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MOTIVATION Cultural ecosystem services (CES), known

as non-material benefits human obtain from ecosystems

including aesthetic, recreational value, and sense of

dentity, is the dominant category of

" penefits provided

by urban green space (UGS). Lack of

" spatial explicit

data, the mapping and assessment of city-wide CES,

however, is underdeveloped. Crowdsourced data from

mobile devices, especially geotagged photos collected

from photo-sharing platforms, cost-effective without

spatial and temporal limitation, tend to be attractive

source of information to evaluate CES.

GOALS AND METHODS This study used

=1

geotagged photos

from Instagram and Flickr to investigate the spatial

pattern of CES provided by UGS in San Francisco during

the summer of 2017. The relationship between CES

provision and five categories of site

-specific features

of UGS was analyzed through an automated photo

content analysis and a regression analysis testing the

hypotheses made hased on observations and literature

reVview.

Cultural Ecosystem Services
(CES)

Map CES based on

Urban Green Space (UGS)

Regression Analysis

Geotagged Photos k B E—
-------------------- 1_. Comparison
Content Analysis e :

Subject 1

‘ Subject 2 ‘ Subject 3

Site-specific Fealures

F1G. METHODOLOGY OF THE STUDY

RESULTS Findings showed that the spatial patterns of

CES quantified by photo counts and photo counts per

hectare in UGS were quite different while both

meaningful and necessary for assessing CES. The

composition of CES across all UGS in San Francisco

varied a ot due to different site-specific features,

shown by diverse subjects of photos. UGS located in

less dense area with a larger size, more disaggregated

shape, more landmarks, waterbody, cultural and

recreation spots, as well as a potential sea view were

prohably to get more photo counts; UGS with waterbody,

higher building and population density in surrounding

neighborhoods could have more photo counts per

hectare in San Francisco.

CONTRIBUTION These results could be used by environmental

planners to understand
hehaviors in UGS on 3

compared to traditiona

citizens’ preferences and
arge scale with a lower cost

approaches, and compare the

trade-offs across different options of site-specific

feature changes.
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SUBJECTS OF CLUSTERED FLICKER AND INSTAGRAM
GEOTAGGED PHOTOS

The subjects of clustered Flickr and Instagram photos in the summer of 2017 were quite similar, though there

ferences about small subjects. “People” was the most popular subject, about 30% in both Flickr
and Instagram groups. “streetscape, art and food” “

were subtle di

surroundings of buildings” “vegetation landscape” “water
landscape” and “animals” all presented in two groups, while in Flickr group “animals” subject was less

conspicuous and mixed with “vegetation landscape” subject. There was a special small subject “sky landscape”
In Instagram group which related to sunset, dusk, dawn and nightscape. “Ball game” was a particular subject

in Flickr group which was mostly about people playing baseball game. The subjects of posted photos reflected
what types of landscape might have more aesthetic and recreation value.
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1. BIKE STATION DATA COLLECTION AND
PRE-PROCESSING

0. EXPLORATORY DATA ANALYSIS
(EDA)

3. CREATE COUNT TIME SERIES OF
STATIONS

4. CALCULATION OF THE SIMILARITY
BETWEEN COUNT TIME SERIES

3. CLUSTERING STATIONS BASED ON
SIMILARITY OF USAGE PROFILE

b. INTERPRETATION OF CLUSTERS OF

STATIONS CONSIDERING S0CI0-ECONOMIC
CONDITIONS

METRODOLOGY

MOTIVATION

Bicycle sharing systems (BSS) provide people with free or rental bicycles suitable for
short-distance trips in urban areas, thus reducing traffic congestion, air pollution and
noise. Many cities all over the world have introduced and implemented B> as a way of
sustainable transport. These systems generate arge amount of transportation data, the
mining of which Is useful to understand the underlying city dynamics. This project aims
to develop a method analyzing BSS usage data to reveal urban mobility patterns with

Washington D.C. as a case study.
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INTERPRETATION OF CLUSTERS OF STATIONS
CONSIDERING SOCIO-ECONOMIC CONDITIONS

Cluster Inhabitants  Jobs /acre  Retail and Proportion
name /acre entertainment  of hlock
jobs / acre group within

0.25 mile of
transit stops

“Housing” 27 1¢ { 13%

“Dense 39 ¢5 ) 1%

Housing”

“Suburban 16 ) - 12%

Parks”

“Central 17 101 15 36%

Green Mix-

USE"

“Downtown 33 160 17 54%

Mix-use”

Table. Mean of each cluster with respect to population density (number

of inhabitants per acre), employment density (number of jobs per acre),
retail and entertainment service (number of related jobs in grocery stores,
restaurants, etc. per acre), and public transportation accessibility (proportion
of block group within 0.25 mile of transit stops).
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SEA LEVEL RISE

1. Meet immediate housing, infrastructure, and open space needs: serve as a template for an EVOLVING DISTRICT & region
¢. Multi-benefit water management, habitat, and public spaces: CELEBRATE RESILIENT DESIGN
3. Provide for hazard ADAPTATION, mitigation, and preparedness

SITE FACILITES POPULATION DENSITY

HOUSEHOLDS BELOW POVERTY LINE

-_ II:'H‘ #A-'_il?

15,000 / sq. mile

9,000 / sq. mile
7,000 / sq. mile

5,000 / sq. mile

3,000 / sq. mile

1,000 / sq. mile




URBAN CANALS

@ CANAL DISTRICT PROMENADE
WITH RETAIL FRONTAGE

@ (ANAL PLANTING FILTERES

COMMUNITY HUB
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/ COMMUNITY CENTER

(@ (OMMUNITY GREEN WITH
ALTERNATE USES FOR
DISASTER PREPAREONESS
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/ DAYCARE CENTER

(O URBAN VERTIAL FARM
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() URBAN CANAL PARK
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A. EXISTING

1.6° SEA LEVEL RISE 3’ GROUND WATER TABLE . . L
ISITE AREA: [675 ACRES R
CONSTRUCTED WETLANDS: |193 ACRES & i
WATER STORAGE: 488.3 ACRE FEET :
NEW HOUSING UNITS: 13,148
COMMERCIAL/MIXED USE: |1.6 MILLION SF
(GROUNDWATER: 4.3')
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@ CONNECTION TO ROAD
NETWORK ON LEVEE

@ PUBLIC OPEN SPACE THAT CAN COLLECT
STORM WATER DURING MAJOY FLOODING EVENT

FLOATING BLOCKS

@ LIGHT WEIGHT CONCRETE
INAN ARTIFICIAL POND

BIOSWALE AND
EMERGENCY STORAGE

@ SHARED OPEN SPACE
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10° SEA LEVEL RISE 11° GROUND WATER TABLE

@ HINGE RAMP INTEGRATED
WITH UTILITY LINE CONNECTIONS
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TOTAL HOUSING UNITS: 16,262 o PHASE I
PUBLIC OPEN SPACE: 45 ACRES |
PRIVATE OPEN SPACE 44 ACRES

WATER STORAGE: 1,811 ACRE FEET
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// Map the function over one year of
data and take the median.

// Load Sentinel-2 TOA reflectance
data.

var sentinel = ee.ImageCollection

( "COPERNICUS/S2")
.filterDate('2018-01-01', '2018-06-30')
fl Pre-filter to get less cloudy

granules.

filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',

20))
.map(maskS2clouds);

// Temporally reduce the image using
mean().

var composite = sentinel .median();
//Make a handy variable of visualiztion
parameters.

var visParams = {bands: ['B4', 'B3',
“B2" ], max:i@.3%¥;

// Create the NDVI and NDWI spectral
indices.

var ndvi = composite.normalizedDifference

(['B8','B4"]);
var ndwli = composite.normalizedDifference
CE B35, B8 1)

// Add two bands to simple composite
image

var composite n = composite.addBands
([ndvi, ndwi]);

// Display the composite map
Map.addLayer(composite n, visParams,
'median composite');
Map.setCenter(1l13.6/7368, 22./7/58458,
11);

name: 'over 90% occurrence water mask'
IOF

Map.setCenter(113.6/7//7368, 22.758458,
11);

o0 o0——0 o0—0 o0—0 O0—m0 O0—0

IMAGE
COLLECTION

IMAGE
FILTERING

LOMPOSITE
MAGE

JANL
MATH

ADD NEW
JANDS

MAP
VISUALIZATION

NEICRUNEEIENIE@EIGES INCOMPLETE, INACCESSIBLE, OR OUT-DI
WRNICN Sets up onstacles on sustainable urban planning and design.

Focusing on coastal flooding, the greatest environmental threat in PRD
due to climate change, | have tried to use over 800 Landsat satellite
images to study the change of water from 1984 to 2018. | am working
In Google Earth Engine processing those images in Javascript to generate
latest datasets of physical elements such as water, vegetation and
topography based on theories of remote sensing. The left is just a simple
example to basically tell difference between vegetation, water and
urbanized area shown In the previous page.
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