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Summary
The aim of this work is to develop a spatial model for multi-subject fMRI data. There has been
extensive work on univariate modeling of each voxel for single and multi-subject data, some work
on spatial modeling of single-subject data, and some recent work on spatial modeling of multi-
subject data. However, there has been no work on spatial models that explicitly account for inter-
subject variability in activation locations. In this work, we use the idea of activation centers and
model the inter-subject variability in activation locations directly. Our model is specified in a
Bayesian hierarchical frame work which allows us to draw inferences at all levels: the population
level, the individual level and the voxel level. We use Gaussian mixtures for the probability that an
individual has a particular activation. This helps answer an important question which is not
addressed by any of the previous methods: What proportion of subjects had a significant activity
in a given region. Our approach incorporates the unknown number of mixture components into the
model as a parameter whose posterior distribution is estimated by reversible jump Markov Chain
Monte Carlo. We demonstrate our method with a fMRI study of resolving proactive interference
and show dramatically better precision of localization with our method relative to the standard
mass-univariate method. Although we are motivated by fMRI data, this model could easily be
modified to handle other types of imaging data.
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1 Introduction
Among methods for mapping brain function, functional magnetic resonance imaging (fMRI)
is widely used. Conventionally a classical, mass-univariate approach is used where
univariate time-series models are fit independently at each voxel. These models are used to
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create images of parameter estimates and test statistics, which are then assessed for
significance (Friston et al., 1995). Inference on mass-univariate models is made by assessing
the statistic images, where the null hypothesis of no effect is tested at each voxel.
Statistically significant voxels define regions of activation. Various methods on how to
choose the threshold have been proposed (Genovese, Lazar, and Nichols, 2002; Nichols and
Hayasaka, 2003). This computationally efficient method has several limitations. The
approach does not model the spatial properties of the signal explicitly and can not
incorporate any prior knowledge. It cannot account for mismatch in activation location and
will only detect voxels with consistent change in activation. Multi-subject analyses are
particularly problematic since, even after registration of the subjects’ brain to a common
atlas, there is residual variation in the anatomical landmarks; further, it has been shown that
even if sulci and gyri are aligned there is variation in the functional landmarks (Morosan et
al., 2001).

A lot of effort has been made on how to use the spatial information in the data to enhance
signal detection. Some methods find a threshold that accounts for correlation in the null
hypothesis statistic images (Worsley et al., 1996; Friston et al., 1993). The most general
approach is to spatially smooth the data with a Gaussian kernel. However this tends to blur
and change the shape of active regions. Alternatively, Descombes, Kruggel, and von
Cramon (1998) proposed restoring the signal using a spatiotemporal Markov Random Field
(MRF). The MRF is used to define prior knowledge of the signal. Polzehl and Spokoiny
(2001) proposed a structural adaptive smoothing procedure, specifically the propagation-
separation (PS) approach for time-series of images. Tabelow et al. (2006) provided a
complete procedure for fMRI analysis using the PS approach and showed significant
improvement on the information of the spatial extent and the shape of the activation region.

Many others have proposed Bayesian methods to integrate spatial modeling into the
statistical analysis. Hartvig and Jensen (2000) used a spatial mixture model and achieve
computational feasibility by formulating the model through the marginal distribution on a
small grid of voxels. Hartvig (2002) proposed a regression based spatial model using the
idea of “activation centers”. He used a reversible jump algorithm to insert, delete and change
an activation center given known variance parameters. A similar idea was later proposed by
Lukic et al. (2007) using general Kernel based methods. Both methods implicitly assume
that voxels are independent. Cosman, Fisher, and Wells (2004) used an Ising MRF as the
prior for neural activity and Woolrich et al. (2005) developed a spatial mixture model using
a discrete Markov random field (MRF) prior. Penny, Trujillo-Barreto, and Friston (2005)
proposed a Gaussian MRF prior on the regression coefficient of a general linear model and
approximated the posterior with the Variational Bayes method, while Penny, Flandin, and
Trujillo-Barreto (2007) showed how model evidence can be approximated using a Bayesian
framework and allows Analysis of Variance and Cluster of Interest analysis. Flandin and
Penny (2007) replaced the Gaussian MRF prior with sparse spatial basis function prior.
While these methods model spatial dependence in the signal, they are only for single subject
analyses. Recently, some work on multi-subject analysis has been done. Beckman and Smith
(2005) developed a time-subject-space three-way independent component analysis method.
They treat space as a generic dimension and ignore spatial contiguity. Bowman et al. (2008)
developed a Bayesian model for fMRI data that accounts for task-related connectivity.
Briefly, they reduce the size of the problem by dividing the brain into a small number of
regions and model the within and between regional correlation through subject and region
specific random effects. While their model has the advantage of modeling long range
correlations they use only the stage I BOLD response estimates at each voxel as the data.
They also assume exchangeability for voxels within each region. In contrast, we use BOLD
estimates and voxel locations and directly model activation locations.
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We develop a Bayesian hierarchical model that improves on the standard methods. First, we
use an explicit spatial model for activations without pre-smoothing. Second, ours is a multi-
subject model that accounts for inter-subject heterogeneity in activation location about a
population location. Third, we use Gaussian mixtures for the probability that individual
activation locations belong to a population activation center and allows us to answer: “What
proportion of subjects have a activity in a given region?” Our model can be used to make
inference on activation patterns at all levels: the population level, the individual level and
the voxel level. Specifically, we are interested in the population location of activations,
population prevalence of activation at a location, and inter-subject variability in the location
of activation. Throughout, we take the individual t-statistic images as the observed data,
Data from three subjects from our motivating example can be found in the supplementary
materials Web Appendix A. The paper is organized as follows. In Section 2, we introduce
the spatial mixture model in a fully Bayesian framework. In Section 3, we describe the
algorithm used for posterior inference and discuss how we summarize posterior inference in
Section 4. In Section 5, we demonstrate our method using a real data set. We conclude the
manuscript with a discussion and ideas for future work.

2 Bayesian Hierarchical Model
We begin with an overview of the model and notation (with all subscripts initially
suppressed), after which we present the distribution of the data and priors in detail.

Our model is specified hierarchically, as illustrated in Figure 1. At the first level there are an
unknown number of “population centers”, μ, that follow, a priori, a homogenous spatial
Poisson process defined over the brain. At the second level, an unknown number of
“individual centers”, ξ, are distributed as Gaussian mixtures whose component means are μ
with covariance matrix Σ. At the third level, an unknown number of “individual component”
means, η, are distributed as Gaussian mixtures whose component means are ξ with
covariance matrix Φ. While the ”individual centers” (level 2) are intended to model the
location of a given subject’s activation with a single point, heterogeneity in activation shape
(i.e. non-Gaussian-blob-shapes) require the use of another level in the hierarchy to fit intra-
subject activation shape. The ”individual components” (level 3) are the locations of
Gaussian mixtures used to fit an individual’s activation about a given individual center. We
assume that each subject is fit with an intra-subject fMRI signal model, producing scalar t-
images of the fMRI blood oxygenation level dependent (BOLD) signal; we refer to these
intra-subject summary measures as “the data”. At the fourth level, we assume the data, y, for
each subject are distributed as a Gaussian mixture with an unknown number of components
whose means are θ with variances σ2. The mixing weights for the datum at voxel v are
proportional to the density at v of a multivariate normal distribution with mean η and
covariance matrix R. There is one special component representing the constant background
intensity for each subject. We now present the details of our model.

Level 4: data distribution
Let yjv denote the t-statistic at voxel v = 1, …, V, for subject j = 1, …, J, where a single
index v is used to represent the 3D voxel: xv = (x1v, x2v, x3v). We assume yjv has a mixture
distribution:

(1)
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where cj is the number of mixture components for subject j, excluding the background
component, φ(a; b, c2) is the density at a of a normal distribution with mean b and variance
c2, while θ0 and  represent the background mean and variance. Conditional on the latent
allocation variable, ωjv, with Pr(ωjv = l) = pjvl, l = 0, …, cj, the likelihood is

(2)

Let φ2(·; a, B) denote the multivariate normal density with mean a and covariance matrix B.

The mixing weight pjv0 ∝ m and pjvl ∝ φ2(xv; ηjl, Rjl) for l > 0 with . Here

 is the component l mean—spatial dependence is captured by these
weights. Given m and Rjl, the weights depend on the distance from the voxel to each
component mean. Thus, neighbors tend to be more correlated than distant observations.
(However, deviations from this assumption in functional neuroimaging data may exist; see
Bowman et al. (2008). While our model does not account for such distant correlations, we
do not anticipate they will impair the model fit or posterior estimation.) Note that an
observation distant from all components centers, a priori, will belong to background with
probability approximately 1. Furthermore, if a voxel and component mean are coincident
and no other components nearby, then the a priori probability that this voxel belongs to the

background is approximately . A priori, we want 
and achieve this by taking Rjl ~ IW10[(2&pi;/10) I], where IWd(X) is the inverse Wishart
distribution with d degrees of freedom and X is a symmetric positive definite matrix. Thus, a
priori the probability that this voxel belongs to the background is approximately m/(m + 1).
Changing the value of m, therefore, changes the probability of belonging to the background.
The number of mixing components, cj, for each subject is not known and is estimated. A
priori we assume cj is Poisson with mean λc.

We assume the background mean, θ0, follows a standard normal distribution, a priori, and
reflects our belief that when no signal is present, the BOLD signal should have zero mean.
However, by placing a distribution on θ0, we allow for non-zero null contrasts—a quite
common occurrence in fMRI data. For the intensity means of the active components, θjl, l >
0, we use a truncated normal distribution: . Hyperprior distributions
are then placed on its mean and variance: λθ~ N (3, 108) and . We truncate
the prior distribution of θjl at 0 to ensure that the voxels classified to activated regions have
positive expectations: activated regions are defined as a positive change in the BOLD signal.

We place inverse gamma priors on  and  to take advantage of conjugacy:

 and . For each subject, most of the data will belong to the
background and thus a vague prior can be placed on . For the variances of mixture

components, , the prior has finite first moment and infinite second moment. Furthermore,
we place a vague hyperprior gamma distribution on the scale parameter, βσ ~ G(.001, .001),

thereby reducing sensitivity of the posterior of  on its prior. (We note here that hyperprior
values that we feel result in vague prior distributions and hyperprior values that we feel are
not application dependent will be stated immediately. Others, which we feel are are
application dependent, will be discussed later in Section 5).
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Level 3: individual component means
Individual component mean priors constitute level three. The prior of mean l for subject j, is
a mixture of bj multivariate normals.

(3)

We introduce a latent variable, sjl, such that Pr(sjl = h) = ϕjh, h = 1, …, bj and, conditional on
sjl, each component mean is associated with a particular individual center: [ηjl|ξjh, Φjh, sjl =
h] ~ N(ξjl, Φjl). Here, the ϕjh are mixing weights. A natural choice for the prior on ϕjh is a
symmetric bj − 1 dimensional Dirichlet distribution: ϕjh|bj ~ D(1, 1, …, 1). The number of
individual centers, bj, for each subject is not known and we assume, a priori, that bj is
Poisson with mean λb.

We give Φjh an inverse Wishart with 10 degrees of freedom: . A hyperprior
distribution is then placed on SΦ: SΦ ~ IW10(TΦ). These distributional forms are chosen to
take advantage of conjugacy and to aid in reducing the dependence of the posterior of Φjh
on its prior. The degrees of freedom for both inverse Wishart distributions are set to 10,
ensuring proper priors that are necessary for the reversible jump moves.

Level 2: individual centers
It typically takes several mixture components to adequately model an activation region.
Thus, we introduce the second level in the hierarchy to model the centers of these activation
regions. We assume, ξjh, h = 1, …, bj for subject j, is a mixture of cp multivariate normals.

(4)

We introduce a latent variable, zjh, such that Pr(zjh = i) = ψi, i = 1, …, cp. The prior on the
mixing weights ψi is a symmetric cp − 1 dimensional Dirichlet distribution. We give Σi an

inverse Wishart distribution with 10 degrees of freedom: . A hyperprior
distribution is then placed on SΣ: SΣ ~ IW10(TΣ). These distributional forms are chosen to
take advantage of conjugacy and to aid in reducing the dependence of the posterior of Φjh
on its prior. The degrees of freedom for the inverse Wishart distributions are 10, ensuring
proper priors distributions that are necessary for the reversible jump moves.

Thus far, we have only modeled the activation regions for each subject, independently,
along with the individual centers. On average, it takes one individual center to model each
activation region. However, it may take more, especially for oddly shaped activation
regions. It is also possible that two or more spatially close activation regions may be
considered as one individual center. Thus, at this level, there is some inherent local
smoothing at the subject level.

Level 1: population centers
The final level of the hierarchy clusters the individual centers about population centers. The
parameter  is the location of population activation center i, i = 1, …, cp. Let
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Aj denote the volume of the brain of subject j. Set . (We note here that, although
all subject’s data have been mapped onto a common brain atlas, due to motion artifacts and
field inhomogeneities, there are missing data. Typically, fMRI analyses are performed on
the intersection of the Aj. By taking the union, we allow for the possibility that a population
center is in a region where some subjects may have missing data. Note, however, that the
spatial parameters at the higher levels of the hierarchy are confined to Aj, for subject j.) A
priori, we assume that the population centers follow a homogenous spatial Poisson process
with rate λp defined on A. Thus, cp ~ P (λpA) and π(μ1, …, μcp|cp) = A−cp.

Although the prior distribution of the population centers is a homogenous point process, its
posterior is not necessarily. It depends largely on the posterior distribution of the individual
centers. From Equation (4) it is possible that two or more mixture components may be close
enough in space that the mixture of these may result in a single mode in the posterior
distribution. Thus, although we call cp the number of population centers and μi a population
center location, the number of modes in the posterior of ξjh can different from the mode of
cp.

3 Posterior estimation
The full posterior distribution does not have an analytic solution. Thus, the posterior
distribution is simulated via Markov chain Monte Carlo (MCMC) techniques. Reversible
jump MCMC (RJMCMC) is used to estimate the number of individual components,
individual centers and population centers. RJMCMC was developed by Green (1995) and
can be viewed as a generalization of the Metropolis-Hastings (MH) algorithm (Hastings
(1970)).

We propose to add a population center, an individual center or an individual component,
each with probability 0.5 and propose to delete a population center, an individual center or
individual component, each with probability 0.5 at every iteration of the algorithm. We
over-sample the RJMCMC moves five times per iteration which results in better mixing of
these parameters. When we propose a birth, the mixing component parameters are drawn
from their prior distributions. New mixing weight ψ* (φ*) are drawn from Beta(1, cp)
(Beta(1, bj)). We re-scale the old weights ψ′ = ψ(1 − ψ*) such that all weights sum up to 1
(similarly for φ*). The deletion move is the inverse of this construction.

Conditional on the number of population centers, the number of individual centers and the
number of individual components, other parameters are updated via a Gibbs step or a
random walk MH step. The variances in the proposal distribution for the MH steps are
dynamically calibrated to obtain acceptance rates of approximately 35%. Following
Fernandez and Green (2002) we use the marginal expression for the likelihood and for the
priors of ηjl and ξjh, as specified in equations (1), (3) and (4) to obtain better mixing of the
trans-dimensional moves. Details of the algorithm are given in Web Appendix D.

4 Summarizing posterior inference
Simultaneous visualization of the joint posterior distribution of all parameters is infeasible.
Instead we view the distributions of certain univariate parameters and create images
summarizing the posteriors of the various spatial parameters. In this section we review the
approaches we use to understand our posterior and assess model fit.

We create a “Posterior Probability of Activation” image for each subject. This image is the
voxel-wise (marginal) posterior probability of activation: Pr(ωjv > 0|y).
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We create an image of the “Individual Center Posterior”: a voxelization (a discrete estimate
of a continuous distribution) of the estimated individual center posterior mean: Ê(ξ̃|y), where
ξ̃ is a center from a randomly chosen subject from the population. At each sweep we

evaluate  at each voxel v. Averaging this over sweeps creates an estimate
of the posterior mean. The Individual Center Posterior shows the most likely location(s) of
an activation center for a randomly chosen subject from the population. From it, we can see
the inter-subject variability of individual centers about population centers. We take care not
to over-interpret the relative intensities shown in this image. As can be seen in Equation (4),
the mode heights in the Individual Center Posterior are affected by two quantities. First, all
things equal, smaller diagonal elements in Σi indicates less inter-subject variability about a
population center, resulting in a larger mode. Second, a mode’s height will be relatively
larger when more subjects have centers associated with a particular population center: the
mixing weights will tend to be larger for population components that have more individual
centers associated with them.

Similar to the “Individual Center Posterior” image, we create an image of the “Individual
Center Scale”. This is an image of the conditional (on population centers occurring in certain
volumes) estimated posterior 95% credible ellipse (marginalized over z).

We also create an image to characterize the population centers. The “Population Center
Location” image is a voxelization of the posterior rate function (counts per voxel) for μ. We
estimate this by computing the 3D histogram of {μi} for each iteration and then average this
over iterations (see, e.g., Johnson, 2007, Equation (11)). The values represented in this
image sum to the estimated posterior expectation of cp. The modes seen in the Individual
Center Posterior image roughly correspond to the most likely location of population centers.
However one cannot ascertain the variability of population centers from the Individual
Center Posterior image. These two images taken together show the most likely locations of
the population centers and the most likely locations of an individual center from a randomly
chosen subject from the population. They also show the relative variability of a population
center and of the individual centers about each population center.

Quantitatively, we estimate the posterior probability that a population center exists in certain
small volumes. To do so we adopt an idea from Johnson, 2007, Equation (14): find local
maxima in the individual center posterior image and, for small volumes centered on these
maxima, find the posterior probability that at least one μi exists in this volume. This
probability approximates the probability that a population center exists in this volume.

The “Population Center Prevalence” image shows the fraction of subjects that are associated
with particular population centers. Let cij = Σh I(zjh = i) denote the count of individual
centers that subject j has associated with population center i. The count of subjects with

center i is then , and the population prevalence is ci/J. Conditional on a
population center occurring in voxel v, this image is the posterior average of ci/J after
marginalizing over population centers.

For comparison with other methods we create two other images. The “Classical t-image” is
the one-sample t-test on the BOLD effect magnitudes (yv = {yjv}j) at each voxel. We also
create an image of −log10P-values for a one-sided, one sample t-test. The −log10
transformation makes for easier visualization, creating an image that is “bright” in voxels
with evidence for an non-null effect magnitude.
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5 An Application: Proactive Interference-Resolution
We demonstrate our model with data from a study investigating, among other things,
proactive interference-resolution (Nee, Jonides, and Berman, 2007). Proactive interference is
our difficulty to recall desired information due to interference from previously learned
information. Our ability to resolve proactive interference from previously relevant, but no
longer relevant information is a key factor in determining how much information we can
retain in short-term memory. Thus, the neural mechanisms underlying proactive
interference-resolution is central in our understanding of short-term memory.

An experimental paradigm commonly used to investigate proactive interference-resolution is
the Recent Probes task. In this paradigm, subjects are given a small set of items (the target
set) to remember over a short retention interval followed by a recognition probe. The
recognition probe is either a subset (positive probe) of the target set or not (negative probe).
The recognition probe can further be a member of a previous trial (recent probes) or not
(non-recent probes). Subjects show slower reaction times and an increase in error rates when
rejecting recent negative probes when compared to non-recent negative probes. This
decrease in performance is taken as a marker of proactive interference. The left lateral
prefrontal cortex (left LPFC) is a region in the brain that has been linked to the resolution of
proactive interference.

5.1 Hyperprior parameter values
The joint prior distribution is factored hierarchically (see Web Appendix C). It is not
possible to use fully non-informative priors in a mixture setting and have a proper posterior
(Richardson and Green, 1997, Section 2.4). Nevertheless, we assess the sensitivity of the
posterior. Results of these sensitivity analyses are given in Web Appendix B.

Level 4 hyperprior parameter values—Typically, fMRI experiments are designed
such that only a small percentage of the brain (roughly 1%–5%) shows a significant increase
in BOLD signal. Thus, a priori, we set m = 19. Given a voxel and individual component
mean are coincident with no other components nearby, this choice of m results in the a priori
probability of 0.95 that this voxel belongs to the background. All voxels that are distant from
all components have an a priori probability near 1.0 of belonging to the background. This
parameter controls the intensity level at which voxels are considered activated. We
demonstrate this in our sensitivity analyses. With m = 19, the estimated posterior mean of λθ
is 2.68. The mean of the number of mixing components is set to 25. The posterior is not
sensitive to the value of λc as m has a much larger effect on the posterior distribution of cj.

Level 3 hyperprior parameter values—We also expect that the number of individual
activation centers will be small and so we set λb = 5.

Each individual activation region is typically fitted with several components via Equation
(1). The means of these normal components are taken to be the individual activation region
centers. The covariance matrices of these mixture components will control the size of the
normal mixture components in Equation (3). For this application, we believe that the
subjects’ activation regions should be small. Thus, a priori, we desire E(Φjh) = I. This
translates to 0.2 cm standard deviation in the x, y, and z directions. It also results in an a
priori 95% spherical confidence region with radius 0.557 cm (a volume of 0.724 cm3, about
the size of a Garbanzo bean). To achieve this a priori expected value for Φjh, we set TΦ =
(5/3) I.

Level 2 hyperprior parameter values—Interest lies mainly in the left LPFC which is
spatially well located. We expect most subjects will have individual centers in the left LPFC
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that are reasonable close to each other. Hence, TΣ = 5/(3 · 2.52) I. This results in E(Σi) = 2.52

I and an a priori 95% spherical confidence region with radius 1.392 cm (a volume of 11.31
cm3, about the volume of a standard sized walnut).

Level 1 hyperprior parameter values—We expect that the number of population
centers will be small. Thus we set λp = 5/A (the a priori expected number of population
centers in the section of the brain is 5).

5.2 Results
The data we use consists of unsmoothed fMRI images from eighteen subjects. Each image
has voxel dimension 79 × 95 × 69 and each voxel is 2mm on a side. The left LPFC is of
particular interest and so we apply our model to a 79×95×7 subset of the original data that
contains the left LPFC. We run the algorithm for 12,000 iterations, discarding the first 2,000
iterations for burn-in. The acceptance rate for the population level birth/death RJMCMC is
about 15%.

Web Figures 1–12 display all seven slices of the data from three randomly chosen subjects,
along with the − log10(p) images and the Posterior Probability of Activation images. In each
of these figures, slices are arranged in columns. The top row displays the image intensity, or
data. The second row shows the − log10(p-value) images. The third row in these figures
show the posterior probability of activation of the corresponding slices. We can see from
these figures that these three subjects have fairly high activation in the left LPFC. There is
also evidence of high activation in various other regions of the brain. In particular, subject 6
shows some activation in the right LPFC in slices 43 and 44 (Web Figures 7 and 8).

The main focus of our work is at the population level. We conducted a classical group
analysis on these data. We found no statistically significant activated voxels controlling for
either a family-wise error or controlling the false discovery rate at 0.05. (Bonferroni
corrected threshold: 7.8141; minimum FDR p-value: .2390). Although the aforementioned
three subjects show a strong signal in the left LPFC, the signals vary in spatial location
between subjects (c.f. Web Figures 1–12). This variation is great enough that the population
based analyses did not result in statistical significance.

However, based on our model and algorithm there is strong evidence that there is a
population center located in the left LPFC. Figures 2 through 4 show the middle three slices
(40, 41 and 42) of the seven slice subset (slices 38–44) we analyze. Web Figures 13–19
show population level images for all seven slices in color, heat-map images. The posterior
probability of a population center existing in the the 2.2×2.2×1.4 cm neighborhood (11 × 11
× 7 voxels, volume = 6.776 cm3) centered at voxel (17, 66, 4) is 0.9989 (see Panel A in
Figures 2–3). The population prevalence in the left LPFC is about 0.55 (see Figures 2C, 3C
and 4C). Furthermore, in the right LPFC the posterior probability of population center
existing in the 2.2 × 3.8 × 1.4 cm neighborhood (11 × 19 × 7 voxels, volume = 11.008 cm3)
centered at voxel (63, 64, 4) is 0.9033 suggesting that a homologous region in the right
LPFC may also be involved in proactive interference-resolution. Such bilateral recruitment
is often seen in tasks requiring cognitive control. However, we see that the inter-subject
variability around the population right LPFC center is greater than that in the left LPFC (!
see Panels B and D, Figures 2–4), consistent with the more common finding of left LPFC
involvement in this task (Jonides and Nee, 2006). There is also evidence of a population
center in the precuneus of the posterior parietal cortex. The posterior probability of a
population center existing in the 3.0 × 3.0 × 1.4 cm neighborhood (15 × 15 × 7 voxels,
volume = 12.6 cm3) centered at voxel (34, 26, 4) is 0.9366. This region is involved in the
recollection of specific memory details such as contextual information (Wagner et al., 2005),
which may be required to properly categorize and reject recent negative probes. Finally, we
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note that there is also evidence of a population center in the anterior cingulate cortex (ACC)
(centered at voxel (38, 66, 4)). The ACC is involved in a wide range of cognitive control
tasks and is theorized to act as a conflict monitor, calling for increased control from the
LPFC in situations of high conflict (Botvinick et al., 2001). The posterior probability of a
population center existing in the 2.2 × 2.2 × 1.4 cm neighborhood (11 × 11×!7, volume =
6.776 cm3) about this voxel is 0.9481.

Figures 2–4, in particular Panels A, B and D, demonstrate the ability of our algorithm to
separate out inter-subject variability (individual center scale and individual center posterior
images, Panels B, D) from the population center variability (population center location
images, Panel A). This is most evident in Panel B, the individual center scale image. In the
population center location image, there appears to be four major areas with evidence for a
population center. We estimated the harmonic means of Σi conditional on a population
center existing in the neighborhoods defined in the previous paragraph and evaluated the
95% posterior credible ellipse. From these ellipses and the posterior rate function, one can
ascertain that the inter-subject variability is much larger than the variability in the population
center locations. In slices 38, 39, 43 and 44, there is still evidence of inter-subject variability
(c.f. Web Figures 13–19), but the population centers are confined mainly to the middle three
slices, and for the most part, to slice 41. Figures 2–4(E,F) display the classical t-image and
the − log10(p) image. While these images similarly illustrate the spread of activation
between subjects, they cannot quantify the spatial precision of the results as our method
does, nor can they separate out the various sources of spatial variability.

5.3 Sensitivity analysis and simulation study
We ran both sensitivity analyses and a simulation study. The sensitivity analyses were
carried out on the proactive interference-resolution data set. We assess the sensitivity to
prior and hyperprior parameter values that may have an influence on the population level
posterior distributions. We focus on the following parameters: λp and λb, the Poisson rate for
the distribution of the number of population and individual centers; TΣ, the inverse Wishart
parameter for Σ; and m, the parameter controls the probability that a voxel belongs to the
background. We found that changing λp, λb or m has little effect on the population center
locations. Changing TΣ which changes the expected value of Σ has a more pronounced
effect. Increasing the variability causes a forth mode (between the left LPFC and ACC) to
appear in the posterior population rate function. Decreasing the variability will increase the
number of ! mixture components and make the modes other than the left LPFC less visible.
Details of both the sensitivity analyses and simulation study can be found in Web Appendix
B. (cp) the mode of the estimated marginal posterior distribution of c1 becomes 7 (29%); the
mode of the estimated marginal posterior of cp remains 8, but is more diffuse (53%). This
influence of the Poisson mean on the posterior distribution of the number of components is
expected, see, e.g., Green (1995).

Equal spread in the x and y directions. Σ3 gives a population center with negatively
correlated (ρ= −0.5) individual centers with equal spread in the x and y direction. The mean
intensities of these three population level centers are 2, 2.5 and 3.

6 Future work and discussion
We have described a Bayesian mixture model for fMRI data analysis. The method considers
the spatial structure of the signal, which is often ignored in frequentist approaches.
Moreover this method extends the current Bayesian spatial modeling literature in two key
ways. First, we consider multi-subject data, explicitly population centers and the dispersion
of individual’s response about those centers. Second, instead of assuming a normal shape
model for activation magnitude, we assume a normal shape model for probability of
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activation and assume homogeneous magnitude within component. We argue that this leads
to a more flexible yet still interpretable parameterization.

The seven slice analysis takes approximately 8 hours of CPU time. The full 3D analysis
takes approximately 21 hours of CPU time on a MAC 3.0 GHz Xserve Server. However, we
do feel that there is more room for improving the efficiency.

The flexibility of our model does make for some interpretive limitations. While most users
of fMRI conceive of activation “loci” (x,y,z locations), in our model the population centers
are random variables μ whose distribution can’t easily be summarized. We visualize this
distribution with the Population Center Location image, inspecting for modes and assessing
the spread about modes.

A final limitation of our model is that we do not have explicit linking of population centers
to individual centers. A fMRI practitioner would ideally like to point to population loci χ
and ask “which subjects have evidence for that loci, and what is the pattern of activation in
each subject corresponding to that loci.” For any one MCMC sweep this connection is
known through latent variables zjl and ωjv, but cannot be easily summarized over different
sweeps as the number and location of population centers, as well as individual centers, may
change.

In future work we would like to address these shortcomings, perhaps by introducing new
latent variables that specifically correspond to investigators’ notions of activation loci. For
example, we could define a loci as “nearest center μi to anatomical landmark X”.
Alternatively, local maxima on the classical t-statistic image could be used to label
population centers; once population centers are identifiable, they can be used to track
summary measures of interest. Our approach can be extended to model the negative BOLD
response. This can be achieved by adding population and individual centers for negative
BOLD responses.. Now each voxel will be assigned to the background, the positive center or
the negative center. The mean intensity for negative BOLD responses will be restricted to
negative values.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Hierarchical structure of the spatial Bayesian model. (a) At the first level an unknown
number of “population centers”, μ, that follow a homogenous spatial Poisson process
defined over the confines of the brain. (b) At the second level, an unknown number of
“individual centers”, ξ, are distributed as Gaussian mixtures whose mixture component
means are the population centers with covariance matrix Σ. (c) At the third level, an
unknown number of “individual component” means, η, are distributed as Gaussian mixtures
whose mixture component means are the individual centers with covariance matrix Φ. (d)
At the final level, we assume the data, y, for each subject are distributed as a Gaussian
mixture with an unknown number of mixing components whose means are θ with variances
σ2.
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Figure 2.
Population level results. Slice 40. A) Population center locations. B) Individual center scale.
C) Population center prevalence. D) Individual center posterior. E) Classical t-image. F) −
log10(p) image.
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Figure 3.
Population level results. Slice 41. A) Population center locations. B) Individual center scale.
C) Population center prevalence. D) Individual center posterior. E) Classical t-image. F) −
log10(p) image.
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Figure 4.
Population level results. Slice 42. A) Population center locations. B) Individual center scale.
C) Population center prevalence. D) Individual center posterior. E) Classical t-image. F) −
log10(p) image.
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