul+vm+w(Ω−1)]dldm,

Ω =
√

1 − l2 − m2

(6)

to a 2D version with only uv components. This allows for a FFT
inversion to produce a dirty image, which can then be followed
by a deconvolution method. The full field-of-view offered by an
interferometer is determined by the size of an individual anten-
nae: it is the resolution of what is called the primary beam. To
produce dirty images of this wider field of view necessitates ex-
tra work. 21 cm precision cosmology is looking for a wide-field
diffuse target signal—so it going to be required.

One of the benefits of DOM is an automatic wide-field imag-
ing compatibility. The current algorithm of choice for wide-field
imaging is W-projection. This is detailed along with the follow-
ing criterion used to determine if this type of visibility treatment
is needed in Cornwall (2008):

NF =
D2

Bλ
(7)

where D is the antennae size, B is the longest baseline, λ is the
observation wavelength, and the result NF is known as the Fres-
nel Number. When the Fresnel Number is less than 1 there will
be (non-coplanar) effects that need to be mitigated with an appro-
priate wide-field inversion method. DOM solves this problem by

performing a direct linear inversion; this would be computation-
ally prohibitive for large fields of view, accordingly DOM is in-
tended for use in a faceted observation program Dillon (2015)—
making it akin to a hybrid of full 3D inversion and the older
(pre-W-projection) technique of faceting.7

It is possible small differences between the images, e.g., see
Figures 5 and 7, are due to issues related to the w-term and wide-
field imaging. A quick calculation of the Fresnel number for the
HERA array with D ≈ 14 m and B ∼ 1 km yields 0.07, which is
indicative of potential problems. Using the gridder option set
to W-projection in CASA generated worse results, in terms of
RE, by a factor of ∼ 2. An extremely non-coplanar array—with
w-term magnitude on the order of the uv-plane—was also tested:
this required W-projection in CASA with wprojplanes > 100
to recover a map similar to the DOM result, i.e., containing all
point sources. A full exploration of this nuanced topic is beyond
the scope of this memo.

7. Towards advanced Fourier filtering

The main advantage of DOM is not supposed to be superior im-
age fidelity nor dynamic range, although they would be welcome
features. To fully make use of this new mapping method requires
using the covariance matrix it generates to do something novel
CASA is unable to do. A simple example would be adding Gaus-
sian noise into the simulated visibilities, carrying out the DOM
procedure, and then untangling the noise from the result using
the covariance matrix to guide a precision Fourier filtering algo-
rithm. Reckoning by the radiometer equation, adding a Gaussian
distribution with ∆V ∼ 1 Jy is equivalent to a reasonable system
temperature of Tsys ∼ 1000 K

∆V ≈
2kBTsys

Ae f f
√
δντ

(8)

with an integration time of τ = 11 seconds, bandwidth δν = 80
KHz, and an effective aperture Ae f f ≈ εNπ(D/2)2 ≈ 7000 m2 as-
suming an aperture efficacy ε = 1/2 Tillman (2016). A schematic
pipeline, for this type of Fourier filtering, is given in Figure 8,
where the power spectrum is shown from before and after to il-
lustrate how an algorithm like skimage non-local means might
be augmented via a full covariance matrix.

8. Linear deconvolution

Normally, after forming a dirty image like those in Figures 4
and 6, these intermediary images are then further refined by per-
forming a deconvolution to remove the effects of the instrument
(i.e., A in Equation 6, which is the dirty beam). Two of the
most prevalent methods used are CLEAN and Maximum En-
tropy, although there are many others. These methods are both
non-linear and have a mathematical motivation with varying lev-
els of confidence. Ideally, a linear deconvolution would be per-
formed whereby the effects of the telescope beam would be re-
moved exactly instead of by workarounds. The current methods
will probably not be retired because even if a linear deconvolu-
tion algorithm becomes feasible it does not mean it will be worth
the computational costs for all situations.

Within the framework of DOM a linear deconvolution can be
carried out relatively easily when D = I; see Equation 3. To show

7 These facets will be approximately the size of the maps presented in
this memo: ∼ 10◦ on a side.



Fig. 8. Fourier filter schematic for Figure 4 with additional Gaussian
noise added. See annotations; F represents a 2D Fourier transform.
(The arrow shows how the original power spectrum is modified—this is
a stand-in intermediary for the result from skimage non-local means,
which is similar to a full covariance matrix filter.)

this as a proof of concept the expectation image in Figure 3 was
deconvolved linearly. Once the matrix P had been obtained the
inverse of this matrix could be solved for using numpy allowing
x to be solved for; see Equation 3.8 The results of this somewhat
trivial exercise are show in in Figure 9; for comparison, a non-
linear deconvolution is shown in Figure 10 where the CASA map
was CLEANed. Applying this method to the actual dirty images
(to remove dirty beams) is left for future work.

9. Conclusions

While the imaging process in radio astronomy can often be
fraught with non-linear algorithms and various approximations,
making it seem more like an art than a science, this memo has
sought to compare and contrast a novel technique which offers
unparalleled access to a linear map making paradigm. For 21 cm
precision cosmology—where the goal is likely to be a statisti-
cal measure with well defined error bars, instead of a visually
appealing image—a linear algorithm, for optimal map making,
is an important tool.9 Knowing how DOM stacks up against the

8 The output of this operation did not recover the identity P−1P = I,
which could be due to numerical precision-related errors.
9 Most instruments working in this field are not designed to produce
aesthetic images; this can be quantified by the so-called “photogenic

Fig. 9. Linear deconvolution of Figure 3.

Fig. 10. Non-linear deconvolution of Figure 6; niter=1000.

competition in radio astronomy is crucial because, in particu-
lar, radio interferometry has many idiosyncrasies, which could
potentially generate non-linear dependencies between the time
series visibilities and the output map; both the ionosphere, at
low frequency, and the atmosphere are good examples. Only the
surface has been scratched here. The promise of DOM is clear
and there are other applications like linear deconvolution where
DOM might contribute to the larger radio astronomy community
along with more potential uses that have not been considered.
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