
5

 Executive Control of 
Cognitive Search

Joshua W. Brown and Derek E. Nee

Abstract

At a basic level, cognitive search involves several parameters: Under what circum-
stances should a search be initiated, and how should the goal be specifi ed? What are the 
criteria by which the search is judged a success or failure? How are corrective actions 
implemented when search strategies are judged insuffi cient?

Studies of cognitive control have the potential to address each of these questions. 
In this chapter, a number of issues related to executive control of search are discussed, 
including the way in which hierarchical search goals are monitored and updated. A new 
theory of cognitive control is proposed to begin to answer these questions, and open 
questions that remain are highlighted for future enquiry.

Initiating and Maintaining Searches

Initiation of Search

Searches are generally initiated on the basis of a goal and a lack of certainty 
about how best to achieve it. Goals may be anything, from fi nding a shape in a 
visual scene to remembering where the car keys are to fi nding a mate. Goals, 
and how to achieve them in an ever-changing environment, are the raison d’être 
of cognitive control. At the neural level, active goals are represented, in part, as 
a pattern of sustained activity across the  dorsolateral prefrontal cortex (dlPFC) 
(Miller and Cohen 2001) and other regions, such as the intraparietal sulcus 
( IPS) (Chafee and Goldman-Rakic 2000). According to the  biased  competition 
model (Miller and Cohen 2001), sustained activity in dlPFC represents goals 
and  working memory. Goal-related dlPFC activity interacts with posterior cor-
tical regions to bias the fl ow of information across competing networks, much 
like a switch yard at a railroad station (Rogers and Monsell 1995), thereby en-
hancing activity in posterior regions that represent relevant information (Egner 
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and Hirsch 2005). Hence, activation in the dlPFC primes the cognitive system 
to encode and maintain information relevant to goals.

Goal Maintenance

Goals  are thought to be maintained in the dlPFC via sustained patterns of ac-
tivity. This activity is modulated by neuromodulators, such as  dopamine and 
 norepinephrine, which infl uence the persistence of these  goal representations 
and, in turn, infl uences how readily an animal will change goals as opposed 
to perseverate. In particular, a lower barrier to switching goals implies a lower 
barrier to either beginning or abandoning a search. Dopamine has been studied 
extensively as a principal mediator of reinforcement (Schultz 1998), but it also 
infl uences the stability of sustained activity patterns in dlPFC. Either too much 
or too little dopamine can reduce the stability of activity, thus making it easier 
for new working memory and goal representations to become active (Muly 
et al. 1998). The neural mechanisms underlying this “sweet spot” of stability 
have been modeled computationally (Brunel and Wang 2001; Durstewitz et 
al. 1999, 2000; Redish et al. 2007). Essentially, the optimal level of dopamine 
seems to deepen the attractor basins of the network state, which requires a 
stronger input to cause a change in the pattern of which units are active and 
inactive. At the behavioral level, as dopamine levels increase towards optimal 
stability, animals may perseverate on their current goal.

Perseveration on a goal constitutes the “exploitation” end of a spectrum 
between  exploration and  exploitation (Kaelbling et al. 1996). At the other end 
of the spectrum, a lack of stability in goal representations may lead to constant 
 switching, which constitutes a process resembling a search except that it never 
terminates to allow consumption of what was found. This link among tonic 
dopamine levels, search, and the  exploration/exploitation trade-off has been 
treated previously, and it appears that dopamine may bias behavior toward 
exploitation (Hills 2006). With regard to drug abuse, addictive substances typi-
cally cause a lasting release of dopamine (Grace 2000), which is associated 
with the recurring drug-taking behavior that characterizes  addiction.

Norepinephrine has also been implicated in  cognitive fl exibility, although 
the neural mechanisms are somewhat less studied than those of dopamine. 
As discussed more fully by Cools (this volume), greater tonic norepinephrine 
seems to reduce cognitive fl exibility, which corresponds with increased gain 
in the responsiveness of neurons to both excitation and inhibition (Hasselmo 
et al. 1997).

Internal versus External Search

Searches  may  target internal cognitive processes in addition to the external 
environment. There is good evidence that many of the same neural mecha-
nisms involved in searching the external environment are also recruited for 
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searching information in the mind held in working memory (Awh et al. 2006). 
For example, Nobre and colleagues (2004) demonstrated common recruitment 
of the IPS and the frontal eye fi elds when subjects either directed attention to 
an external location or to a location held in working memory. Nee and Jonides 
(2009) replicated this effect with more complex searches of external visual 
and internal memory information and demonstrated additional common dlPFC 
activation for both types of searches, presumably in the service of maintaining 
goals during search. Behaviorally, it has been demonstrated that  attention is 
captured by externally presented objects that match objects held in working 
memory, indicating interactions between attentional and working memory sys-
tems (Downing 2000; Pashler and Shiu 1999). Moreover, holding information 
in working memory reduces fi ltering of distraction, consistent with the idea that 
both selective attention and working memory draw upon the same attentional 
resources (de Fockert et al. 2001). Taken together, attentional mechanisms that 
search the external world also appear to be necessary for searches of memory.

Despite strong commonalities between external search and working mem-
ory, one consistent fi nding is that internal searches recruit ventrolateral pre-
frontal cortex (vlPFC)1 to a greater degree, particularly in the left hemisphere 
(LaBar et al. 1999; Mayer et al. 2007; Nee and Jonides 2009; Nobre et al. 
2004). Although the left vlPFC is often associated with the maintenance and 
manipulation of verbal information, one study has reported greater left vlPFC 
activation when selecting a spatial location from memory compared to select-
ing a spatial location in perception (Nobre et al. 2004). Moreover, left vlPFC 
involvement in memory search extends beyond working memory and includes 
searches of long-term memory as well (Cabeza et al. 2002). Hence, the left 
vlPFC may be generally involved in searching internal memory space (Zhang 
et al. 2004) in a way that is distinct from external searches.

Criteria for Search Success or Failure

Searches   end either in success or failure, but a key underlying question is: 
What criteria determine success versus failure? Suppose an animal is foraging 
for food, but fi nds only a little food and is still hungry. Should the search be 
considered a success or a failure? The answer to this question depends on prior 
expectation. If food is very scarce, then the expectation may be that virtually 
no food will usually be found, in which case fi nding even a little food may 
be considered a success. On the other hand, if food is typically plentiful, then 

1 We use the term “ventrolateral” prefrontal cortex (vlPFC) to distinguish these activations from 
the dorsolateral prefrontal cortex (dlPFC). Activations from the cited studies typically fall in 
and around pars triangularis (BA 45), which is the dorsal most aspect of the inferior frontal 
gyrus, and often also extends into the inferior frontal sulcus. Although there is some ambiguity 
as to where vlPFC ends and dlPFC begins, the activations reported here are ventral to activa-
tions we refer to as within dlPFC, which are on the middle frontal gyrus (BA 9 and 46).
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fi nding only a little food may be considered a failure. This example illustrates 
two basic principles of  evaluating search success or failure: (a) expectations 
are key to the evaluation and (b) expectations are formed on the basis of prior 
experience or information. Nonetheless, there is often no explicit environmen-
tal cue that a search has failed, so the evidence of absence must be inferred 
from the absence of evidence (Sagan 1996:213). The monitoring and evalua-
tion functions required to infer search success or failure is a central concern of 
 cognitive control.

Models of cognitive control typically have two main components: one for 
monitoring and one for control. For example, one model (Botvinick et al. 2001) 
casts the monitor as a  response confl ict detector, while the controller imple-
ments attentional focus or increased caution. Response confl ict occurs when 
cues in the environment are associated with two different responses that are 
mutually incompatible. Computationally, response confl ict can be detected by 
multiplying the activities associated with the mutually incompatible responses 
(Botvinick et al. 2001). While confl ict models predominate (Yeung et al. 2004, 
2005; Yeung and Nieuwenhuis 2009), others have cast the monitor as detect-
ing  errors; that is, a failure to achieve a desired goal (Holroyd and Coles 2002) 
or the likelihood of errors (Brown and Braver 2005, 2007). There is ongoing 
debate on whether such dedicated monitoring and control pathways are neces-
sary to account for cognitive control phenomena. Some argue for the existence 
of such mechanisms (Monsell 2003; Rogers and Monsell 1995), while others 
argue that simpler mechanisms (e.g.,  priming) are suffi cient (Altmann 2003; 
Altmann and Gray 2002; Mayr et al. 2003). With respect to this debate, we 
propose that dedicated control structures can provide useful contributions to 
the control of search processes.

The Predicted Response–Outcome Model

Recently, we proposed a new model of performance monitoring and cogni-
tive control functions in the  medial prefrontal cortex (mPFC, including ante-
rior cingulate cortex), which we refer to as the  predicted response–outcome 
(PRO) model (Alexander and Brown 2011). The PRO model can detect when 
searches fail, and provides a monitoring and evaluation function with two in-
teracting components (Figure 5.1). The fi rst component, the predictor, gener-
ates a prediction of the expected outcomes of an action, which in the context of 
search would correspond to successfully fi nding the object (and in the expected 
quantities). The neural activity representing this expected outcome increases as 
time elapses, such that if the object of the search is available, then it ought to be 
found within a certain time frame. In other words, not fi nding suffi cient quanti-
ties early on would not be considered failure, but failure will be signaled if suf-
fi cient quantities are not found after a longer period of time. This kind of repre-
sentation can be thought of as qualitatively similar to a hazard function of the 
probability of fi nding the searched-for object, given that it exists (Ghose and 
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Maunsell 2002). The second component, the comparator, subtracts the actual 
outcome from the expected outcome. The net result is that when a searched-for 
object is found, a signal of the actual fi nding suppresses the expectation activ-
ity in the comparator. Conversely, when the object of the search is not found, 
the predictor activity increases unopposed and signals search failure in the 
comparator. Of note, failure can be detected at any point in time, whenever the 
difference of the prediction activity minus the actual success outcome exceeds 
a specifi ed threshold. In addition, fi nding greater than expected amounts of the 
goal, or fi nding it sooner than expected, would not be evaluated as a failure, al-
though other aspects of the PRO model not discussed here would signal it as a 
surprising event. Neurophysiological fi ndings in monkey mPFC are consistent 
with the PRO model, as described below.

The PRO model differs from existing models of mPFC in that it does not 
compute response confl ict, as do some other models (Botvinick et al. 2001). Our 
simulations suggest that the PRO model can simulate virtually all of the known 
effects in mPFC such as error, response confl ict, and error likelihood, among 
others (Alexander and Brown 2011). The PRO model derives from our  error 
likelihood model (Brown and Braver 2005), but it differs in two ways. First, 
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Figure 5.1  Predicted response–outcome (PRO) model: (a) Planned searches activate 
learned response–outcome (R–O) predictions. These predicted outcome signals indi-
cate the expected fi ndings of the search. (b) The Comparator unit receives a timed pre-
diction from the Predictor unit that signals when the search should yield a fi nding. The 
actual fi ndings (the outcome) are compared against the expected fi ndings, and failure 
to fi nd the searched-for item leads to both an update of the search outcome predictions 
and a possible  initiation of a new search.
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the PRO model predicts various outcomes, including possible rewards, and is 
not restricted to predicting only errors. These prediction signals may be formed 
by mechanisms within mPFC, or they may instead be formed elsewhere and 
sent to the mPFC. We are actively investigating this question. Second, the PRO 
model adds a mechanism that signals any discrepancies between the outcome 
predictions and the actual outcomes. These discrepancy signals resemble a do-
paminergic temporal difference signal that has been proposed as an alternative 
account in the earlier RL–ERN models (Holroyd and Coles 2002; Holroyd et 
al. 2005). Nonetheless, the PRO model posits different mechanisms to account 
for the signals. In one earlier model, the dopaminergic error signal from the 
midbrain disinhibits the mPFC (Holroyd and Coles 2002). In contrast, the PRO 
model suggests that such  error signals are computed internally by the mPFC. In 
another model, the dopamine signals train mPFC to recognize conjunctions of 
events that constitute errors (Holroyd et al. 2005). In contrast, the PRO model 
signals not conjunctions but comparisons of actual versus expected events. 
Furthermore, while the PRO model may infl uence dopaminergic signaling, it 
does not depend on external dopamine signals to function per se.

With this different approach, the PRO model can account for data that other 
models cannot. For example, whereas the response confl ict model of the  ante-
rior cingulate cortex (ACC) may account for greater activity during search, it 
cannot account for feedback-related ACC responses (Holroyd et al. 2004). The 
PRO model accounts for activation at the time of feedback as a discrepancy 
between actual and expected outcomes. Of note, when a search is expected to 
fail or is rarely successful, then the PRO model would predict that activity re-
lated to search failure should be weaker. In fact, weaker error signals have been 
found when errors are more likely (Brown and Braver 2005), and error signals 
even reverse when success occurs unexpectedly (Jessup et al. 2010). Such re-
verse reward effects are diffi cult to reconcile with dopamine-based models of 
the ACC that compute signed differences in  reward expectation (Holroyd and 
Coles 2002; Holroyd et al. 2005). By contrast, the PRO model interprets this 
latter fi nding with complementary mechanisms that detect surprising occur-
rences as well as surprising nonoccurrences.

With the PRO model framework, the threshold at which a search failure 
is signaled is a product of two parameters. The fi rst parameter is the strength 
of the prediction. Prediction strength in the PRO model is proportional to the 
previously experienced probability of fi nding the searched-for object and the 
quantity of the searched-for object that is expected to be found (Amiez et al. 
2005). The second parameter is the strength of what was found. The greater 
the quantity found, the greater the suppression of the expectation signal in the 
comparator and the less likely it is that a failure will be signaled.

Predictions about the success of a search are learned from past experience. 
When a searched-for object is not found, the resulting error signal from the 
comparator drives learning in the predictor unit to reduce the predictions of 
success in similar searches in the future. This is tantamount to raising the 
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threshold for signaling failure. In this way, predictions about what constitutes 
success for a given search are dynamically updated in nonstationary environ-
ments. The greater the nonstationarity, the greater the ongoing discrepancy 
signals and resulting mPFC activity, as has been found with fMRI results in 
humans (Behrens et al. 2007).

Certain kinds of  task-switching tasks can be thought of as cognitive search-
es, similar to  foraging. For example, some tasks require subjects to choose a 
certain option or strategy to gain reward, but after some trials, the reward is 
depleted. The subjects must then detect the depletion and search for a new 
strategy that yields reward, similar to  patch-leaving in animal foraging. Tasks 
of this kind include the  Wisconsin card sort task (Grant and Berg 1948) as 
well as searches for a correct sequence of button presses (Bush et al. 2002; 
Procyk et al. 2000) or lever manipulations (Shima and Tanji 1998). Notably, 
these tasks differ somewhat from much of the traditional task-switching lit-
erature, which involve either explicit cues or unambiguous patterns that cue 
a task switch (Altmann and Gray 2002; Rogers and Monsell 1995). In cases 
where the new task is explicitly cued, searching for the appropriate task is not 
required. In contrast, task switches due to the absence (or surprising reduction) 
of an expected reward may involve different neural mechanisms. When reward 
is reduced,  ACC is active prior to a switch, but it is not active for explicitly 
cued switches (Bush et al. 2002; Shima and Tanji 1998). Thus the task switches 
cued implicitly by reduced or absent reward can be thought of as a disconfi r-
mation of the current strategy, which may in turn lead to renewed or continued 
searches for a more effective strategy. In a broader sense, task switches due to 
reward omission and exploration of the environment (as opposed to exploita-
tion) may be thought of as two sides of the same coin: reduced reward may 
be a cue to switch or a current reward level may still be deemed insuffi cient if 
a possibly greater reward may be found elsewhere. The common question is: 
What constitutes a suffi cient level of reward, below which a search for better 
reward will be initiated?

The PRO model framework, as applied to cognitive search, can account 
for a variety of fi ndings regarding implicit task-switching paradigms. The 
Wisconsin card sort task (Grant and Berg 1948) yields activation in the 
mPFC for negative feedback that leads to a search for the new correct strat-
egy (Monchi et al. 2001). In monkeys, negative feedback also leads to greater 
activity in ACC during search (Procyk et al. 2000; Shima and Tanji 1998), as 
is also the case in humans (Bush et al. 2002). Similarly, ACC is more active 
when monkeys are actively searching than when behavior is routine (Procyk et 
al. 2000). More broadly, monkey supplementary eye fi elds in the mPFC have 
distinct subpopulations of cells with activity profi les that apparently anticipate 
the outcome of actions and shut off when expected outcomes occur, and other 
subpopulations of cells that signal the actual occurrence of an expected out-
come, such as a reward (Amador et al. 2000; Ito et al. 2003).
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Controlling and Correcting Search Strategies

Searches can fail for many reasons. A primary concern of cognitive control is 
to minimize the possibility of failure, while at the same time detecting failure 
when it does occur and driving corrective action. A central question then is: 
How are these functions accomplished? First, a signal is needed to indicate 
when failure is likely. Such a prediction signal can, in turn, drive greater atten-
tion and effort to maximize the chance of success with the existing strategy, 
or it can drive a change in strategy to fi nd another search tactic that is more 
likely to succeed. Previous models cast the prediction of an error as driving 
increased caution by slowing down response processes (Botvinick et al. 2001; 
Brown and Braver 2005) or by increasing attentional focus (Botvinick et al. 
2001; MacDonald et al. 2000; Posner and DiGirolamo 1998). In this case, 
slower and more careful processing of the environment may lead to detection 
of the searched-for object when environmental cues are otherwise weak and 
easy to miss (Clark and Dukas 2003). A second issue involves how failures are 
detected and corrected. There is evidence that the mPFC is involved in  error 
avoidance (Magno et al. 2006) as well as error correction (Modirrousta and 
Fellows 2008).

The PRO model yields two relevant signals in this regard from the predictor 
and comparator components (Figure 5.1). The predictor provides a prediction 
of what will be the outcome of a search, including possible failure. These pre-
diction signals would be suffi cient to provide a greater level of control toward 
the goal of avoiding failure, whether by searching more carefully or by trying 
a different strategy, according to the predicted outcome. For example, if the 
model predicts a likely failure to detect some event in a certain situation, then 
an increase in attention is most likely to lead to reward and consequent rein-
forcement. If instead the model predicts that the resources are likely depleted 
such that no amount of greater attention will succeed, then a change in strategy 
is most likely to be rewarded. In the PRO model, a second control signal de-
rives from the comparator. As described above, this signals when a failure has 
in fact occurred, in that the searched-for object has not been found. This signal 
is exactly what is needed to drive a change in strategy, which is essentially a 
task switch that is cued implicitly by reduced reward, as described above.

Hierarchies of Strategy

In a foraging task, the appropriate change in strategy may involve giving up 
exploiting the current patch or environment and returning to an exploratory 
set to search for new resources. Of note, this foraging example highlights the 
hierarchical nature of  search goals. At the lowest level of the hierarchy, forag-
ing in a given part of an environment may involve searching a limited region 
for a particular resource, and many individual resources may be found. In this 
case, a visual search may be conducted, and if the searched-for object is not 
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found in the fovea, then the search “fails” at the lowest level and a new location 
is searched in the immediate vicinity. We have suggested that the mPFC may 
yield evaluations of failure in general, but it is an open question as to whether 
the mPFC may detect failure of lower-level visual search.

As resources are depleted and become scarcer, more careful and attentive 
processing may be needed to fi nd the resources, expressed as greater atten-
tional focus and longer processing times (Botvinick et al. 2001; Brown et al. 
2007b). When resources are depleted beyond a certain level, this modulation 
of the lower-level strategy is no longer suffi cient. In such a case, it is time to 
change the higher-level strategy and switch from exploiting the current loca-
tion and instead explore for a new location. The PRO model comparator would 
provide the signal necessary to drive the change in strategy. This proposal is 
consistent with  ACC activation due to reduced available reward in both hu-
mans and monkeys (Bush et al. 2002; Shima and Tanji 1998).

The hierarchical nature of search leads to a credit assignment problem, 
which may be seen in an expanded variant of the explore versus exploit forag-
ing task. We may suppose, for example, that foraging strategies may be for 
a more- versus less-preferred food and that there is a choice of continuing 
to forage versus waiting and conserving energy until more resources become 
available. In this scenario, we might suppose that an animal will search for a 
preferred food in a limited region until the preferred food is depleted in that 
region. As food becomes scarcer, the animal might implement increased atten-
tional control to fi nd less salient food items. Once the local region is depleted, 
the animal will qualitatively switch control strategies from greater attention 
in the current region to exploration of a different region for the preferred food 
instead. Once the preferred food is depleted, the animal might again switch 
strategies to forage for nonpreferred food, subsequently switching strategies 
between exploration versus exploitation for the nonpreferred food. Once even 
the nonpreferred food is depleted, the animal may switch strategies between 
foraging and resting or waiting for more resources. This example of a hier-
archical goal structure for search leads to an important question: If a failure 
occurs, at which level of the goal hierarchy should failure be ascribed? For 
example, when a food item is not found, does this mean the animal should pay 
more attention to the local region and look in another nearby location (low-
est-level search failure)? Or does it mean that the animal should explore for 
new regions (mid-level search failure)? Or does it mean that the animal should 
switch to foraging for another, less-preferred food (higher-level failure)? Or 
does it mean that the animal should give up searching entirely and conserve 
energy until new resources arrive (highest-level failure)?

The PRO model suggests an answer to the hierarchical goal credit assign-
ment problem. The answer begins with the assumption that just as there are 
multiple levels of goals, there are also multiple levels of outcome predictions. 
At the lowest level, a visual search may involve the expectation of a particular 
object in the fovea. This is not to suggest that the evaluation of the visual scene 
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is necessarily carried out in the ACC. Instead, there is evidence that  visual 
cortex may carry similar temporally structured expectation signals in anticipa-
tion of particular visual cues, which appear as attentional signals (Ghose and 
Maunsell 2002).

At the next level, the  ACC evaluates reward, or the lack thereof, and may 
drive a corresponding change in mid-level strategy aimed at successfully 
searching for the same reward (Bush et al. 2002; Procyk and Joseph 2001; 
Shima and Tanji 1998). Exploration-related activity in cognitive search is also 
associated with anterior prefrontal activation (Daw et al. 2006). When the 
searched-for reward is not found, then, in the framework of the PRO model, 
it may be that a prediction signal of fi nding a certain quantity of reward over 
a longer timescale (many trials) eventually goes unmet by a longer-term mea-
sure of actual successful trials, and this could lead to a higher-level switch in 
strategy to search for other kinds of reward. In the same way, an even longer 
timescale prediction of total reward aggregated across multiple reward types 
may develop, and if it is not met by successful search across a variety of reward 
types, then a highest-level switch in strategy may be made to give up the search 
and switch to a strategy of waiting until new resources become available.

The key point, and the proposed solution to the hierarchical credit assign-
ment problem, is that outcome predictions are associated with a corresponding 
action. If a low-level visual foveation action fails to yield the searched-for 
object in the fovea within a few hundred milliseconds, then the failure violates 
the expectation of the eye movement foveating an object within a short time. 
It does not necessarily violate the higher-level expectation associated with the 
overall search strategy, which is that the object will eventually be found, per-
haps after some longer time period of minutes. The PRO model’s ability to 
specify not only the nature of expected outcomes but also their timing allows 
for a short-term failure to be signaled without necessarily signaling the failure 
of a higher-level goal that is expected to take more time to achieve.

The template of hierarchical goals in search is ubiquitous, with examples 
ranging from animals’ search for food to cognitive search of memory to hu-
mans searching for employment or mates. In the end, the hierarchical monitor-
ing and control of search goals may be carried out by a corresponding hierar-
chical structure of evaluating shorter and longer timescale predictions about 
the outcomes of one’s own actions.

Conclusion and Open Questions

Our aim in this chapter has been as much to raise questions as to propose an-
swers. In the course of exploring the topic of cognitive control in search, sev-
eral potentially controversial or at least unresolved issues may be highlighted. 
First is the question of whether and to what extent there are distinct structures 
in the brain that provide executive control of search. We have outlined the PRO 
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model as a possible mechanism of executive control, but undoubtedly there 
are other possibilities. It may be that what appear to be effects of executive 
function are in fact properties that derive from the nature of regions that drive 
the search, so that no additional control structures are necessary. This question 
parallels the debate over whether executive control is necessary to account for 
effects associated with explicitly cued task switching.

If there are indeed neural mechanisms dedicated to executive control of 
search, then the next question is what distinct brain regions are involved in 
monitoring and evaluating the different kinds and hierarchical levels of search, 
and whether or to what extent there is overlap. There is evidence that mPFC 
monitors the outcome of actions and drives changes in at least higher-level 
strategies, but it is less clear whether these same regions are involved in lower 
levels of search (e.g., visual search). This leaves open the question of what pos-
sible distinct brain regions are involved in detecting failure at different levels 
in the hierarchy of search goals, and whether those distinct regions share nev-
ertheless a common neural architecture related to prediction and evaluation.

Correspondingly, there is a question of how and where in the brain the 
search goals are represented. We have generally referred to  working memory 
and  goal representation in the  dlPFC, but this is a relatively large region. Some 
have argued that the hierarchy of lower- to higher-level goals is represented 
along a posterior-to-anterior gradient within the lateral PFC (Koechlin et al. 
2003; Kouneiher et al. 2009). This leaves open the possibility that a similar 
gradient exists in the medial PFC that interacts with lateral PFC, although this 
has yet to be explored.

Another open question is the degree to which search has memory or not. 
There is evidence that  visual search has no  memory (Horowitz and Wolfe 
1998), but it is not clear how this fi nding can be reconciled with effects show-
ing  inhibition of return (Klein and MacInnes 1999), which would imply mem-
ory. With respect to higher levels of cognitive search, monkeys seem to have a 
strong memory and ability to infer which search spaces remain as plausible re-
sources, as they show near optimally short and successful searches at the cog-
nitive level (Procyk and Joseph 1996). If higher cognitive search has memory, 
then the interaction between dlPFC and mPFC may be reciprocal. More specif-
ically, mPFC may drive changes in the strategy represented by dlPFC and  IPS, 
but dlPFC may, in turn, constrain how error signals are generated in mPFC and 
what kinds of new strategies may be implemented in response to search failure. 
The effect of working memory context on performance monitoring is suggest-
ed by recent studies of individuals with  schizophrenia (Krawitz et al. 2011).
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